A Unified Framework for Mitigating Foregrounds and Systematic Effects for Tensor-to-Scalar Ratio and Birefringence Angle Measurements CMB France #5, December 4th 2023 Baptiste Jost

1

Cosmic Birefringence

Cosmic Birefringence: rotation of linear polarisation plane of CMB photons

Correlation between E- and B-modes \rightarrow parity violation mechanism (Chern-Simons coupling from axion-like particles)

$$
C_\ell^{EB,o} = \frac{1}{2}\sin(4\beta)\left(C_\ell^{EE} - C_\ell^{BB}\right)
$$

Hints of β_b = 0.34° +/- 0.09° (3.6σ) Planck+WMAP data (**Eskilt & Komatsu 2022**) based on the Minami & Komatsu method using assumptions about foreground EB correlations for calibration.

The Tensor to Scalar Ratio

Primordial B-modes generated by **tensor perturbations** from **inflation.**

Smoking gun of inflation.

Primordial B-modes amplitude parametrised by: **r**

r constraints r < 0.032 (95% C.L.) (**Tristram et al. 2021**)

B-modes are also affected by polarization angle rotation:

$$
C_{\ell}^{BB,o} = \sin^2(2\beta)C_{\ell}^{EE} + \cos^2(2\beta)C_{\ell}^{BB}
$$

Observation challenges: Galactic Foregrounds

Dust emission: Asymmetric dust grains in the galaxy aligned with magnetic fields.

Synchrotron emissions: charged particles accelerated $\frac{10^{2}}{3}$. along Galactic magnetic fields.

No EB correlation measured yet. But physical motivation for it (**Clark et al. 2021**).

Credit: Errard et al. 2016

Observation challenges: Polarisation Angle Miscalibration

Miscalibration of telescope polarisation angle ⇒ similar to isotropic birefringence!

Need a way to lift the degeneracy between birefringence angle and polarization angles

Creates **E → B leakage** that **pollute primordial B-modes** → **r**

Q ↔U mixing at different frequencies will **bias foreground cleaning →** more residuals

Polarisation Angle Calibrations

Ground based telescope \rightarrow many polarization angle calibration methods. From observation and hardware:

- Measurements of the crab nebula (tau A) $\sigma(\alpha)$ = 0.27° **Aumont et al. 2020**
- Wire-grid $\sigma(\alpha) \le 1^\circ$ **Bryan et al. 2018**
- Drone with polarised source $σ(α) ≤ 0.1°$ **Nati et al. 2017**

Analysis based:

- Self-calibration **Keating et al. 2012**
- Foreground calibration **Minami et al . 2020**

Credit: Nasa/Hubble

Credit: F. Nati

Wire grid

7

Map-Based Parametric Component Separation

Map-Based Parametric Component Separation in the Presence of Uncontrolled Systematics

Map-Based Parametric Component Separation

Pipeline Summary: A Two Step Analysis

Jost et al. PRD 2023

Relative Angles Retrieved by the Spectral Likelihood

Spectral Likelihood With Multiple Priors

Adding priors improves the precision:

- 6 priors $\sigma(\alpha_{\text{prior}}) = 0.1^{\circ}$

$$
-\sigma(\alpha_i) \ge 0.05^{\circ^{0}}
$$

Cosmological Likelihood With Multiple Priors

Estimate both r and β_{b} Priors **⇒ no bias on β**_b $\text{With } 6 \text{ of } \alpha_{\text{prior}} = 0.1^{\circ} \Rightarrow \sigma(\beta_{\text{b}}) = 0.07^{\circ}$ Enough for 5σ detection with current hints **No significant impact on σ(r)**

With biased priors:

- $\Delta(\beta_b) \approx \frac{1}{n_{\text{prior}}} \sum \Delta \alpha_{\text{prior}}$
- **r** retrieved **without bias** (global angle marginalization)

Jost et al. PRD 2023 15

Setting and Relaxing Requirements on Polarization Angle Calibration

Set all $\alpha_i = 0$ except on the considered channel $\alpha_{27} = \Delta \alpha$

Use one prior, $\sigma(\alpha_{\text{prior,27}}) = 0.1^{\circ}$, centered at 0° .

