

Updated Constraints on Hubble Tension solutions

Ali Rida Khalife With recent SPT-3G and SH0ES data

Collaborators: Mariam Bahrami, Sven Günther and Julien Lesgourgues from RWTH Aachen Silvia Galli and Karim Benabed from IAP

Thanks to the great support from the IAP CMB team:

Federica Guidi, Aristide Doussot, Eric Hivon, Etienne Camphuis, Lennart Balkenhol and Aline Vitrier

04/12/2023, CMB-France

The Trouble with Hubble

Goal of the Project

Use the full [SPT3G 2018](https://arxiv.org/abs/2212.05642) data, in combination with others, to evaluate the potential of

Cosmological models to solve the Hubble Tension.

Comparing with recent [SH0ES analysis](https://arxiv.org/abs/2306.00070)**: H0 = 73.29±0.90 km/s/Mpc** ([2306.00070\)](https://arxiv.org/abs/2306.00070).

Study 5 classical ΛCDM extensions + 3 Elaborate Models (+extensions).

Assess these models with Tension metrics.

Update H_0 Olympics paper (<u>2107.1029</u>) with new metrics and with massive neutrinos.

How to Solve it

- Solutions to the Hubble Tension include changing the Physics pre-recombination or in the late universe
- Note: $100xθ = 1.04075 ± 0.00028$ ([Balkenhol](https://arxiv.org/abs/2212.05642) *et al.*)

ΛCDM Extensions

Extending ΛCDM with 3 degenerate massive neutrinos(*Σm ν*) and:

- Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); a \equiv scale factor
- Free streaming Dark Radiation (N_{eff})
- Spatial Curvature($\Omega_{\rm K}$)
- Self Interacting Dark Radiation (N_{SIDR})

● Varying electron mass (*m e* **):**

Compactification in higher dimensional theories results in scalar fields that alter the effective mass of elementary particles, specifically electrons.

Recombination rate is affected Recombination time changes

More details: [Hart & Chulba, 2018\(](https://arxiv.org/abs/1705.03925)1705.03925); *[Planck](https://arxiv.org/abs/1406.7482)* 2015(1406.7482)

$$
\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_{\gamma}}\right)\right]^{-1/2} \left[\frac{8\pi G}{3} \Sigma_i \rho_i\right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_*} \left(\Sigma_i \Omega_i(z)\right)^{-1/2} dz\right]}
$$

- **● Varying electron mass (***m e* **)**
	- **○ +***Σm ν* **:** Study interplay between masses of the two species

- **● Varying electron mass (***m e* **)**
	- **○ +***Σm ν*
	- **+Ω**²: Changing the time of recombination changes the distance

$$
\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_\ast}^\infty \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right)\right]^{-1/2} \left[\frac{8\pi G}{3} \Sigma_i \rho_i\right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_\ast} \left(\Sigma_i \Omega_i(z)\right)^{-1/2} dz\right]}
$$

More details: [Sekigushi & Takahashi \(2020\)](https://arxiv.org/abs/2007.03381) (2007.03381)

- **● Varying electron mass (***m e* **)**
	- **○ +***Σm ν*
	- **○ +ΩK**
	- **○ +***Σm ν* **⁺ΩK**

- **● Varying electron mass (***m e* **)**
	- **○ +***Σm ν*
	- **○ +Ωk**
	- **○ +***Σm ν* **⁺ΩK**

● Early Dark Energy:

Also motivated by higher dimensional theories. A brief period of

accelerated expansion around matter-radiation equality.

Free parameters: $θ_i$, z_c and f_{EDE}

$$
\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_{\gamma}}\right)\right]^{-1/2} \left[\frac{8\pi G}{3} \sum_{i} \rho_i\right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_*} \left(\sum_{i} \Omega_i(z)\right)^{-1/2} dz\right]}
$$

More details: [Smith & Poulin, 2023](https://arxiv.org/abs/2309.03265) (2309.03265); [Poulin](https://arxiv.org/abs/2302.09032) *et al*, 2023 (2302.09032)

- **● Varying electron mass (***m e* **)**
	- **○ +***Σm ν*
	- **○ +Ωk**
	- **○ +***Σm ν* **⁺ΩK**
- \bullet **Early Dark Energy (** θ _i, z _c, f _{EDE})
- **● The Majoron:**

Breaking lepton number symmetry produces a pseudo-scalar (φ) that gives neutrinos their mass (like the Higgs). A particle Physics motivated SIDR.

