Updates from SPT-3G

K. Benabed - S. Galli - E. Hivon – L. Balkenhol - E. Camphuis - F. Guidi - A. Khalife - A. Vitrier at Institut d'Astrophysique de Paris **On behalf of SPT-3G collaboration**

Outline

- Introduction 1.
- **Recent CMB results** 2
- 3. Focus on upcoming 2019/2020 analyses
- 4. Full survey prospects
- 5. Highlighting other analyses

CMB France #5 - 05/12/2023

SPT-3G

- 10-meter diameter telescope located at the South Pole
- SPT-3G is the third-generation camera, acquiring data in T/P with high resolution:
 1.6'/1.2'/1.0' @ 95/150/220 GHz
- More info in <u>Sobrin et al. 2021</u>

Kavli Institute for Cosmological Physics at the University of Chicago

4

4

CMB France #5 - 05/12/2023 - Introduction

Science goals

- Delensing in the BICEP/Keck field
- Cosmological constraints from primary anisotropies
- CMB Lensing
- High-ell TT, tSZ kSZ
- Low-l BB
- DES x SPT
- Axions, spatially varying cosmic birefringence
- Galaxy clusters, point sources, transients, asteroids, planet 9, etc

SPT Collaboration

5

At IAP - ERC NEUCosmos

Staff: Silvia Galli, Karim Benabed, François Bouchet, Eric Hivon

Monday 5:05	Postdocs		Monday 4:45	PhD
<image/>			<image/>	<image/>
Lennart Balkenhol started March 2023	Etienne Camphuis started October 2023 (PhD 2020-2023)	Federica Guidi started October 2021	Ali Khalife started October 2022	Aline Vitrier started October 2023
Likelihood implementation	Winter field analysis	Summer field analysis	Extended models and theory	Wide field analysis

Recent CMB results from SPT-3G

CMB France #5 - 05/12/2023 - Recent results

A Measurement of the CMB **Temperature Power Spectrum and Constraints on Cosmology from the** SPT-3G2018TT/TE/EE Data Set L. Balkenhol, D. Dutcher, A. Spurio Mancini, A. Doussot, K. Benabed, S. Galli, C. L. Reichardt, E. Hivon, N. Goeckner-Wald and the SPT-3G collaboration https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.023510 Following slides by L. Balkenhol

CMB France #5 - 05/12/2023 - **Recent results - TT/TE/EE 2018**

Constraints on ACDM

- Data is well-fit by ΛCDM (PTE = 15%)
 - Good agreement with Planck 2018, yet independent

CMB France #5 - 05/12/2023 - **Recent results - TT/TE/EE 2018**

Constraints on ACDM

- Data is well-fit by ΛCDM (PTE = 15%)
 - Good agreement with Planck 2018, yet independent
- Expansion rate $H_0 = 68.3 \pm 1.5 \text{ km/s/Mpc}$

Balkenhol et al. 2023

CMB France #5 - 05/12/2023 - **Recent results - TT/TE/EE 2018**

Constraints on ACDM

- Data is well-fit by ΛCDM (PTE = 15%)
 - Good agreement with Planck 2018, yet independent
- Expansion rate $H_0 = 68.3 \pm 1.5 \,\mathrm{km/s/Mpc}$
- Addition of TT to TE/EE shrinks error bars by 8-27%

Balkenhol et al. 2023

CMB France #5 - 05/12/2023 - **Recent results - TT/TE/EE 2018**

A Measurement of Gravitational Lensing of the Cosmic Microwave Background Using **SPT-3G 2018 Data** Z. Pan, F. Bianchini, W. L. K. Wu and the SPT-3G collaboration

https://arxiv.org/pdf/2308.11608.pdf

DEC (J2000)

CMB France #5 - 05/12/2023 - **Recent results - Lensing 2018**

SPT-3G2018 Lensing

Pan et al. 2023, <u>arXiv:2308.11608</u>

- Gravitational lensing potential power spectrum measurement using temperature multi-frequency information
- Lensing amp: $A = 1.020 \pm 0.060$
- Structure growth w/ BAO data $S_8 = 0.836 \pm 0.039$

Pan et al., 2023

CMB France #5 - 05/12/2023 - **Recent results - Lensing 2018**

SPT-3G2018 Lensing

Focus on 19/20 CMB data

CMB France #5 - 05/12/2023 - Focus on 19/20

Forecasts

• Main TT/TE/EE alone will yield constraints 50% larger than *Planck*

Ongoing analysis led by Wei Quan (UC) & EC

Improved analysis pipeline (curved sky, semi-analytical covariance, inpainting, improved consistency tests and blinding)

Forecasts

- Main TT/TE/EE alone will yield constraints 50% larger than *Planck*
- Summer TT/TE/EE will add additional constraining power

Ongoing analysis led by Federica Guidi.

