

### Timing with Monolithic CMOS Potential applications to FCC

Philippe SCHWEMLING

CEA/Irfu/DPhP

**Université Paris Cité** 



cea irfu

## Monolithic CMOS and DRD3

| WG1 research goals <2027 |                                                                                                                                                  |   |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
|                          | Description                                                                                                                                      | 1 |  |  |  |  |
| RG 1.1                   | Spatial resolution: $\leq 3 \ \mu m$ position resolution                                                                                         | 1 |  |  |  |  |
| RG 1.2                   | Timing resolution: towards 20 ps timing precision                                                                                                | 1 |  |  |  |  |
| RG 1.3                   | Readout architectures: towards 100 MHz/cm <sup>2</sup> , 1 GHz/cm <sup>2</sup> with 3D stacked monolithic sensors, and on-chip reconfigurability |   |  |  |  |  |
| RG 1.4                   | Radiation tolerance: towards $10^{16}~\rm n_{eq}/cm^2$ NIEL and 500 MRad                                                                         |   |  |  |  |  |

Z C

- Ambitious research goals
- Agressive timeline

 Quite some technologies/foundry processes under consideration → no clear choice yet, very likely one given technology will not reach all goals

|      | DRD3                                    | ¥G1 Monolithic CMOS                               | time scale                                                                                                |                                                                                         |                                                                                         |                                                                                                                                                        |  |  |
|------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|      | R                                       | Timeline                                          | 2024                                                                                                      | 2025                                                                                    | 2026                                                                                    | 2027                                                                                                                                                   |  |  |
| -    | se                                      | Technologies                                      | Foundry submissions and Milestonses (MS)                                                                  |                                                                                         |                                                                                         |                                                                                                                                                        |  |  |
|      | arch G                                  | TPSCo (TJ) 65 nm                                  | design MPW1.1                                                                                             | submit MPW1.1mid-2025<br>design MPW1.2                                                  | evaluate MPW1.1<br>submit MPW1.2 Q4-2026                                                | eusluste MPV/1 2                                                                                                                                       |  |  |
|      | oals                                    | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | design MPW1.1<br>submit MPW1.1Q4-2024                                                                     | evaluate MPW1.1<br>design MPW1.2                                                        | submit MPW1.2 Q1-2026                                                                   | evaluater in with                                                                                                                                      |  |  |
|      | R(<br>Posi<br>preci                     | TPSCo (TJ) 65 nm                                  | electrode size/shape/<br>12°° ER splits, thin ep<br>optimized for high cha                                | pitch, process variants<br>itaxial layer, stitching<br>nnel density (low pitch)         |                                                                                         |                                                                                                                                                        |  |  |
|      | sion                                    | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | electrode size/shape/pitch, wafe<br>87° ER or I                                                           | ectrode sizelshapelpitch, wafer typelthickness, process variants<br>8" ER or MLM splits |                                                                                         | MS5<br>handle technical solutions for<br>Vertex (MUCE-3, LHC)                                                                                          |  |  |
|      | RG<br>Timing pr                         | TPSCo (TJ) 65 nm                                  | similar<br>optimized for fast signal co                                                                   | to RG1<br>llection speed and high S/N                                                   | MS2<br>establish time precision versus<br>technology, channel                           | <ul> <li>2, Belle-3, CMS/ATLAS)</li> <li>1) high radiation tolerance/rate technlogies &gt; 65 nm</li> <li>2) high channel density, sitching</li> </ul> |  |  |
|      | 2<br>ecision                            | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | similar to RG1<br>optimized for fast signal collection speed and high S/N<br>including gain layer option  |                                                                                         | MS3<br>establish performance of<br>readout variants for power                           | TPSCo 65 nm<br>MS6                                                                                                                                     |  |  |
| DRD7 | RG<br>Read<br>archited<br>common<br>DRL | TPSCo (TJ) 65 nm                                  | digital/binary, synchr<br>optimised to features of RC<br>power distribution and contr                     | onous/asynchronous<br>61 and RG2 at medium rates<br>ol in large size stitched matrix    | MS4<br>establish radiation tolerance<br>provide guidlenies for choice of<br>substrates  | Central Tracking (ALICE-3, EIC,<br>LHCb-2, Belle-3), Timing Layers<br>(ALICE-3, ATLAS, CMS)<br>with stitching TPSCo 65 nm                              |  |  |
|      | 3<br>out<br>sture<br>1 with<br>)7       | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | digital/binary, synchronous/asynchronous<br>optimised to features of RG1 and RG2 at medium and high rates |                                                                                         | select/merge MPW1.1features<br>add new technology features                              | MS7<br>handle technical solutions for                                                                                                                  |  |  |
|      | RG<br>Radia<br>tolera                   | TPSCo (TJ) 65 nm                                  | process fea                                                                                               | tures in splits                                                                         | submit configurations for Vertex<br>Detector, Central Tracking,<br>Timing Layers, HGCAL | timing, at medium and high rates                                                                                                                       |  |  |
|      | 14<br>tion<br>nce                       | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | variants of substrates (Cz, epitax                                                                        | ial), resistivity, p-type and n-type                                                    |                                                                                         |                                                                                                                                                        |  |  |