Run the pipeline and get Δr with respect to $\Delta \alpha \Rightarrow$ get requirement on polarization angle systematic error.

Relaxed requirements compared to case where angles are ignored.

This is with d0s0: how complex foreground residuals with non-zero EB would impact this type of results?

Measuring Isotropic Birefringence with LiteBIRD

On behalf of **LiteBIRD's Cosmic Birefringence Project Study Group**,

P. Diego-Palazuelos, M. Bortolami, E. de la Hoz, J. Errard, A. Gruppuso, R. Sullivan et al.

LB's wide frequency range:

- Efficient component separation
- Better foreground models
- Cross-correlation of low and high frequencies reduces the impact of EB mismodeling

LB's Full sky survey:

- Access to more modes
- Low ℓ EB modes can probe the axion-like particle mass and distinguish different ALP and early dark energy models

Multiple Pipelines are Developed Frequency mapsD-estimator Harmonic **Gruppuso et al. JCAP 2016** Standard space comp-sep Pixel Peak Stacking space **Planck XLIX A&A 2016** CMB α + β _b Foreground calibration Minami & Komatsu **Minami et al 2020** + dust + synchrotron models Modified comp-sep $\mathcal{L}(\{\mathcal{A}_{\text{comp}}\}, \{\beta_{fg}\}, \{\alpha_i\})$ "Modified B-SeCRET" $+\mathcal{L}_{\mathrm{cosmo}}(\beta_b)$ **De la Hoz et al JCAP 2022** $\mathcal{L}_{\text{spec}}(\{\beta_{fg}\}, \{\alpha_i\})$ "Modified FGBuster" Modified comp-sep **Jost et al PRD 2023** $+\mathcal{L}_{\text{cosmo}}(r,\beta_b)$ 18

A Forecast with Different Degrees of Complexity

Phase1: CMB (β=0) + noise + simple foregrounds (s0d0)

Phase2: CMB (β=0) + noise + **complex foregrounds (s1d1)**

Phase3: CMB (β=0) + noise + complex foregrounds (s1d1) **+ systematics (αi≠0)**

Phase4: CMB (β≠0) + noise + complex foregrounds (s1d1) + systematics (αi≠0)

Take Home Messages A method to retrieve r and β_b in presence of

foreground and systematic effects, using calibration priors.

Generalised parametric component separation method that includes polarization angles:

Relative angle are constrained by the system

Cosmological parameters estimation:

- \bullet β_{b} retrieved thanks to calibration prior. Its precision is improved with multiple priors
- r estimated without bias coming from E→B leakage

Keep an eye on arxiv for the application of this method and others in the LiteBIRD birefringence forecast!

THANK YOU !

21

Source : Deborah Kellner

Backup Slides

22

Source : Deborah Kellner

Calibrating against Galactic foregrounds

Use foregrounds as our calibrator

 $\beta = -\frac{1}{2}g_{\phi\gamma} \int \frac{\partial \phi}{\partial t} dt$

Minami+ PTEP 2019

$$
C_{\ell}^{EB,\text{o}} = \frac{\tan(4\alpha)}{2}\left(C_{\ell}^{EE,\text{o}} - C_{\ell}^{BB,\text{o}}\right) + \frac{1}{\cos(4\alpha)}C_{\ell}^{EB,\text{fg}} + \frac{\sin(4\alpha)}{2\cos(4\alpha)}\left(C_{\ell}^{EE,\text{cmb}} - C_{\ell}^{BB,\text{cmb}}\right)
$$

Galactic emission not significantly rotated by β

Model the EB correlation of Galactic synchrotron and dust emissions

Clark+ApJ 2021

Tighthest constraint to date (3.6σ)

