Higgs physics at FCCee

Nicolas **Morange**, *IJCLab* FCC France workshop, 22/11/2023

Laboratoire de Physique des 2 Infinis

Introduction

2023: Year of the FCC Feasibility Study Interim Report

Higgs physics: cornerstone of the FCC-ee physics programme

• Several important results in the Interim Report

Goals of this presentation:

- Showcase some of the main results
- Ideas to go further than the report

SM Lagrangian and Higgs interactions

 $\mathscr{L}_{\rm SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi -$

Gauge interactions, structurally like those in QED, QCD, EW, studied for many decades (but now with a scalar)

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018! Higgs potential → self-interaction ("sixth?" force between scalars). Holds the SM together. **Unobserved**

Higgs and unknowns

N. Morange (IJCLab)

The FCC-ee Higgs dataset

- 1 million clean ZH events at 240 GeV
- (2 experiments)

Vector boson scattering

- Decent statistics (50k
- events) at 365 GeV Very complementary for many of the measuréments

Higgs Physics Overview

Couplings

- Huge improvements wrt LHC in many places
 - Necessary to reach exclusion of some classic BSM models
 - In particular limits on total width and BRinv very powerful

But also:

- Mass measurement
- CP properties (using τ)

	HL-LHC (*)	FCC-ee
δΓ _Η / Γ _Η (%)	SM (**)	1.3
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
δgнww / gнww (%)	1.7	0.43
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
δg _{Hcc} / g _{Hcc} (%)	~70	1.21
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74
δg _{нµµ} / g _{нµµ} (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δgнtt / gнtt (%)	3.4	_
δg _{HZγ} / g _{HZγ} (%)	9.8	
δgннн / gннн (%)	50	~40 (indirect)
BR _{exo} (95%CL)	$BR_{inv} < 2.5\%$	<1%

Higgs recoil analysis

Very clean peak to fit !

- Either use it to tag the Higgs without looking at its decays
- Or "only" as an excellent S/B discriminant for numerous analyses (couplings, mass)

ZH total cross-section

- Challenge: analysis selection **must not bias** on the Higgs decays
- Easy to do for $Z \rightarrow II$
- Can use BDT on Z kinematics to improve the sensitivity
- Reach **0.8% uncertainty** on σ_{ZH} combining e and μ

Higgs mass measurement

Ultimate precision on Higgs mass is kinda important...

- Motivations
 - O(10 MeV) needed for per-mille precision on g_7 and g_w
 - O(4 MeV) needed for electron Yukawa search

• A source of important detector constraints

leed an ultimate tracker

- High field if possible
- Transparent
 - CLD worse performance from multiple scattering wrt drift chamber

using µµ channel

tracking system	∆m _H (MeV) stat.only	∆m _H (MeV) stat + syst
IDEA 2T	3.49	4.27
Perfect	2.67	3.44
IDEA 3T	2.89	3.97
CLD 2T	4.56	5.32

LHC: ~100 MeV

Study of H→hadrons

Much cleaner environment at FCC-ee vs LHC makes it a game changer !

• Two main ingredients

- Low backgrounds (esp. $Z \rightarrow II$, but $Z \rightarrow vv$ also good)
- Exquisite flavour tagging capabilities
 - Leveraging state-of-the-art ML 'ParticleNet' techniques
 - Including PID for s-tagging !

- Excellent precision on couplings to b-, c-quarks, and gluons
- With 10 ab^{-1} , decent sensitivity to $H \rightarrow ss$

δμ/μ (%)	bb	сс	SS	gg
$\textbf{Z} \rightarrow \textbf{ee}, \textbf{\mu}\textbf{\mu}$	0.6	3.5	290	1.5
$Z \rightarrow vv$	0.3	2.1	100	0.8

- Study of $Z \rightarrow$ hadrons channel still ongoing
 - \sim 3 σ on H \rightarrow ss seams in reach !
 - Would complete the landscape of **second generation Yukawas** !

True label

Higgs physics for detector requirements

Neutral hadron energy resolution

In particular ultimate performance crucial for $H \rightarrow ss$

Higgs self-coupling

At FCC-ee: appears at higher-order corrections to ZH production !

- Need to use √s = 240 and 365 GeV to resolve degeneracy with g_v
- Expect ~20% precision with 4IPs from global fit

Complex analysis !

The unique case for $ee \rightarrow H$

- Electron mass determines size of all atoms
- It sets energy levels of all chemical reactions

Reaching ee \rightarrow **H**

 $1 + \sigma_{\delta}^2($ Monochromatization factor $\lambda = 1$ Very unique, but hard ! Laboratoire de Physique des 2 Infinis Monochromatization mode Standard mode $E_0 + \Delta E$ E.- AE $E_{o} + \Delta E$ E.+ AE +e e e E, E. е E₀ E₀ E₀- AE E.- AE E.+ AE Eo - AE **CM energy** $w = 2(E_0 + \Delta E)$ **CM energy** $w = 2E_0 + O(\Delta E)^2$ Significance e+e-→H, √s=125GeV $\delta_{|S_{\rm ene}}^{3}$ spread (MeV) Born arXiv:1509.02406 (1): with ISR 1.6 20 (2): δ√s = 6 MeV 6σ 5 years 1.4 (3): δ√s = 10 MeV $e^+e^- \rightarrow H$ 4 IP 10 5σ 1.2 4. 6 σ(s) [fb] 40 5 0.8 0.6 (1) 2 **2**σ 0.4 (2) 20 30 100 200 $\mathscr{L}_{int} (ab^{-1})$ 2 3 4 5 6 7 10 (3) 0.2 0 Can hope for $\sim 2\sigma$ with 5 years and 4 IPs 125.08 125.085 125.09 125.095 125.1 √s (GeV)