Free parameters: m_φ, Γ_{eff} and $N^{}_{\rm DR}$

More details: [Escudero & Witte, 2020](https://arxiv.org/abs/1909.04044) (1909.04044); [Escudero & Witte, 2021](https://arxiv.org/abs/2103.03249) (2103.03249)

● Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's ${\sf H}_{\sf 0}$ posteriors?

$$
\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \, \mathcal{P}_{\text{model}}(H_0) \, \mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \, \mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)
$$
\nNormalisation

\nNormalisation

\nWeights from chains

● Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's ${\sf H}_{\sf 0}$ posteriors?

$$
\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \, \mathcal{P}_{\text{model}}(H_0) \, \mathcal{P}_{\text{SHOES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \, \mathcal{P}_{\text{SHOES}}(H_{0,i} - \delta)
$$

$$
q = \int_0^{\delta'} d\delta \mathcal{P}(\delta) .
$$
 Probability of finding δ in [0, δ'], such that

$$
\mathcal{P}(\delta') = \mathcal{P}(0)
$$

● Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's ${\sf H}_{\sf 0}$ posteriors?

$$
\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \, \mathcal{P}_{\text{model}}(H_0) \, \mathcal{P}_{\text{SHOES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \, \mathcal{P}_{\text{SHOES}}(H_{0,i} - \delta)
$$

 $q = \int_0^{\delta'} d\delta \mathcal{P}(\delta)$. Probability of finding δ in [0, δ'], such that $P(\delta') = P(0)$

$$
n = \sqrt{2} \operatorname{erf}^{-1}(q) \qquad \text{Tension in units of } \sigma \text{, denoted by } Q_{\text{MPCL}}
$$

● Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's ${\sf H}_{\sf 0}$ posteriors?

$$
\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \, \mathcal{P}_{\text{model}}(H_0) \, \mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \, \mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)
$$

 $q = \int_0^{\delta'} d\delta \mathcal{P}(\delta)$. Probability of finding δ in [0, δ'], such that $P(\delta') = P(0)$

● Marginalised Posterior Compatibility Level (MPCL):

 $n=\sqrt{2} \text{erf}^{-1}(q)$ Tension in units of σ, denoted by Q_{MPCL}

● Difference of the Maximum A Posteriori (DMAP):

$$
Q_{\textrm{DMAP, model}} \equiv \sqrt{\chi^2_{\textrm{min, model, }\mathcal{D}+SH0ES} - \chi^2_{\textrm{min, model, }\mathcal{D}} } \hspace{0.3cm} ; \hspace{0.3cm} \chi^2 = - 2 \ln \mathcal{L} \hspace{0.3cm} ; \hspace{0.3cm} \mathcal{D}^{\equiv} \textrm{data set}
$$

● Marginalised Posterior Compatibility Level (MPCL):

 $n=\sqrt{2} \text{erf}^{-1}(q)$ Tension in units of σ, denoted by Q_{MPCL}

● Difference of the Maximum A Posteriori (DMAP):

 $Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D}+SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$; $\chi^2 = -2 \ln \mathcal{L}$; $\mathcal{D} \equiv$ data set

● Akaike Information Criterion (AIC):

$$
\Delta\text{AIC}_{\text{model}} = \chi^2_{\text{min, model, } \mathcal{D} + \text{SH0ES}} - \chi^2_{\text{min, }\Delta\text{CDM}, \mathcal{D} + \text{SH0ES}} \hspace{0.3cm} ; \ N \equiv \text{\# of parameters} \\ + 2\big(N_{\text{model}} - N_{\Delta\text{CDM}}\big) \; .
$$

● Marginalised Posterior Compatibility Level (MPCL):

 $n=\sqrt{2} \text{erf}^{-1}(q)$ Tension in units of σ, denoted by Q_{MPCL}

● Difference of the Maximum A Posteriori (DMAP):

 $Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D}+SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$; $\chi^2 = -2 \ln \mathcal{L}$; $\mathcal{D} \equiv$ data set

● Akaike Information Criterion (AIC):

 $\Delta AIC_{\text{model}} = \chi^2_{\text{min, model, D+SH0ES}} - \chi^2_{\text{min, \Lambda CDM,D+SH0ES}}$; $N \equiv #$ of parameters $+2(N_{\text{model}}-N_{\Lambda\text{CDM}})$.

