A Unified Framework for Mitigating Foregrounds and Systematic Effects for Tensor-to-Scalar Ratio and Birefringence Angle Measurements CMB France #5, December 4th 2023 Baptiste Jost

Cosmic Birefringence

Cosmic Birefringence: rotation of linear polarisation plane of CMB photons

Correlation between E- and B-modes \rightarrow parity violation mechanism (Chern-Simons coupling from axion-like particles)

$$C_{\ell}^{EB,o} = \frac{1}{2}\sin(4\beta)\left(C_{\ell}^{EE} - C_{\ell}^{BB}\right)$$

Hints of β_{b} = 0.34° +/- 0.09° (3.6 σ) Planck+WMAP data (**Eskilt & Komatsu 2022**) based on the Minami & Komatsu method using assumptions about foreground EB correlations for calibration.

The Tensor to Scalar Ratio

Primordial B-modes generated by **tensor perturbations** from **inflation**.

Smoking gun of inflation.

Primordial B-modes amplitude parametrised by: r

r constraints r < 0.032 (95% C.L.) (**Tristram et al. 2021**)

B-modes are also affected by polarization angle rotation:

$$C_{\ell}^{BB,o} = \sin^2(2\beta)C_{\ell}^{EE} + \cos^2(2\beta)C_{\ell}^{BB}$$

Observation challenges: Galactic Foregrounds

Dust emission: Asymmetric dust grains in the galaxy aligned with magnetic fields.

Synchrotron emissions: charged particles accelerated along Galactic magnetic fields.

No EB correlation measured yet. But physical motivation for it (**Clark et al. 2021**).

Credit: Errard et al. 2016

Observation challenges: Polarisation Angle Miscalibration

Miscalibration of telescope polarisation angle \Rightarrow similar to isotropic birefringence!

Need a way to lift the degeneracy between birefringence angle and polarization angles

Creates $E \rightarrow B$ leakage that pollute primordial B-modes $\rightarrow r$

 $\mathbf{Q} \leftrightarrow \mathbf{U}$ mixing at different frequencies will **bias foreground cleaning** \rightarrow more residuals

Polarisation Angle Calibrations

Ground based telescope \rightarrow many polarization angle calibration methods. From observation and hardware:

- Measurements of the crab nebula (tau A) $\sigma(\alpha) \approx 0.27^{\circ}$ Aumont et al. 2020
- Wire-grid $\sigma(\alpha) \le 1^{\circ}$ Bryan et al. 2018
- Drone with polarised source $\sigma(\alpha) \leq 0.1^{\circ}$ Nati et al. 2017

Analysis based:

- Self-calibration Keating et al. 2012
- Foreground calibration Minami et al . 2020

Credit: Nasa/Hubble

Credit: F. Nati

Map-Based Parametric Component Separation

Map-Based Parametric Component Separation in the Presence of Uncontrolled Systematics

polarisation angles

Map-Based Parametric Component Separation

Pipeline Summary: A Two Step Analysis

Jost et al. PRD 2023

Relative Angles Retrieved by the Spectral Likelihood

Spectral Likelihood With Multiple Priors

Adding priors improves the precision:

- 6 priors $\sigma(\alpha_{prior}) = 0.1^{\circ}$

-
$$\sigma(\alpha_i) ≥ 0.05^{\circ}$$

Cosmological Likelihood With Multiple Priors

Estimate both r and β_b Priors \Rightarrow **no bias on** β_b With 6 $\sigma(\alpha_{prior}) = 0.1^\circ \Rightarrow \sigma(\beta_b) = 0.07^\circ$ Enough for 5 σ detection with current hints **No significant impact on \sigma(r)**

With biased priors:

- $\Delta(\beta_b) \approx \frac{1}{n_{\rm prior}} \sum \Delta \alpha_{\rm prior}$
- **r** retrieved **without bias** (global angle marginalization)

Jost et al. PRD 2023

Setting and Relaxing Requirements on Polarization Angle Calibration

Set all $\alpha_i = 0$ except on the considered channel $\alpha_{27} = \Delta \alpha$

Use one prior, $\sigma(\alpha_{prior,27}) = 0.1^{\circ}$, centered at 0°.

Run the pipeline and get Δr with respect to $\Delta \alpha \Rightarrow$ get requirement on polarization angle systematic error.

Relaxed requirements compared to case where angles are ignored.

This is with d0s0: how complex foreground residuals with non-zero EB would impact this type of results?