1/2

What next ? A very biased take

Higgs total width measurement

Not been studied in details in the past few years

	HL-LHC (*)	FCC-ee
δΓ _Η / Γ _Η (%)	SM (**)	1.3
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
δgнww / gнww (%)	1.7	0.43
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
δg _{Hcc} / g _{Hcc} (%)	~70	1.21
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74
δg _{нµµ} / g _{нµµ} (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δgнtt / gнtt (%)	3.4	—
δg _{HZγ} / g _{HZγ} (%)	9.8	
бдннн / дннн (%)	50	~40 (indirect)
BR _{exo} (95%CL)	BR _{inv} < 2.5%	<1%

$$\frac{\sigma(ZH \to bb)\sigma(ZH \to WW^*)}{\sigma(\nu\nu H \to bb)\sigma(ZH)^2} \propto \Gamma_H$$

How do we get this?

- Through $ZH \rightarrow ZZZ^*$
 - Most straightforward
 - Recoil analysis gives σ_{7H} hence g_7
 - Then ZZZ* gives BR(ZZ^{+}) hence $\bar{\Gamma}_{H}$
 - ~2-3% precision expected
 - Through VBF
 - A bit more convoluted
 - Combine ZH cross-section, BR(bb), BR(WW*) at
 - 240 GeV, and WW \rightarrow H \rightarrow bb at 365 GeV
 - 1-2% precision expected

Higgs width through $H \rightarrow ZZ^*$: channels

3 Z in the final state: lots of fun !

- Many decay channels to study !
 - II, vv, qq decays for each Z
 - Not always high statistics
- The 3 Z are not interchangeable:
 - "Recoil" Z vs "Higgs" Zs
 - $H \rightarrow ZZ^*$: on-shell vs off-shell Z

ZZZ^* decay	Number of events	Z combinatorics	Particle
type	for $L = 5 ab^{-1}$	(objects pairing)	combinatorics $(jets)$
Fully hadronic	~ 9000	hard +	hard +
Fully leptonic	~ 8	hard +	easy+
Mixed channels	~ 1500	easy+	easy
2 leptons, 4 jets	~ 2600	hard	hard
2 jets, 4 leptons	~ 250	hard	easy

ZH→ZZZ*→llvvqq

Study of 3 of the "mixed" channels (Inès Combes internship, 2023)

- Fun final state: leptons, neutrinos, jets
 - 6 possible sub-channels
- Start by hand-crafting cuts to get used of the topology
- Then move to simple BDT to gain in precision

ZH→ZZZ^{*}→llvvqq: results

• 4.6% precision achievable with only these 3 sub-channels !

δΓ/Γ (%)	llvvqq	llqqvv	vvllqq	combination
Cut-based	9.0	17	8.7	6.6
BDT	7.4	10.7	6.9	4.6

• Fully dominated by stat. uncertainties

II month inter in Γ (07)

Total	4.6%
Statistics	4.5%
$H(WW^*)$ normalisation (5%)	0.8%
ZZ normalisation (10%)	0.2%
WW normalisation (10%)	0.1%

• Fairly robust wrt neutral hadron energy resolution

$ZH \rightarrow ZZZ^* \rightarrow llqqqq$

Surprises on the path

- Started by looking at $ZZ^* \rightarrow jets$ as larger BR
- Was meant to be a test bed for hadronic energy resolution:
 - separation $Z \rightarrow jets$ from $W \rightarrow jets$

ZH→ZZZ*→llqqqq

Surprises on the path

- Started by looking at $ZZ^* \rightarrow jets$ as larger BR
- Was meant to be a test bed for hadronic energy resolution:
 - separation $Z \rightarrow jets$ from $W \rightarrow jets$

- Issue is intrinsic: particles from the decay of (low energy) Z and Z* are mixed in the theta/phi plane
 - seems very tough to find any jet finding algorithm that would work
- The claim that **4% on jet energy** resolution at 45 GeV is necessary to separate HZZ from HWW seems irrelevant, at least at $\sqrt{s} = 240$ GeV

Higgs width: a great project

Higgs width measurement as a research project:

• Many final states to explore

- Already with $ZH \rightarrow ZZZ^*$
- And even more with the measurement using VBF events
- The ultimate precision will come from the combination of all of them !
 - There is not 1 channel that dominates the overall sensitivity

• Work for everyone

- Many channels are easily accessible for newcomers: other "mixed" channels, 4 lepton channels...
- More difficult problems for more experienced researchers: VBF analysis ; more granularity in channels with flavour tagging ; add channels with tau leptons to increase stat...
- Hard problems for experts to solve: $ZZ \rightarrow 4$ jets reconstruction

A good candidate to collaborate in the French community in this post-interim report ?

Conclusions

- Higgs physics is one of the main drivers of the FCC-ee physics programme
- Many important studies were performed for the interim report
 - Strengthen the FCC-ee case
 - FCC-ee should settle the case of the second generation fermions !
- Many studies are still poorly covered or uncovered
 - The case for **Higgs width measurement** seems very strong