 $\beta = 0.342^{\circ} \, \substack{+0.094^{\circ} \\ -0.091^{\circ}}$

from the joint analysis of *Planck* and WMAP data

Minami-Komatsu (MK) technique

D-estimator

$$
D_{\ell}(\hat{\beta}) = C_{\ell}^{EB,\text{o}} - \frac{1}{2} \tan(4\hat{\beta}) \left(C_{\ell}^{EE,\text{o}} - C_{\ell}^{BB,\text{o}} \right)_{\stackrel{\leq}{\leq}}
$$

$$
\langle D_{\ell}(\hat{\beta} = \beta) \rangle = 0
$$

Find the zeros minimizing

$$
\chi^2(\hat{\beta}) = \sum_{\ell\ell'} D_{\ell}(\hat{\beta}) M_{\ell\ell'}^{-1} D_{\ell'}(\hat{\beta})
$$

Build the covariance matrix from simulations to account for foreground debiasing and the extra dispersion caused by α miscalibrations

$$
M_{\ell\ell'}=\langle D_\ell D_{\ell'}\rangle
$$

Gruppuso+ JCAP 2016

Stacking of peaks

Find local extrema in T and E anisotropies

- Transform the Stokes parameters and stack peaks $Q_r(\theta) = -Q(\theta)\cos(2\phi) - U(\theta)\sin(2\phi)$ $U_r(\theta) = Q(\theta) \sin(2\phi) - U(\theta) \cos(2\phi)$
- $\frac{1}{2}$ Radial profile around peaks is sensitive to β 0.000 $\int_{\mathcal{L}^{-0.001}} \langle U_r^T \rangle (\theta) = -\sin(2\beta) \int \frac{\ell d\ell}{2\pi} W_\ell^T W_\ell^P J_2(\ell\theta) \nonumber \ \times (\bar{b_\nu} + \bar{b_\zeta} \ell^2) C_\ell^{TE}$ -0.002 $f \ell d\ell$ $\langle U_r^E \rangle (\theta)$

$$
= -\frac{1}{2}\sin(4\beta) \int \frac{\csc}{2\pi} W_{\ell}^{E} W_{\ell}^{P} J_2(\ell\theta)
$$

$$
\times (\bar{b}_{\nu} + \bar{b}_{\zeta} \ell^2)(C_{\ell}^{EE} - C_{\ell}^{BB})
$$

Component separation + α_i

Λ

V

$$
\left(\begin{matrix}\n\mathbf{Q}(\nu,\theta) \\
\mathbf{U}(\nu,\theta)\n\end{matrix}\right)_p = \begin{pmatrix}\nc^{\mathbf{Q}} \\
c^{\mathbf{U}}\n\end{pmatrix}_p + \begin{pmatrix}\na_0^{\mathbf{Q}} \\
a_0^{\mathbf{U}}\n\end{pmatrix}_p \frac{1}{u(\nu)} \begin{pmatrix}\n\nu \\
\nu_s\n\end{pmatrix}^{\beta_s} + \begin{pmatrix}\na_0^{\mathbf{Q}} \\
a_0^{\mathbf{U}}\n\end{pmatrix}_p \frac{1}{u(\nu)} \begin{pmatrix}\n\nu \\
\nu_d\n\end{pmatrix}^{\beta_d-2} \frac{B(\nu,T_d)}{B(\nu_d,T_d)} \\
\left(\begin{matrix}\n\mathbf{Q}^{\circ}(\nu,\alpha,\theta) \\
\mathbf{U}^{\circ}(\nu,\alpha,\theta)\n\end{matrix}\right)_p = \begin{pmatrix}\n\cos(2\alpha) & -\sin(2\alpha) \\
\sin(2\alpha) & \cos(2\alpha)\n\end{pmatrix} \begin{pmatrix}\n\mathbf{Q}(\nu,\theta) \\
\mathbf{U}(\nu,\theta)\n\end{pmatrix}_p\n\qquad\n\text{A}_i \leftarrow \mathcal{P}(A \mid \mathcal{B}_{i-1}, \mathcal{C}_{i-1}, d)
$$
\n
$$
\text{Spectral parameters}
$$
\n
$$
\frac{\partial}{\partial \mathbf{Q}_i}
$$
\n $$

n 20 n 60 n 689 n 689 n 580 n 580 n 6849 n 690 n 100 n 110 n 140 n 160 n 110 n 140 n 160 n 162 n 162 n 532 n 540 n 337 n 405

