

Updated Constraints on Hubble Tension solutions

With recent SPT-3G and SH0ES data Ali Rida Khalife

Collaborators: Mariam Bahrami, Sven Günther and Julien Lesgourgues from RWTH Aachen Silvia Galli and Karim Benabed from IAP

Thanks to the great support from the IAP CMB team:

Federica Guidi, Aristide Doussot, Eric Hivon, Etienne Camphuis, Lennart Balkenhol and Aline Vitrier

04/12/2023, CMB-France

The Trouble with Hubble

Goal of the Project

Use the full SPT3G 2018 data, in combination with others, to evaluate the potential of

Cosmological models to solve the Hubble Tension.

Comparing with recent <u>SH0ES analysis</u>: **H**₀**= 73.29±0.90 km/s/Mpc** (<u>2306.00070</u>).

Study 5 classical ACDM extensions + 3 Elaborate Models (+extensions).

Assess these models with Tension metrics.

Update H_0 Olympics paper (2107.1029) with new metrics and with massive neutrinos.

How to Solve it

- Solutions to the Hubble Tension include changing the Physics pre-recombination or in the late universe
- Note: $100x\theta = 1.04075 \pm 0.00028$ (<u>Balkenhol *et al.*</u>)

ACDM Extensions

Extending Λ CDM with 3 degenerate massive neutrinos(Σm_{ν}) and:

- Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv$ scale factor
- Free streaming Dark Radiation (*N*_{eff})
- Spatial Curvature(Ω_{k})
- Self Interacting Dark Radiation (*N*_{SIDR})

Varying electron mass (*m*_o):

Compactification in higher dimensional theories results in scalar fields that alter the effective mass of elementary particles, specifically electrons.

Recombination rate is affected **Recombination** time changes

More details: Hart & Chulba, 2018(1705.03925); Planck 2015(1406.7482)

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right) \right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i \rho_i\right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_*} \left(\Sigma_i \Omega_i(z)\right)^{-1/2} dz \right]}$$

- Varying electron mass (*m_e*)
 - + Σm_v : Study interplay between masses of the two species

- Varying electron mass (m_e)
 - **+Σm**_ν
 - $+\Omega_{\kappa}$: Changing the time of recombination changes the distance

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right) \right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i \rho_i\right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_*} \left(\Sigma_i \Omega_i(z)\right)^{-1/2} dz \right]}$$

More details: <u>Sekigushi & Takahashi (2020)</u> (2007.03381)

- Varying electron mass (m_e)
 - ο **+Σm**_ν
 - ο **+Ω_K**
 - +Σm_ν +Ω_κ

- Varying electron mass (m_e)
 - +**Σm**_ν
 - o **+Ω**_κ
 - +Σm_ν +Ω_κ

• Early Dark Energy:

Also motivated by higher dimensional theories. A brief period of

accelerated expansion around matter-radiation equality.

Free parameters: θ_{i} , z_{c} and f_{EDE}

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right)\right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i\rho_i\right]^{-1/2} dz}{H_0^{-1}\sin_K \left[\int_0^{z_*} \left(\Sigma_i\Omega_i(z)\right)^{-1/2} dz\right]}$$

More details: <u>Smith & Poulin, 2023</u> (2309.03265); <u>Poulin *et al*, 2023</u> (2302.09032)

- Varying electron mass (m_e)
 - +**Σm**_ν
 - ο **+Ω_K**
 - +Σm_ν +Ω_κ
- Early Dark Energy ($\theta_{i'} Z_{c'} f_{EDE}$)
- The Majoron:

Breaking lepton number symmetry produces a pseudo-scalar (ϕ) that gives neutrinos

their mass (like the Higgs). A particle Physics motivated SIDR.

Free parameters: m_{φ} , Γ_{eff} and N_{DR}

More details: Escudero & Witte, 2020 (1909.04044); Escudero & Witte, 2021 (2103.03249)

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$
Normalisation
Normalisation
Weights from chains

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

$$q = \int_0^{\delta'} d\delta \,\mathcal{P}(\delta) \,. \qquad \qquad \text{Probability of finding } \delta \text{ in } [0,\delta'], \text{ such that} \\ \mathcal{P}(\delta') = \mathcal{P}(0)$$

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

 $q = \int_0^{\delta'} d\delta \,\mathcal{P}(\delta) \,. \qquad \qquad \text{Probability of finding } \delta \text{ in } [0,\delta'], \text{ such that} \\ \mathcal{P}(\delta') = \mathcal{P}(0)$

$$n = \sqrt{2} \operatorname{erf}^{-1}(q)$$
 Tension in units of σ , denoted by Q_{MPCL}

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

 $q = \int_0^{\delta'} d\delta \,\mathcal{P}(\delta) \,. \qquad \qquad \text{Probability of finding } \delta \text{ in } [0,\delta'], \text{ such that} \\ \mathcal{P}(\delta') = \mathcal{P}(0)$