● AIC without SH0ES

Data Sets and Numerical Tools

- Data sets:
	- SPT-3G 2018: TT,TE,EE
	- Planck 2018: TT,TE,EE+Lensing
	- BAO: 6dFGS+SDSS MGS, DR12-16
	- ACT: DR4
	- Pantheon SN Ia
- Theory Codes: [CLASS](https://lesgourg.github.io/class_public/class.html) and [CAMB](https://camb.readthedocs.io/en/latest/index.html)
- Monte Carlo Sampler: [COBAYA](https://cobaya.readthedocs.io/en/latest/index.html)
- Minimizing χ^2 : [Py-BOBYQA](https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/index.html)
- New cosmological emulator ([arXiv:2307.01138](https://arxiv.org/pdf/2307.01138.pdf))
- Our reference data set: SPT+Planck+BAO+Pantheon

Main Results

Compare with Olympics Paper

Table I of [2107.10291](https://arxiv.org/abs/2107.10291)

The Power of an Emulator

Conclusions and Future Plans

- Classical extensions of ΛCDM are interesting, but cannot solve the HT.
- Only $m_e + \Omega_K$ ($+\Sigma m_v$) and EDE remain in the competition.
- Further investigation of these models, theoretically, is needed.
- Revisit these models, along with others, with upcoming SPT-3G 2019/2020 and ACT DR6 data.
- Stay on the lookout for the paper next week!

 \bullet SDSS-DR16 made the difference for the m_e model

- \bullet SDSS-DR16 made the difference for the m_e model
- \bullet Flip in degeneracy direction of H_0 -Σm_u when varying m_e

- \bullet SDSS-DR16 made the difference for the m_e model
- \bullet Flip in degeneracy direction of H_0 -Σm_u when varying m_e
- \bullet SPT-3G improved polarization data made a difference for $m_e + \Omega_K$

H₀(Planck+BAO):
$$
69.1^{+2.1}_{-2.1}
$$
 H₀(SPT+Planck+BAO): $67.7^{+1.9}_{-1.8}$

- \bullet SDSS-DR16 made the difference for the m_e model
- \bullet Flip in degeneracy direction of H_0 -Σm_u when varying m_e
- \bullet SPT-3G improved polarization data made a difference for $m_e + \Omega_K$
- Preference for EDE from ACT-DR4 is still present

Varying Electron Mass: Results

Σm_υ=0.06 eV Grey Band: Planck 2018 LCDM Purple Band: SH0ES

Me+Mnu: Results

Grey Band: Planck 2018 LCDM Purple Band: SH0ES

Me+Omk

Majoron

Sub eV mass

Early Dark Energy

- A short phase of accelerated expansion around matter-radiation equality.
- A scalar field around that time oscillating or slowly rolling along its potential.
- Same mechanism as Inflation, but different scalar field and time.
- \bullet Early decrease in the sound horizon is compensated by an increase in H₀.
- References: <u>H_o [Olympics](https://arxiv.org/abs/2107.10291)</u>; <u>0205340</u>; <u>2007.03381; 1912.03986</u>; <u>[1811.04083](https://arxiv.org/abs/1811.04083)</u> Most recent results: [arXiv:2309.03265](https://arxiv.org/abs/2309.03265)

Source: <u>In the Realm of the Hubble Tension</u> extending the 41

Varying Electron Mass: Theory

- In Gravity theories with higher dimensions, compactification of the latter results in scalar fields.
- These scalars are gravitationally coupled to Standard Model fields, particularly electrons
- The result is an effective electron mass that could differ from the one we measure in the lab.

Varying Electron Mass: Theory

- Varying the electron mass affects Hydrogen/Helium recombination.
- Varying properties of Hydrogen/Helium formation efficiently impacts the

time w^h =
$$
\cos \theta
$$
 is the function $\tan \theta$ is given by
$$
\theta = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_{\gamma}}\right)\right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i \rho_i\right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{\infty} \left(\Sigma_i \Omega_i(z)\right)^{-1/2} dz\right]}
$$

Varying Electron Mass: Theory

- Varying the electron mass affects Hydrogen/Helium formation rates.
- Varying properties of Hydrogen/Helium formation efficiently impacts the time when recombination happens.
- Allowing a non-zero curvature on top of that provides a better fit by adjusting the D_A to BAO and other late time probes.
- In practice, however, the model is described with a step function.

SLIDES FOR A GENERAL AUDIENCE TALK

 $V(\phi) = \Lambda_{\text{ede}}^4 \left[1 - \cos(\phi / f_{\text{ede}})\right]^n$ [Kamionkowski & Riess\(2022\)](https://arxiv.org/abs/2211.04492)