 \mathbf{z}

LiteBIRD overview

- Lite (Light) satellite for the study of B -mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission selected in May 2019
- Expected launch in late 2032 (JFY) with JAXA's H3 rocket
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB B-modes
- Final combined sensitivity: 2.2μ K arcmin

LiteBIRD main scientific objectives

- Definitive search for the B -mode signal from cosmic inflation in the CMB polarization
	- Making a discovery or ruling out well-motivated inflationary models
	- Insight into the quantum nature of gravity
- The inflationary (i.e. primordial) B -mode power is
- proportional to the tensor-to-scalar ratio, r
- Current best constraint: $r \le 0.032$ (95% C.L.) (Tristram+2021, combining BK18 and Planck PR4)
- LiteBIRD will improve current sensitivity on r by a factor ~ 50
- L1-requirements (no external data):
	- For $r = 0$, total uncertainty of $\delta r \leq 0.001$
	- For $r = 0.01$, 5σ detection of the reionization \bullet $(2 < \ell < 10)$ and recombination $(11 < \ell < 200)$ peaks independently
- Huge discovery impact (evidence for inflation, knowledge of its energy scale, ...)

LiteBIRD spacecraft overview

- 3 telescopes are used to provide the 40-402 GHz frequency coverage
	- 1. LFT (low frequency telescope)
	- 2. MFT (middle frequency telescope)
	- 3. HFT (high frequency telescope)
- Multi-chroic transition-edge sensor (TES) bolometer arrays cooled to 100 mK
- Polarization modulation unit (PMU) in each telescope with rotating half-wave plate (HWP), for $1/f$ noise and systematics reduction
- Optics cooled to 5 K
	- \bullet Mass: 2.6 t
	- \bullet Power: 3.0 kW
	- Data: 17.9 Gb/day

The Generalised Spectral Likelihood

I generalise the spectral log likelihood from **Stompor et al. 2009**, similarly as in **Vergès et al. 2020**:

$$
\langle S \rangle = -2 \sum \text{tr}\big(\boldsymbol{N}_p^{-1} \boldsymbol{\Lambda}_p (\boldsymbol{\Lambda}_p^t \boldsymbol{N}_p^{-1} \boldsymbol{\Lambda}_p)^{-1} \boldsymbol{\Lambda}_p^t \boldsymbol{N}_p^{-1} \langle \boldsymbol{d}_p \boldsymbol{d}_p^t \rangle \big)
$$

For forecasting purposes we **average over CMB and noise** realisations.

To lift the degeneracy we add priors to the likelihood:

$$
S' \equiv \langle S \rangle + \sum_{\alpha_i} \frac{(\alpha_i - \hat{\alpha}_i)^2}{2\sigma_{\alpha_i}^2} \sqrt{\frac{(\alpha_i - \hat{\alpha}_i)^2}{2\sigma_{\alpha_i}^2}}
$$

Credit: F. Nati

The Cosmological Likelihood

With { β_{fg} } and { α_{i} } we estimate a CMB map. Imperfect component separation will lead to residuals.