Measuring Isotropic Birefringence with LiteBIRD

On behalf of LiteBIRD's Cosmic Birefringence Project Study Group,

P. Diego-Palazuelos, M. Bortolami, E. de la Hoz, J. Errard, A. Gruppuso, R. Sullivan et al.

LB's wide frequency range:

- Efficient component separation
- Better foreground models
- Cross-correlation of low and high frequencies reduces the impact of EB mismodeling

LB's Full sky survey:

- Access to more modes
- Low & EB modes can probe the axion-like particle mass and distinguish different ALP and early dark energy models

Multiple Pipelines are Developed Frequency maps **D**-estimator Harmonic Gruppuso et al. JCAP 2016 Standard space comp-sep Pixel Peak Stacking space Planck XLIX A&A 2016 CMB α + β_{h} Foreground calibration Minami & Komatsu Minami et al 2020 + dust + synchrotron models Modified comp-sep $\mathcal{L}(\{\mathcal{A}_{comp}\},\{\beta_{fg}\},\{\alpha_i\})$ "Modified B-SeCRET" $+\mathcal{L}_{cosmo}(\beta_b)$ De la Hoz et al JCAP 2022 $\mathcal{L}_{\text{spec}}(\{\beta_{fg}\},\{\alpha_i\})$ "Modified FGBuster" Modified comp-sep Jost et al PRD 2023 $+\mathcal{L}_{cosmo}(r,\beta_b)$ 18

A Forecast with Different Degrees of Complexity

Phase1: CMB (β=0) + noise + simple foregrounds (s0d0)

Phase2: CMB (β=0) + noise + complex foregrounds (s1d1)

Phase3: CMB (β=0) + noise + complex foregrounds (s1d1) + systematics (αi≠0)

Phase4: CMB (β≠0) + noise + complex foregrounds (s1d1) + systematics ($\alpha i \neq 0$)

Take Home Messages

A method to retrieve r and β_b in presence of foreground and systematic effects, using calibration priors.

Generalised parametric component separation method that includes polarization angles:

Relative angle are constrained by the system

Cosmological parameters estimation:

- β_{b} retrieved thanks to calibration prior. Its precision is improved with multiple priors
- r estimated without bias coming from $E \rightarrow B$ leakage

Keep an eye on arxiv for the application of this method and others in the LiteBIRD birefringence forecast!

THANK YOU !

Source : Deborah Kellner

Backup Slides

Source : Deborah Kellner

Calibrating against Galactic foregrounds

Use foregrounds as our calibrator

 $\beta = -\frac{1}{2}g_{\phi\gamma}\int \frac{\partial\phi}{\partial t}dt$

Minami+ PTEP 2019

$${}_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{1}{\cos(4\alpha)} C_{\ell}^{EB,fg} + \frac{\sin(4\alpha)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,cmb} - C_{\ell}^{BB,cmb} \right)$$

Galactic emission not significantly rotated by β

Model the *EB* correlation of Galactic synchrotron and dust emissions

Clark+ApJ 2021

Tighthest constraint to date (3.6σ)

 $\beta = 0.342^{\circ} {}^{+0.094^{\circ}}_{-0.091^{\circ}}$

from the joint analysis of *Planck* and WMAP data

Minami-Komatsu (MK) technique

D-estimator

$$D_{\ell}(\hat{\beta}) = C_{\ell}^{EB,o} - \frac{1}{2} \tan(4\hat{\beta}) \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right)_{\hat{\beta}}$$
$$\langle D_{\ell}(\hat{\beta} = \beta) \rangle = 0$$

Find the zeros minimizing

$$\chi^2(\hat{\beta}) = \sum_{\ell\ell'} D_\ell(\hat{\beta}) M_{\ell\ell'}^{-1} D_{\ell'}(\hat{\beta})$$

Build the covariance matrix from simulations to account for foreground debiasing and the extra dispersion caused by α miscalibrations

$$M_{\ell\ell'} = \langle D_\ell D_{\ell'} \rangle$$

Gruppuso+ JCAP 2016

Stacking of peaks

Find local extrema in T and E anisotropies

- Transform the Stokes parameters and stack peaks $Q_r(\theta) = -Q(\theta)\cos(2\phi) - U(\theta)\sin(2\phi)$ $U_r(\theta) = Q(\theta)\sin(2\phi) - U(\theta)\cos(2\phi)$
- Radial profile around peaks is sensitive to β $(U_r^T)(\theta) = -\sin(2\beta) \int \frac{\ell d\ell}{2\pi} W_\ell^T W_\ell^P J_2(\ell\theta)$ $\times (\bar{b_\nu} + \bar{b_\zeta}\ell^2) C_\ell^{TE}$ $(U_r^E)(\theta) = -\frac{1}{2}\sin(4\beta) \int \frac{\ell d\ell}{2\pi} W_\ell^E W_\ell^P J_2(\ell\theta)$

$$\begin{array}{ccc} & J & 2\pi \\ & \times (\bar{b_{\nu}} + \bar{b_{\zeta}}\ell^2)(C_{\ell}^{EE} - C_{\ell}^{BB}) \end{array}$$