• Marginalised Posterior Compatibility Level (MPCL):

 $n = \sqrt{2} \operatorname{erf}^{-1}(q)$ Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

$$Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D} + SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$$
; $\chi^2 = -2 \ln \mathcal{L}$; $\mathcal{D} \equiv \text{data set}$

• Marginalised Posterior Compatibility Level (MPCL):

 $n = \sqrt{2} \operatorname{erf}^{-1}(q)$ Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

 $Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D} + SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$; $\chi^2 = -2 \ln \mathcal{L}$; $\mathcal{D} \equiv \text{data set}$

• Akaike Information Criterion (AIC):

$$\Delta \text{AIC}_{\text{model}} = \chi^2_{\text{min, model, } \mathcal{D}+SH0ES} - \chi^2_{\text{min, } \Lambda \text{CDM}, \mathcal{D}+SH0ES} \quad ; N \equiv \text{\# of parameters} \\ + 2 (N_{\text{model}} - N_{\Lambda \text{CDM}}) .$$

• Marginalised Posterior Compatibility Level (MPCL):

 $n = \sqrt{2} \operatorname{erf}^{-1}(q)$ Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

 $Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D} + SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$; $\chi^2 = -2 \ln \mathcal{L}$; $\mathcal{D} \equiv \text{data set}$

• Akaike Information Criterion (AIC):

$$\begin{split} \Delta \text{AIC}_{\text{model}} &= \chi^2_{\text{min, model, }\mathcal{D} + SH0ES} - \chi^2_{\text{min, }\Lambda\text{CDM},\mathcal{D} + SH0ES} \quad \text{; } N \equiv \text{\# of parameters} \\ &+ 2 \big(N_{\text{model}} - N_{\Lambda\text{CDM}} \big) \;. \end{split}$$

• AIC without SH0ES

Data Sets and Numerical Tools

- Data sets:
 - SPT-3G 2018: TT,TE,EE
 - Planck 2018: TT,TE,EE+Lensing
 - BAO: 6dFGS+SDSS MGS, DR12-16
 - ACT: DR4
 - Pantheon SN la
- Theory Codes: <u>CLASS</u> and <u>CAMB</u>
- Monte Carlo Sampler: <u>COBAYA</u>
- Minimizing χ²: <u>Py-BOBYQA</u>
- New cosmological emulator (arXiv:2307.01138)
- Our reference data set: SPT+Planck+BAO+Pantheon

Main Results

				w/o	SH0ES	w/S	HOES
Models	$H_0({ m km/s/Mpc})$	$\mathrm{Q}_{\mathrm{MPCL}}(\sigma)$	$Q_{\rm DMAP}(\sigma)$	$\Delta\chi^2$	ΔAIC	$\Delta\chi^2$	ΔAIC
ACDM	$67.56(67.58)^{+0.38}_{-0.38}$	6.0	5.8	0	0	0	0
$+\Sigma m_{\nu}$	$67.60(67.01)^{+0.49}_{-0.43}$	5.9	2 	—			_
$+\Sigma m_{\nu} + \text{CPL}$	$67.94(67.89)^{+0.78}_{-0.79}$	4.5	_	_	_		_
$+\Sigma m_{\nu} + N_{\rm eff}$	$68.25(67.45)^{+0.62}_{-0.76}$	4.2		-			_
$+\Sigma m_{\nu} + \Omega_K$	$67.67(66.88) \substack{+0.62\\-0.62}$	5.1	$ \Rightarrow$	_		<u></u>	
$+\Sigma m_{\nu} + N_{\rm SIDR}$	$68.53(69.06)^{+0.69}_{-0.92}$	3.8	4.0	-0.1	3.9	-17.1	-13.1
m_e	$68.00(68.03)^{+1.06}_{-1.07}$	3.8	3.9	0.0	2.0	-18.0	-16.0
$m_e + \Sigma m_{\nu}$	$68.22(67.70)^{+1.09}_{-1.23}$	3.5	3.6	-0.9	3.1	-21.6	-17.6
$m_e + \Omega_K$	$68.20(67.42)^{+1.63}_{-1.60}$	2.9	3.1	-1.0	3.0	-24.7	-20.7
$m_e + \Omega_K + \Sigma m_{\nu}$	$69.75(67.75)^{+1.85}_{-2.93}$	1.5	3.0	-0.9	5.1	-25.8	-19.8
EDE	$68.18(68.55)^{+0.42}_{-0.79}$	3.8	2.7	-4.6	1.4	-31.1	-25.1
Majoron	$68.55(68.08)^{+0.48}_{-0.70}$	4.3		·			