Its power spectra is used to estimate cosmological parameters:

$$
\langle S^{cos} \rangle = f_{sky} \sum_{\ell = \ell_{min}}^{\ell_{max}} \frac{(2\ell + 1)}{2} \left(Tr(\boldsymbol{C}_{\ell}^{-1} \boldsymbol{E}_{\ell}) + \ln(\det(\boldsymbol{C}_{\ell})) \right)
$$
\nData after generalised component separation

$$
\mathcal{C}_{\ell}(r,\beta_b) \equiv \mathcal{R}(\beta_b) \begin{pmatrix} C_{\ell}^{EE,p} & 0 \\ 0 & rC_{\ell}^{BB,p} + A_L C_{\ell}^{BB,\text{lens}} \end{pmatrix} \mathcal{R}^{-1}(\beta_b) + C_{\ell}^{\text{noise}}
$$

How to Have a Statistically Robust Method?

Step 1 : Sampling the ensemble averaged Spectral likelihood $X\{\alpha\}$.A{ $\beta_{f\alpha}$ }

How to Have a Statistically Robust Method?

Method Validation

SO SAT like survey: 6 frequency bands, characteristics noise, 10% sky coverage.

Priors:

- \bullet $\sigma(\alpha_i) = 0.1^\circ$
- Priors are centred at the true value of polarisation angles.
- One vs multiple priors.

Forecast input sky:

- CMB maps from Planck power spectra, $r = 0.0$, $\beta_b = 0.0^{\circ}$
- PySM foreground maps with different degrees of complexity (d0s0, d1s1, d7s3 in order of complexity…) (**Thorne et al 2016, Zonca et al. 2021**)

Credit: Remington Gerras

Simple Foregrounds and One Calibration Prior

- Input CMB: $r = 0.0$; $β_b = 0.0°$
- Input fg: **PySM** models (**Thorne et al 2016, Zonca et al. 2021**) d0s0:
	- dust: MBB, spatially constant spectral indices
	- synchrotron: power law, spatially constant spectral indices
- \bullet 1 prior on 93 GHz: σ(α _i) = 0.1°

Foreground cleaning is ok

Miscalibration: one prior enough

Simple Foregrounds and Six Calibration Priors

- Input CMB: $r = 0.0$; $\beta_b = 0.0^{\circ}$
- Input fg: **PySM** models (**Thorne et al 2016, Zonca et al. 2021**) d0s0:
	- dust: MBB, spatially constant spectral indices
	- synchrotron: power law, spatially constant spectral indices

● Prior on all frequency channels: σ $(\alpha_{i}) = 0.1^{\circ}$

Overall $σ(α)$ improved wrt priors

Simple Foregrounds and Six Calibration Priors

- Simple foregrounds: **d0s0**
- **● Prior on all frequency channels**

r and $β_{{\rm b}}$ correctly estimated

σ(r): same order as SO SAT forecast with σ (r) = 2.1 10-3 (**Ade et al. 2018**)

σ(β_b): improved wrt prior precision!

Results: Simple Foregrounds and Six Calibration Priors

- $d0s0$
- Prior on all frequency channels

σ(β_b): improved wrt prior precision!

Complex Foregrounds and Six Calibration Priors

" $d1s1$ "

 0.002 ± 0.002

 0.00 ± 0.07

Foreground emissions **don't follow** the assumption used in the mixing matrix:

- **d1s1:** spatially varying foreground spectral indices
- **d7s3:** dust emission is non parametric and synchrotron has a curvature term
- **• Prior on all frequency channels:** $\sigma(\alpha_i) = 0.1^{\circ}$

r: biased due to foreground residuals

 \boldsymbol{r}

β_b: no noticeable effect

Simple Foregrounds and Biased Priors

- d0s0:
	- dust: MBB, spatially constant spectral indices
	- synchrotron: power law, spatially constant spectral indices
- **• Prior on all channels,** $σ(α_i) = 1°$
- **Priors randomly biased by N(0,1°)**

 α_i biased by the same value: the mean of the biases

Simple Foregrounds and Biased Priors

- Simple foregrounds **d0s0**:
	- dust: MBB, isotropic spectral indices
	- synchrotron: power law, isotropic spectral indices
- **Prior on all channels,** $\sigma(\alpha_i) = 1^{\circ}$
- **● Priors randomly biased by N(0,1°)**

 $\bm{\beta}_{\rm b}$ biased by the same value as $\alpha^{\rm i}_{\rm i}$

For β_{b} trade-off between statistical uncertainty and possible bias.

r is unbiased: we marginalise over a global angle, removing any E \rightarrow B leakage either from $\alpha_{_\mathsf{i}}$ or $\beta_{_\mathsf{b}}$

We can always be confident that r is not affected by $α_i$ and $β_b$.