Component separation + α_i

Λ

- Estimated angle

$$\begin{pmatrix} \mathbf{Q}(\boldsymbol{\nu},\theta) \\ \mathbf{U}(\boldsymbol{\nu},\theta) \end{pmatrix}_{p} = \begin{pmatrix} c^{Q} \\ c^{U} \end{pmatrix}_{p} + \begin{pmatrix} a^{Q}_{s} \\ a^{U}_{s} \end{pmatrix}_{p} \frac{1}{u(\boldsymbol{\nu})} \begin{pmatrix} \boldsymbol{\nu} \\ \boldsymbol{\nu}_{s} \end{pmatrix}^{\beta_{s}} + \begin{pmatrix} a^{Q}_{d} \\ a^{U}_{d} \end{pmatrix}_{p} \frac{1}{u(\boldsymbol{\nu})} \begin{pmatrix} \boldsymbol{\nu} \\ \boldsymbol{\nu}_{d} \end{pmatrix}^{\beta_{d}-2} \frac{B(\boldsymbol{\nu},T_{d})}{B(\boldsymbol{\nu}_{d},T_{d})}$$

$$\begin{pmatrix} \mathbf{Q}^{o}(\boldsymbol{\nu},\alpha,\theta) \\ \mathbf{U}^{o}(\boldsymbol{\nu},\alpha,\theta) \end{pmatrix}_{p} = \begin{pmatrix} \cos(2\alpha) & -\sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix} \begin{pmatrix} \mathbf{Q}(\boldsymbol{\nu},\theta) \\ \mathbf{U}(\boldsymbol{\nu},\theta) \end{pmatrix}_{p}$$

$$\overset{\bullet}{=} \frac{\mathbf{P}(\mathcal{A} \mid \mathcal{B}_{i-1},\mathcal{C}_{i-1},d) \\ \mathbf{P}(\mathcal{A} \mid \mathcal{B} \mid \mathcal{B}_{i-1},\mathcal{C}_{i-1},d) \\ \mathbf{P}(\mathcal{A} \mid \mathcal{B}_{i-1},\mathcal{C}_{i-1},d) \\ \mathbf{P}(\mathcal{A} \mid \mathcal{B}_{i-1},\mathcal{C}_{i-1},d) \\ \mathbf{P}(\mathcal{A} \mid \mathcal{B} \mid \mathcal{B}$$

41

LiteBIRD overview

- Lite (Light) satellite for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission selected in May 2019
- Expected launch in late 2032 (JFY) with JAXA's H3 rocket
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B*-modes
- Final combined sensitivity: 2.2 $\mu K \cdot arcmin$

LiteBIRD main scientific objectives

- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
 - Making a discovery or ruling out well-motivated inflationary models
 - · Insight into the quantum nature of gravity
- The inflationary (i.e. primordial) *B*-mode power is
- proportional to the tensor-to-scalar ratio, r
- Current best constraint: r < 0.032 (95% C.L.) (Tristram+ 2021, combining BK18 and Planck PR4)
- LiteBIRD will improve current sensitivity on r by a factor ~50
- L1-requirements (no external data):
 - For r = 0, total uncertainty of $\delta r < 0.001$
 - For r = 0.01, 5σ detection of the reionization ($2 \le \ell \le 10$) and recombination ($11 \le \ell \le 200$) peaks independently
- Huge discovery impact (evidence for inflation, knowledge of its energy scale, ...)