# Timing sensor basic ingredients



Illustration taken From N. Cartiglia (VCI 2022)

- Monolithic sensors : Analog Front-End, Time measuring electronics (typically LE discriminator)
- Data processing (TDC, serializers, PLL, sparsification) can ideally also be on same chip, but actual development not easy (risk of analog/digital couplings)

# Time resolution



Illustration taken From N. Cartiglia (VCI 2022)



Ramo's Theorem

i∝qvE...

Saturated drift velocity in sensor volume  $\rightarrow$ Uniform weighting field

Parallel plate geometry, easier for big pixels

"Jitter" term

Small noise  $\rightarrow$  choice of technology, small detector capacitance High dv/dt  $\rightarrow$ High electric field (but Vd saturates around 1 V/µm) Intrinsic amplification (LGADs)

Amplitude variation  $\rightarrow$  Timewalk, corrected offline

#### Non-homogeneous energy deposition $\rightarrow$ cannot be corrected, minimized by design

## Timing oriented sensor families



# Features of monolithic CMOS sensors

- (Relatively) cheap high volume industrial technology
  - 2-3 k euro/8" wafer, post-processing and dicing included → bare sensor cost for 100 m2 : 7-11 M euros
  - Bump bonding operation not needed for fully monolithic architecture
- Stable and easy operation
- HV-HR wafers available, allows charge collection by drift and not only by diffusion → favorable for fast collection and for radiation hardness
- Can be designed as a complete SoC, from sensor to DAQ interface
- Presently available technologies are known to be rad-hard up to a few 10<sup>15</sup> 1 MeV neq/cm2
- Can be thinned down to < 100  $\mu$

## LF15A radiation hardness

#### 0 Mrad @Room Temp 149 Mrad @Room Temp 149 Mrad @Low Temp -15°C





<sup>[</sup>I. Mandic et al. NIM A 903, 2018]

- → Radiation tests at CERN-SPS with proton beam on LF-CPIX chip (CPPM)
- ightarrow 14% increase of noise after irradiation with cooling

### Leading-edge technology: IHP SG13G2

130 nm process featuring SiGe HBT with

- Transistor transition frequency: ft = 0. 3 THz
- DC Current gain:  $\beta = 900$
- Delay gate: 1.8 ps



innovations for high performance microelectronics

Leibniz-Institut für innovative Mikroelektronik







FACULTY OF SCIENCE Department of Nuclear and Particle Physics



### ATTRACT prototype



#### 100µm pitch hexagonal pixels - 25 µm depletion



MPW submission in 2019 funded by H2020





### **UNDER TEST HERE**

#### **Analog Channels:**

HBT preamp + two HBT Emitter Followers to  $500\Omega$  Resistance on pad.







Department of Nuclear and

G. lacobucci et al 2022 JINST 17 P02019

24.02.22

ROBERTO.CARDELLA@UNIGE.CH

MONOLITH



### ATTRACT prototype – Time Stamping





• 57 ps after  $10^{16}$ 1 MeV neq/cm2  $\sigma_t = \frac{\sigma_{TOA0-TOAI}}{\sqrt{2}} = (36.4 \pm 0.8)$ ps without gain structure • can be brought back to 40 ps, with HV and LVPS increase : Arxiv : 2310.19398  $\rightarrow$  mass scale production ???) MINICLIFF

## Fastpix (CERN) : sub-ns timing with TJ180



Figure 2. FASTPIX layout (5.3 mm  $\times$  4.1 mm) with details of the 20 µm pitch hexagonal grid zoom on 7 pixels.





Figure 2. Wafer production process variants for FASTPIX represented by schematic cross-sections of the pixel unit cells, showing a cut perpendicular to the sensor surface. The standard 180 nm CMOS imaging process (left) and the modified process variant (right) with added low-dose n-type implant and optimizations such as a gap in the n-implant, retracted deep p-well and additional extra-deep p-well implant.



Figure 8. Number of pixel hits per event for the 10 µm (a) and 20 µm (b) pitch matrix.

Figure 14. Seed-pixel time residuals after timewalk correction for the inner region of the  $10 \,\mu m$  (a) and  $20 \,\mu m$  (b) pitch matrix.

Plan to port and test the concept on TPSCo 65 technology, but small pixels → beware of drift field inhomogeneity !