 Both analyses are independent from *Planck* (only external calibration @ 150GHz)

Forecasts

- Main TT/TE/EE alone will yield constraints 50% larger than *Planck*
- Summer TT/TE/EE will add additional constraining power
- Combined TT/TE/EE constraints will be as good as
 Planck for H₀ without lensing
- Results in upcoming months !

Pipeline improvements

• Semi-analytical framework based on EC et al., 2022

SPT-3G D_{ℓ} covariance $[\mu K^4]$ in logarithmic scale

CMB France #5 - 05/12/2023 - Focus on 19/20

Pipeline improvements

- Semi-analytical framework based on EC et al., 2022
- High-accuracy inpainting: pushing down geometric variance

CMB France #5 - 05/12/2023 - Focus on 19/20

Pipeline improvements

- Semi-analytical framework based on EC et al., 2022
- High-accuracy inpainting: pushing down geometric variance
- Differentiable likelihood: see Lennart's talk

CMB France #5 - 05/12/2023 - Focus on 19/20

21

Pipeline improvements

- Semi-analytical framework based on EC et al., 2022
- High-accuracy inpainting: pushing down geometric variance
- Differentiable likelihood
- Preparing for cosmological constraints: see Ali's talk

CMB France #5 - 05/12/2023 - Focus on 19/20

Full survey prospects

CMB France #5 - 05/12/2023 - **Prospects**

Final constraints

with TT/TE/EE + lensing

• Main field alone will provide H_0 constraints 1.5x smaller than Planck $\sigma(H_0) = 0.33 \text{Km/s/Mpc}$

SPT-3G forecasting paper, Prabhu et al. in prep.

- Main field alone will provide H_0 constraints 1.5x smaller than *Planck*
- Summer fields will improve constraints by 20% due to reduced sample variance at low- ℓ

SPT-3G forecasting paper, Prabhu et al. in prep.

- Main field alone will provide H_0 constraints 1.5x smaller than *Planck* $\sigma(H_0) = 0.36 \text{Km/s/Mpc}$
- Summer fields will improve the constraints by 20% due to reduced sample variance at low- ℓ
- The all-including Extended-10k survey will yield independent constraints twice better than **Planck on** H_0

SPT-3G forecasting paper, Prabhu et al. in prep.

- Main field alone will provide H_0 constraints 1.5x smaller than *Planck* $\sigma(H_0) = 0.36 \text{Km/s/Mpc}$
- Summer fields will improve the constraints by 20% due to reduced sample variance at low- ℓ
- The all-including Extended-10k survey will yield independent constraints twice better than **Planck on** H_0

SPT-3G forecasting paper, Prabhu et al. in prep.

CMB France #5 - 05/12/2023 - **Prospects**

- Main field alone will provide H_0 constraints 1.5x smaller than *Planck* $\sigma(H_0) = 0.36 \text{Km/s/Mpc}$
- Summer fields will improve the constraints by 20% due to reduced sample variance at low- ℓ
- The all-including Extended-10k survey will yield independent constraints twice better than *Planck* on H_0
- **Combined with** *Planck*

SPT-3G forecasting paper, Prabhu et al. *in prep*.

Highlighting other analyses

CMB France #5 - 05/12/2023 - Prospects - Highlighting other analyses

- Ongoing analysis by Prakrut 1.00Chaubal & Nicholas Huang 0.75• Significant reduction in band 0.50power uncertainties at all errors 0.25angular multipoles and ot 0.00frequency combinations Ratio -.00compared to SPT-SZ + SPTpol 0.75measurement in <u>Reichardt21</u> 0.50
- Smaller numbers indicate a greater reduction in bandpower uncertainty.