23

Compare with Olympics Paper

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta\chi^2$	ΔAIC	2	Finalist
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	\checkmark	V 🕥
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X
$SI\nu + DR$	3	$-19.440_{-0.039}^{+0.037}$	3.8σ	3.9σ	X	-4.98	1.02	X	X
Majoron	3	$-19.380\substack{+0.027\\-0.021}$	3.0σ	2.9σ	~	-15.49	-9.49	\checkmark	 ✓
primordial B	1	$-19.390\substack{+0.018\\-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	~	√ 🎯
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	\checkmark	-12.27	-10.27	\checkmark	 ✓
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	\checkmark	-17.26	-13.26	\checkmark	V 😐
EDE	3	$-19.390\substack{+0.016\\-0.035}$	3.6σ	1.6σ	~	-21.98	-15.98	\checkmark	✓ ②
NEDE	3	$-19.380\substack{+0.023\\-0.040}$	3.1σ	1.9σ	~	-18.93	-12.93	\checkmark	 ✓ ②
EMG	3	$-19.397\substack{+0.017\\-0.023}$	3.7σ	2.3σ	1	-18.56	-12.56	~	✓ ②
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	~	2.24	2.24	X	X
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X
$\rm DM \rightarrow \rm DR + \rm WDM$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X

Table I of 2107.10291

The Power of an Emulator

Conclusions and Future Plans

- Classical extensions of ACDM are interesting, but cannot solve the HT.
- Only $m_e + \Omega_{\kappa} (+\Sigma m_{\nu})$ and EDE remain in the competition.
- Further investigation of these models, theoretically, is needed.
- Revisit these models, along with others, with upcoming SPT-3G 2019/2020 and ACT DR6 data.
- Stay on the lookout for the paper next week!

• SDSS-DR16 made the difference for the m_e model

- SDSS-DR16 made the difference for the m_{ρ} model
- Flip in degeneracy direction of H_0 - Σm_0 when varying m_e

- SDSS-DR16 made the difference for the *m_e* model
- Flip in degeneracy direction of H_0 - Σm_0 when varying m_e
- SPT-3G improved polarization data made a difference for $m_e + \Omega_K$

$$H_0(Planck+BAO):$$
 $69.1^{+2.1}_{-2.1}$ $H_0(SPT+Planck+BAO):$ $67.7^{+1.9}_{-1.8}$

- SDSS-DR16 made the difference for the m_{ρ} model
- Flip in degeneracy direction of H_0 - Σm_0 when varying m_e
- SPT-3G improved polarization data made a difference for $m_{\rho} + \Omega_{\kappa}$
- Preference for EDE from ACT-DR4 is still present

Varying Electron Mass: Results

Σm_u=0.06 eV Grey Band: Planck 2018 LCDM Purple Band: SH0ES

Me+Mnu: Results

Grey Band: Planck 2018 LCDM Purple Band: SH0ES

Me+Omk

Majoron

Sub eV mass

Early Dark Energy

- A short phase of accelerated expansion around matter-radiation equality.
- A scalar field around that time oscillating or slowly rolling along its potential.
- Same mechanism as Inflation, but different scalar field and time.
- Early decrease in the sound horizon is compensated by an increase in H₀.
- References: H₀ Olympics; 0205340; 2007.03381; 1912.03986; 1811.04083
 Most recent results: arXiv:2309.03265

The Trouble with

Source: In the Realm of the Hubble Tension

Varying Electron Mass: Theory

- In Gravity theories with higher dimensions, compactification of the latter results in scalar fields.
- These scalars are gravitationally coupled to Standard Model fields, particularly electrons
- The result is an effective electron mass that could differ from the one we measure in the lab.

Varying Electron Mass: Theory

- Varying the electron mass affects Hydrogen/Helium recombination.
- Varying properties of Hydrogen/Helium formation efficiently impacts the

Varying Electron Mass: Theory

- Varying the electron mass affects Hydrogen/Helium formation rates.
- Varying properties of Hydrogen/Helium formation efficiently impacts the time when recombination happens.
- Allowing a non-zero curvature on top of that provides a better fit by adjusting the D_A to BAO and other late time probes.
- In practice, however, the model is described with a step function.

Param eter	SPT+ ACT+ Planck+ BAO
H₀	67.00±0.82
σ8	0.803±0.019

Param eter	SPT+ ACT+ Planck+ BAO
Ho	67.10±0.85
σ8	0.812±0.009

Param eter	SPT+ ACT+ Planck+ BAO
Ho	67.22±0.91
σ8	0.801±0.022

Param eter	SPT+ ACT+ Planck+ BAO
Ho	68.16±0.46
σ	0.818±0.009

Param eter	SPT+ ACT+ Planck+ BAO
H₀	66.89±1.62
σ	0.808±0.017

SLIDES FOR A GENERAL AUDIENCE TALK

 $V(\phi) = \Lambda_{\text{ede}}^4 \left[1 - \cos(\phi/f_{\text{ede}})\right]^n$ Kamionkowski & Riess(2022)