### Cactus (Irfu) : A bit of History

We started around 2017 after being involved into LF-CPIX and MONOPIX strip detector for ATLAS-ITK outer layers (possible backup solution)

At that time, 2 possible applications for sub-100ps timing detectors:

- ATLAS High η muon tagger (upstream forward calorimeter)
- HGTD in front of ATLAS-LAr



First try with CACTUS:

- Yield correct, High break down voltage, homogenous charge collection, deep depletion depth

- Main problem with CACTUS: underestimation of parasitic capacitance → bad S/N

-Also coupling between analogic and digital part  $\rightarrow$  ringing of digital pulse

 $\rightarrow$  modest timing performance ~500ps

https://arxiv.org/abs/2003.04102

→ Version 2 of CACTUS called Mini-Cactus



### MINICACTUS PROTOTYPE CHIP

- MiniCACTUS is a small detector prototype designed in order to address the low S/N issue of the larger size CACTUS
- Main change in MiniCACTUS: FE integrated at column level, pixels mostly passive
- FE parameters programmable through on-chip Slow Control
- 2 digital (LVDS) and 2 analog monitoring (*slower than CSA output*) outputs for 2 columns

#### **Pixel Flavors**:

Pixels 3 & 7 : 1 mm x 1 mm baseline pixels

Pixels 2, 4, 6 & 8 : 0.5 mm x 1 mm pixels

Pixel 8 : 0.5 mm x 1 mm pixel with in-pixel AC coupling capacitor (20pF)

Pixels 1 : 50  $\mu$ m x 50  $\mu$ m test pixel Pixels 5 : 50 µm x 150 µm test pixel



 $\Box$  Front-end mostly optimized for 1 mm<sup>2</sup> pixels with peaking time of 1-2 ns @ 1-2pF (Ibias total=800µA  $\rightarrow$  P  $\approx$  150mW/cm<sup>2</sup>)

Small pixels can be seen as test structures to study charge collection (no power optimized FE available)

ENABLE

Some detectors thinned to 100µm/200µm/300µm and than post-processed for backside polarization after fabrication

### Pixel 8;200 µm; Resolution versus HV



#### **MiniCactus Next steps**

- Non amplified HV CMOS MiniCactus v1 sensor reaches 65 ps time resolution on MIPs, power consumption 0.3 W/cm<sup>2</sup>
- A new iteration of MiniCactus has been submitted (May 2023), expected back December 2023
  Improved front-end : better discriminator, programmable analog filtering
  - Altiroc-inspired Front-end designed and studied by IFAE, improvements in jitter and shorter signal expected
  - Irradiated MiniCactus v1 chips (10<sup>14</sup>, 10<sup>15</sup>, 10<sup>16</sup> 1 MeV neq/cm<sup>2</sup>) under test, test setup has been modified to run at -15°C
- TCAD simulations support the possibility to implement a gain layer without modifying LF15A process
- To be tested in an MPW run in 2024

## Global trade-offs : time resolution is not everything

| Name       | Sensor             | node     | Pixel size                | Temporal precision [ps] | Power [W/cm <sup>2</sup> ]      | Table from                                    |  |
|------------|--------------------|----------|---------------------------|-------------------------|---------------------------------|-----------------------------------------------|--|
| ETROC      | LGAD               | 65       | 1.3 x 1.3 mm <sup>2</sup> | ~ 40                    | 0.3                             | N. Cartiglia<br>(VCI 2022)                    |  |
| ALTIROC    | LGAD               | 130      | 1.3 x 1.3 mm <sup>2</sup> | ~ 40                    | 0.4                             | Trade off to be                               |  |
| TDCpic     | PiN                | 130      | 300 x 300 μm²             | ~ 120                   | 0.45 (matrix) +<br>2 (periphery | <ul><li>found between</li><li>Space</li></ul> |  |
| TIMEPIX4   | PIN, 3D            | 65       | 55 x 55 μm²               | ~ 200                   | 0.8                             | resolution,                                   |  |
| TimeSpot1  | 3D                 | 28       | $55 \times 55 \ \mu m^2$  | ~ 30 ps                 | 5-10                            | <ul><li>nower</li></ul>                       |  |
| FASTPIX    | monolithic         | 180      | 20 x 20 μm²               | ~ 130                   | 40                              | consumption                                   |  |
| miniCACTUS | monolithic         | 150      | 0.5 x 1 mm <sup>2</sup>   | ~ <del>-90</del> -65 ps | 0.15 - 0.3                      |                                               |  |
| MonPicoAD  | monolithic         | 130 SiGe | 25 x 25 μm²               | ~ 36                    | 40 🖛                            | — 50 ps @ 0.1W/cm2                            |  |
| Monolith   | LGAD<br>monolithic | 130 SiGe | 25 x 25 μm²               | ~ 25                    | 40                              |                                               |  |

# Conclusions

- A lot of activity underway on monolithic CMOS timing oriented sensor developments
  - Many technologies are being evaluated
- Present performance not far from what could be needed for a timing layer or a TOF detector
- Integration in an actual experiment needs :
  - Čareful trade off evaluation between timing performance, space resolution, power dissipation
  - A lot of work to integrate digital data processing in a fully monolithic design