0.25

0.00

CMB France #5 - 05/12/2023 - **Prospects - Highlighting other analyses**

SPT-3G constraints on EoR

- Using cross-ILC approach to characterize foregrounds [Raghunathan et Omori, 2023
- Yields bias-free kSZ measurements, from which epoch of reionization can be constrained

Plot by Srini Raghunathan

CMB France #5 - 05/12/2023 - Prospects - Highlighting other analyses

SPT-3G cluster science

Slides by L. Bleem

CMB France #5 - 05/12/2023 - Prospects - Highlighting other analyses

DES Y3 cluster mass calibration via SPT-3G CMB cluster lensing

- We obtain a ~9% constraint on the mean cluster mass of the DES-Y3 sample. This is **2x** more precise compared to previous SPT measurements and in good agreement with masses from previous works (including optical weak lensing).

- Our measurements prefer a slightly different scaling relation to the optical weak lensing measurements, but currently not at a statistically significant level.

- Upon completion of the SPT-3G survey, we expect a ~5% constraint on the mean sample mass, (using data from the 3G main & extended surveys.)

Behzad Ansarinjead, SPT & DES cluster working groups

CMB France #5 - 05/12/2023 - Prospects - Highlighting other analyses

33

SNO Labelization - by Karim Benabed

- 1. SNO labelization is an « INSU Thing »
 - Recognition that obtaining and distributing astrophysical data is a service to the whole community.
 - typically building/running a telescope/instrument/survey (in this case when data has more use than the survey main goal)
 - Recognition that this service is worthwhile enough to access extra resources: Astronomers
- 2. SPT-3G does not have the resources to deliver maps in a timely fashion...
 - includes description of the products, distribution and community support
- 3. We propose to take responsibility of the map distribution
 - We are already producing the summer fields maps, and will probably do the wide maps as well. This is a significant amount of sky which allow for a lot of ancillary science
 - Will include as well higher level products (likelihood, possibly lensing...)
- 4. Application presented at last call for new SNO
 - No success yet
 - Need to improve the application (wide was not part of it at the time)
 - Gather support from the CMB community

Conclusions

- Cosmology is constrained by SPT-3G 2018 TT/TE/EE + $\phi\phi$ [Balkenhol et al. 2023, Pan et al. 2023]
- 19/20 data will yield constraints comparable to *Planck* Primary anisotropies analyses (W. Quan, F. Guidi, E. Camphuis et al.)
- Extended-10k field TT/TE/EE + $\phi\phi$ (= all the data) constraints will be amazing
- Look out for our clusters and crosscorrelation science!

CMB France #5 - 05/12/2023 - Conclusions

35

Back-up slides

SPT-3G 2018 TT/TE/EE

Improvements from polarization-only analysis

• Including TT from ell=750 to 3000

SPT-3G 2018 TT/TE/EE

Improvements from polarization-only analysis

- Including TT from ell=750 to 3000
- Internal consistency tests
 - Null tests
 - Difference spectra
 - Conditional spectra

38

SPT-3G 2018 TT/TE/EE

Improvements from polarization-only analysis

- Including TT from ell=750 to 3000
- Internal consistency tests
 - Null tests
 - Difference spectra
 - Conditional spectra
- Improved parameter inference
 - High-accuracy <u>CosmoPower</u> models
 - Enabled large number of robustness tests for likelihood

39

SPT-3G 2018 Lensing $\sigma_8 \Omega_m^{0.25}$ measurement

Comparison with ACT DR6

- Main field alone will provide H_0 constraints 1.5x smaller than *Planck* $\sigma(H_0) = 0.36 \text{Km/s/Mpc}$
- Summer fields will improve the constraints by 20% due to reduced sample variance at low- ℓ
- The all-including Extended-10k survey will yield independent constraints twice better than **Planck on** H_0

Final constraints - lensing only

- 3 fields
- 3 lensing pipeline
 - Flat-sky with Gaussian likelihood
 - Curved-sky with Gaussian likelihood
 - MUSE: high-dimensional hierarchical Bayesian inference, see Millea&Seljak 2022

Lensing reconstruction noise: $N_{L}^{(0,\phi\phi)}$

CMB France #5 - 05/12/2023 - **Prospects**

- 3 fields
- 3 lensing pipeline
 - Flat-sky with Gaussian likelihood
 - Curved-sky with Gaussian likelihood
 - MUSE: high-dimensional hierarchical Bayesian inference, see Millea&Seljak 2022

CMB France #5 - 05/12/2023 - **Prospects**

