

COSMOLOGICAL PARAMETERS DERIVED FROM THE FINAL PLANCK (PR4) DATA RELEASE

CMB-FRANCE #5, DEC 2023

M. Tristram

Cosmological parameters derived from the final (PR4) Planck data release

M. Tristram¹, A. J. Banday², M. Douspis³, X. Garrido¹, K. M. Górski^{4,5}, S. Henrot-Versillé¹, L. T. Hergt⁶, S. Ilić^{1,7}, R. Keskitalo^{8,9}, G. Lagache¹⁰, C. R. Lawrence⁴, B. Partridge¹¹, and D. Scott⁶

¹ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

² IRAP, Université de Toulouse, CNRS, CNES, UPS, (Toulouse), France

³ Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405, Orsay, France

⁴ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, U.S.A.

⁵ Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland

⁶ Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, V6T 1Z1, Canada

⁷ Centre National d'Etudes Spatiales – Centre Spatial de Toulouse, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9, France

⁸ Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, U.S.A.

⁹ Space Sciences Laboratory, University of California, Berkeley, California, 94720, U.S.A.

¹⁰ Aix Marseille Université, CNRS, CNES, LAM, Marseille, France

¹¹ Department of Astronomy, Haverford College, Haverford, Pennsylvania, 19041, U.S.A.

[Tristram et al. A&A (2023)] astro-ph/2309.10034

PLANCK PR4 likelihoods

[Tristram+ (2023)]

Planck likelihoods are splits in two parts due to different statistical assomptions

large scales (low {)

• **lowT: Commander** [Planck Collaboration V 2020]

Bayesian posterior Gibbs sampling that combines astrophysical component separation and likelihood estimation

• **lowE(B): Lollipop** [Tristram et al. 2022]

H&L likelihood based on cross-spectra between CMB clean maps on 50% of the sky

 $\ell = 2-30$

small scales (high {)

• Hillipop: TT, TE, EE, TTTEEE [Tristram et al. 2023]

Gaussian likelihood based on crossspectra from frequency maps on 75% of the sky, including models for the foreground residuals

Lollipop Tensor-to-scalar ratio & Reionization

Reionization optical depth (scattering of photons by free electrons)

Galaxies become more efficient producers of ionizing photons at higher redshifts and fainter magnitudes

Faintest galaxies (MUV > -15) dominate the ionizing emissivity

[Tristram et al. A&A 647, A128 (2021)] [Tristram et al. PRD 105, 083524 (2022)]

[Tristram et al. PRD 105, 083524 (2022)]

 $r_{0.05} < 0.032$ (Planck + BK18)

M. Tristram

Hillipop PR4 power-spectra

[Tristram+ (2023)]

2 maps per frequencies at 100, 143 and 217 GHz 15 cross-spectra at 6 cross-frequencies

xpol [https://gitlab.in2p3.fr/tristram/xpol]

PLANCK PR4 cosmology

Hillipop PR4 TT-TE-EE likelihood

[Tristram+ (2023)]

An accurate masking

- point sources

- our Galaxy

- nearby extended galaxies (e.g. M31)

An accurate foreground model

- Galactic dust
- cosmic infrared background (CIB)
- thermal (tSZ) and kinetic (kSZ) Sunyaev-Zeldovich components
- Poisson-distributed point sources from radio and infrared star-forming galaxies
- the correlation between CIB and the tSZ effect (tSZ×CIB)

Hillipop PR4 CMB power-spectra

multipole *l*

ACDM cosmology model

6 parameters

- 3 for the primordial matter spectra
- $\mathcal{P}_{s}(k) = A_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}+1}$ 1 expansion rate H_{0} (in practice sound horizon θ_{s}
- 2 parameters for densities $\Omega_b h^2$ $\Omega_c h^2$
- reionization au

hypothesis

- flat Universe $\Omega_k = 0$
- No running $\partial n_s / \partial lnk = 0$
- no tensor r = 0

- 3 neutrinos $N_{\rm eff} = 3.044$
- standard neutrinos with low mass $\sum m_{\nu} = 0.06 \text{ eV}$

ACDM cosmology parameters

[Tristram+ (2023)]