Evolution of Uncertainty wrt Prior Precision

We can set calibration requirement.

- Simple Foregrounds: d0s0
- 3 cases:
	- **○ 1 prior**
	- **○ 6 priors**
	- **○ 6 priors and no noise**

Noise represents ~42% of σ(β_b) in the SO SATs like survey used here

Cosmic Birefringence

I focus in particular on **spatially constant** and **time independent** cosmic birefringence:

$$
\tilde{C}_{\ell}^{EE} = C_{\ell}^{EE} \cos^2(2\beta_b) + C_{\ell}^{BB} \sin^2(2\beta_b)
$$

$$
\tilde{C}_{\ell}^{BB} = C_{\ell}^{EE} \sin^2(2\beta_b) + C_{\ell}^{BB} \cos^2(2\beta_b)
$$

$$
\tilde{C}_{\ell}^{EB} = (C_{\ell}^{EE} - C_{\ell}^{BB}) \frac{\sin(4\beta_b)}{2},
$$

Method Validation

SO SAT characteristics noise, 10% sky coverage, I_{min} = 30, I_{max} =300, 30 000 detectors, first light by the end of the year

Priors:

- as a benchmark we use $\sigma(\alpha_i) = 0.1^\circ$
- Unless precised otherwise, priors are centred at the true value of polarisation angles.
- Different calibration methodology explored e.g. one vs multiple priors.

Forecast input sky:

- average over CMB maps generated from Planck power spectra with $r = 0.0$, $β_b = 0.0°$
- PySM foreground maps with different degrees of complexity (d0s0, d1s1, d7s3 in order of complexity…) (Thorne et al 2016, Zonca et al. 2021)

Foreground Models

Dust template: maps at 545 GHz in intensity and 353 GHz in polarisation from the 2015 Commander Planck+WMAP+Haslam 408 MHz (Plank 2016)

d1, spectral index map from commander (assumes same spectral index for temperature and polarisation)

d7 Hensley and Draine 2012 + Hensley 2015: Emission modeled after dust size, shape temperature and ferromagnetic iron inclusion

$$
Q_{\nu,p}^{d7} = A_{d,p}^Q \frac{f_{\nu}(U_{d})}{f_{\nu_0}(U)}
$$

$$
log_{10} U_p = (4 + \beta_{d,p}) log_{10} \left(\frac{T_{d,p}}{\langle T_d \rangle} \right),
$$

$$
U_{\nu,p}^{d7} = A_{d,p}^U \frac{f_{\nu}(U_{d})}{f_{\nu_0}(U)}
$$

Synchrotron template: 23 GHz map from WMAP 9 yr (Bennett et al. 2013)

s1, Miville-Deschênes et al. (2008): combination of WMAP (Hinshaw et al. 2007) and Haslam 408 MHz data (Haslam et al. 1982)

s3, global curvature index $C = -0.052$ (Kogut et al 2012)

$$
Q_{\nu,p}^{\rm s3} = A_{s,p}^Q \left(\frac{\nu}{\nu_0}\right)^{\beta_{s,p} + 2 + C \ln(\nu/\nu_0)}
$$

$$
U_{\nu,p}^{\rm s3} = A_{s,p}^U \left(\frac{\nu}{\nu_0}\right)^{\beta_{s,p} + 2 + C \ln(\nu/\nu_0)},
$$

49