LiteBIRD spacecraft overview

- 3 telescopes are used to provide the 40-402 GHz frequency coverage
 - 1. LFT (low frequency telescope)
 - 2. MFT (middle frequency telescope)
 - 3. HFT (high frequency telescope)
- Multi-chroic transition-edge sensor (TES) bolometer arrays cooled to 100 mK
- Polarization modulation unit (PMU) in each telescope with **rotating half-wave plate** (HWP), for 1/*f* noise and systematics reduction
- Optics cooled to 5 K
 - Mass: 2.6 t
 - Power: 3.0 kW
 - Data: 17.9 Gb/day

The Generalised Spectral Likelihood

I generalise the spectral log likelihood from **Stompor et al. 2009**, similarly as in **Vergès et al. 2020**:

$$\langle S \rangle = -2 \sum \operatorname{tr} \left(\boldsymbol{N}_p^{-1} \boldsymbol{\Lambda}_p (\boldsymbol{\Lambda}_p^t \boldsymbol{N}_p^{-1} \boldsymbol{\Lambda}_p)^{-1} \boldsymbol{\Lambda}_p^t \boldsymbol{N}_p^{-1} \langle \boldsymbol{d}_p \boldsymbol{d}_p^t \rangle \right)$$

For forecasting purposes we **average over CMB and noise** realisations.

To lift the degeneracy we add priors to the likelihood:

$$S'\equiv \langle S
angle +\sum_{lpha_i}rac{(lpha_i-\hat{lpha}_i)^2}{2\sigma^2_{lpha_i}}$$
 (redit: F. Nat

The Cosmological Likelihood

With { β_{fg} } and { α_i } we estimate a CMB map. Imperfect component separation will lead to residuals.

Its power spectra is used to estimate cosmological parameters:

$$\langle S^{cos} \rangle = f_{sky} \sum_{\ell=\ell_{min}}^{\ell_{max}} \frac{(2\ell+1)}{2} \left(Tr(\boldsymbol{C}_{\ell}^{-1} \boldsymbol{E}_{\ell}) + \ln(\det(\boldsymbol{C}_{\ell})) \right)$$

Data after generalised component separation

$$\boldsymbol{\mathcal{C}}_{\ell}(r,\beta_b) \equiv \boldsymbol{\mathcal{R}}(\beta_b) \begin{pmatrix} C_{\ell}^{EE,p} & 0\\ 0 & rC_{\ell}^{BB,p} + A_L C_{\ell}^{BB,lens} \end{pmatrix} \boldsymbol{\mathcal{R}}^{-1}(\beta_b) + C_{\ell}^{noise}$$

How to Have a Statistically Robust Method?

Step 1 : Sampling the ensemble averaged Spectral likelihood $X{\alpha}.A{\beta_{fq}}$

How to Have a Statistically Robust Method ?

Method Validation

SO SAT like survey: 6 frequency bands, characteristics noise, 10% sky coverage.

Priors:

- σ(α_i) = 0.1°
- Priors are centred at the true value of polarisation angles.
- One vs multiple priors.

Forecast input sky:

- CMB maps from Planck power spectra, r = 0.0, β_{b} = 0.0°
- PySM foreground maps with different degrees of complexity (d0s0, d1s1, d7s3 in order of complexity...) (Thorne et al 2016, Zonca et al. 2021)

Credit: Remington Gerras

Simple Foregrounds and One Calibration Prior

- Input CMB: **r** = **0.0** ; **β**_b = **0.0**°
- Input fg: PySM models (Thorne et al 2016, Zonca et al. 2021) d0s0:
 - dust: MBB, spatially constant spectral indices
 - synchrotron: power law, spatially constant spectral indices
- 1 prior on 93 GHz: $\sigma(\alpha_i) = 0.1^\circ$

Foreground cleaning is ok

Miscalibration: one prior enough

Simple Foregrounds and Six Calibration Priors

- Input CMB: **r** = **0.0** ; β_b = **0.0**°
- Input fg: PySM models (Thorne et al 2016, Zonca et al. 2021) d0s0:
 - dust: MBB, spatially constant spectral indices
 - synchrotron: power law, spatially constant spectral indices

• Prior on all frequency channels: σ (α_i) = 0.1°

Overall $\sigma(\alpha)$ improved wrt priors precisions!

Simple Foregrounds and Six Calibration Priors

- Simple foregrounds: **d0s0**
- Prior on all frequency channels

r and β_b correctly estimated

 σ (r): same order as SO SAT forecast with σ (r) = 2.1 10⁻³ (**Ade et al. 2018**)

 $\sigma(\beta_{h})$: improved wrt prior precision!

Results: Simple Foregrounds and Six Calibration Priors

- d0s0
- Prior on all frequency channels

 $\sigma(\beta_b)$: improved wrt prior precision!