ACDM cosmology TT, TE, EE

[Tristram+ (2023)]

ACDM cosmology +lensing+BAO

[Tristram+ (2023)]

Parameter	TTTEEE	TTTEEE +lensing	TTTEEE +lensing+BAO	
$\overline{\Omega_{ m b} h^2}$	0.02226 ± 0.00013	0.02226 ± 0.00013	0.02229 ± 0.00012	0.5 %
$\Omega_{ m c} h^2$	0.1188 ± 0.0012	0.1190 ± 0.0011	0.1186 ± 0.0009	0.75 %
$100\theta_*$	1.04108 ± 0.00026	1.04107 ± 0.00025	1.04111 ± 0.00024	0.02 %
$log(10^{10}A_{s})$	3.040 ± 0.014	3.045 ± 0.012	3.048 ± 0.012	0.39 %
n _s	0.9681 ± 0.0039	0.9679 ± 0.0038	0.9690 ± 0.0035	0.36 %
au	0.0580 ± 0.0062	0.0590 ± 0.0061	0.0605 ± 0.0059	9.75 %
$\overline{H_0}$	67.64 ± 0.52	67.66 ± 0.49	67.81 ± 0.38	0.56 %
σ_8	0.8070 ± 0.0065	0.8113 ± 0.0050	0.8118 ± 0.0050	0.61 %
S_8	0.819 ± 0.014	0.824 ± 0.011	0.821 ± 0.009	1.09 %
$\Omega_{ m m}$	0.3092 ± 0.0070	0.3092 ± 0.0066	0.3071 ± 0.0051	1.66 %

But still:

• Iow HO compared to SNIa

$$H_0 = 67.64 \pm 0.52 \text{ km s}^{-1} \text{ Mpc}^{-1}$$
 (TTTEEE)
 $H_0 = 67.81 \pm 0.38 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (TTTEEE+lensing+BAO)

ACDM cosmology Comparison with PR3 and CamSpec

[Planck 2018 Results. VI. (2020)] [Rosenberg, Gratton, Efstathiou, MNRAS, 517, 4620 (2022)] [Tristram+ (2023)]

Good consistency between the PR4 and PR3 power spectra, which

translates to very good agreement on cosmological parameters as well.

 Lower noise of the NPIPE maps + improvement in polarization signal provides tighter parameter constraints, with more than 10% improvement for ΛCDM parameters in TTTEEE

improvement wrt				
Planck 2018				
Parameter	$\Delta \sigma$			
$\Omega_{ m b} h^2$	-13.7 %			
$\Omega_{ m c} h^2$	-15.2 %			
$100\theta_*$	-16.1 %			
$\log(10^{10}A_{\rm s})$	-12.0 %			
n _s	-11.0%			
τ	-21.4 %			
H_0	-13.7 %			
σ_8	-11.5 %			
<i>S</i> ₈	-14.2 %			
$\Omega_{ m m}$	-16.1 %			

ACDM cosmology growth of structures

• DES

$$S_8 = 0.782 \pm 0.019$$
 (DES-Y3)

Planck

$S_8 = 0.834 \pm 0.016$	(PR3 TTTEEE)
$S_8 = 0.819 \pm 0.014$	(PR4 TTTEEE)

reduced from 2.1 σ to $\textbf{1.5}\sigma$

ACDM extensions

Alens

[Tristram+ (2023)]

ΛCDM extensions curvature Ω_K

Conclusions

• PR4 final PLANCK maps

- **cleaner** (less systematics)
- **more sensitive** (less noisy)
- split-maps not correlated
- sims consistent with the data, include uncertainties from systematics (both instrumental and astrophysical)

CMB likelihoods (Lollipop & Hillipop)

- Cosmology consistent with the PR3 and with CamSpec
- avanavie vi yn yn generalenek-npipe https://github.com/planck-npipe about 10% improvement in most of ACDM parameters available on github tor Cobaya and MontePython
- give the tightest constraints from Planck CMB today
- no deviation from standard ΛCDM

$$A_{\text{lens}} = 1.039 \pm 0.052$$

 $\Omega_K = -0.012 \pm 0.010$