Complex Foregrounds and Six Calibration Priors

"d1s1"

 0.002 ± 0.002

 0.00 ± 0.07

Foreground emissions **don't follow** the assumption used in the mixing matrix:

- d1s1: spatially varying foreground spectral indices
- **d7s3:** dust emission is non parametric and synchrotron has a curvature term **Prior on all frequency channels:** $\sigma(\alpha_i) = 0.1^\circ$

r: biased due to foreground residuals

r

 β_{h} : no noticeable effect

Simple Foregrounds and Biased Priors

- d0s0:
 - dust: MBB, spatially constant spectral indices
 - synchrotron: power law, spatially constant spectral indices
- Prior on all channels, $\sigma(\alpha_i) = 1^\circ$
- Priors randomly biased by N(0,1°)

 $\boldsymbol{\alpha}_i$ biased by the same value: the mean of the biases

Simple Foregrounds and Biased Priors

- Simple foregrounds **d0s0**:
 - dust: MBB, isotropic spectral indices
 - synchrotron: power law, isotropic spectral indices
- Prior on all channels, $\sigma(\alpha_i) = 1^\circ$
- Priors randomly biased by N(0,1°)

 β_{b} biased by the same value as α_{i}

For β_{b} trade-off between statistical uncertainty and possible bias.

r is unbiased: we marginalise over a global angle, removing any $E \rightarrow B$ leakage either from α_i or β_b

We can always be confident that r is not affected by $\alpha_{_{i}}$ and $\beta_{_{b}}.$

Evolution of Uncertainty wrt Prior Precision

We can set calibration requirement.

- Simple Foregrounds: d0s0
- 3 cases:
 - **1 prior**
 - 6 priors
 - 6 priors and no noise

Noise represents ~42% of $\sigma(\beta_b)$ in the SO SATs like survey used here

 $\left(\sum_{1}^{6} \frac{1}{\sigma_{\alpha_i}^2}\right)$

 $\sigma(\beta_b) \approx$

Cosmic Birefringence

I focus in particular on **spatially constant** and **time independent** cosmic birefringence:

$$\tilde{C}_{\ell}^{EE} = C_{\ell}^{EE} \cos^2(2\beta_b) + C_{\ell}^{BB} \sin^2(2\beta_b)
\tilde{C}_{\ell}^{BB} = C_{\ell}^{EE} \sin^2(2\beta_b) + C_{\ell}^{BB} \cos^2(2\beta_b)
\tilde{C}_{\ell}^{EB} = (C_{\ell}^{EE} - C_{\ell}^{BB}) \frac{\sin(4\beta_b)}{2},$$

Method Validation

SO SAT characteristics noise, 10% sky coverage, $I_{min} = 30$, $I_{max} = 300$, 30 000 detectors, first light by the end of the year

Priors:

- as a benchmark we use $\sigma(\alpha_i) = 0.1^\circ$
- Unless precised otherwise, priors are centred at the true value of polarisation angles.
- Different calibration methodology explored e.g. one vs multiple priors.

Forecast input sky:

- average over CMB maps generated from Planck power spectra with r = 0.0, $\beta_{\rm b}$ = 0.0°
- PySM foreground maps with different degrees of complexity (d0s0, d1s1, d7s3 in order of complexity...) (Thorne et al 2016, Zonca et al. 2021)

Foreground Models

Dust template: maps at 545 GHz in intensity and 353 GHz in polarisation from the 2015 Commander Planck+WMAP+Haslam 408 MHz (Plank 2016)

d1, spectral index map from commander (assumes same spectral index for temperature and polarisation)

d7 Hensley and Draine 2012 + Hensley 2015: Emission modeled after dust size, shape temperature and ferromagnetic iron inclusion

Synchrotron template: 23 GHz map from WMAP 9 yr (Bennett et al. 2013)

s1, Miville-Deschênes et al. (2008): combination of WMAP (Hinshaw et al. 2007) and Haslam 408 MHz data (Haslam et al. 1982)

s3, global curvature index C = -0.052 (Kogut et al 2012)

$$egin{aligned} Q_{
u,p}^{\,s3} &= A_{s,p}^{\,Q} igg(rac{
u}{
u_0}igg)^{eta_{s,p}+2+C\ln{(
u/
u_0)}} \ U_{
u,p}^{\,s3} &= A_{s,p}^{\,U} igg(rac{
u}{
u_0}igg)^{eta_{s,p}+2+C\ln{(
u/
u_0)}}, \end{aligned}$$

49