

Constraining reionization by combining CMB and 21cm observations

A case for joint analyses

Adélie Gorce J.-M. Bégin, I. Georgiev, A. Liu, G. Mellema

05/12/2023 © M. Alvarez

Introduction

Reionisation & Cosmic Dawn

The chronology & topology of reionisation can shed light on the nature of the first stars, the formation of galaxies, the density of the IGM…

Introduction

Imprints of reionisation

 T here is a wide range of reionisation observables

With the 21cm signal, we can map the Universe at any redshift \rightarrow 3D power spectrum \neq CMB

Imprints of reionisation

There is a wide range of reionisation observables (non-exhaustive list…)

The kinetic Sunyaev-Zel'dovich effect

The kSZ effect corresponds to CMB photons scattering off free electrons with a bulk velocity

The kinetic Sunyaev-Zel'dovich effect

There is information about reionisation in the kSZ spectrum...

1. About global reionisation history

2. About reionisation morphology (and effectively galaxy properties)

Gorce+2020, and, e.g., McQuinn+2005; Iliev+2007; Battaglia+2013; Park+2013…

Bégin, Liu & Gorce 2022 Bégin, Liu & Gorce 2022

Combining kSZ / global 21¢m

The complementarity can be leveraged to

: ð26Þ

so, deferring a discussion of potential systematics (and how

One method for combining data into a single ionization history is to employ a least-squares estimator, where we wish to construct an estimator \mathbf{r} history x, given a collection of measurements y. In our case, we take you coefficients. Relating the measurement to what we want to

where \mathcal{A} of two R[−]¹ matrices), and nconc is the concatenated noise vector, i.e., nconc ¼ ðn21; nkSZÞ. Note that this noise is not the instrumental noise contribution from the original 21 cm or kSZ measurements, but instead, the "noise" in our determination of y²¹ and ykSZ. It therefore has a covariance

With these definitions, the least squares estimator for the

yconc ¼ Ax þ nconc; ð25Þ

Combining kSZ / 21cm PS *N* r I *x* \overline{X} \overline{Y} \overline{Y} *^V* ² ⁼ ¹

o Relate the 21cm and the kSZ power spectra through their base ingredient: the electron power spectrum *V* (*s*) $\overline{1}$ *N*

k=1

*x*loc(*k*)

² *^x*¯²

 $\overline{}$

$$
\text{KSZ} \qquad C_{\ell}^{\text{kSZ}} \propto \int \frac{\mathrm{d}z}{H(z)} \bar{n}_e(z)^2 k^3 v_{\text{rms}}^2(z) e^{-\tau(z)} d_c(z) \times P_{ee}(k, z) \\ \text{21cm PS} \qquad \frac{P_{21}(k, z)}{T_0(z)^2} = x_e(z) \left[P_{ee}(k, z) + [1 - 2x_e(z)] P_{bb}(k, z) - 2x_e(z) \right] P_{bi}(k, z) + P_{bi,b}(k, z) \tag{21cm}
$$

ition of p (k₇ \circ Look at the evolution of P_{ee}(k,z) in high resolution hydrodynamical simulations

ج: 1

niversi

Combining kSZ / 21cm PS matter fields.

- o Relate the 21cm and the kSZ power spectra through their base ingredient: the electron power spectrum early stages of reionisation as can be seen on the right panel Therefore, we choose in this work to use a direct parameterisa-
- o Look at the evolution of $P_{ee}(k,z)$ in high resolution hydrodynamical simulations i stion and calibrations. The parameters, $\frac{1}{2}$
- \circ Find a parameterisation of the evolution of P $_{\rm ee}$ (k,z)

 $P_{ee}(k, z) = \frac{\alpha_0 x_e(z)^{-1/5}}{1 + 5k/13z_0}$ $1 + [k/\kappa]^3 x_e(z)$ Early times: power-law

. (13)

related to the typical bubble size, in the bias between the H i and

electrons density power spectra of our six simulations in the

This behaviour is close to what we observe in the free

ble SC Combining kSZ / 21cm PS line), hinting at a relation between the cut-o↵ frequency and the relation to the typical bubble size, in the bias between the \mathbf{r}_i $\frac{1}{2}$ contribution of patchy contribution to the patchy corresponding to the **This behaviour is compining KSZ / ZICM PS** power spectrum, so that a precise knowledge of *be*(*k*,*z*) is not electrons density power spectra of our six simulations in the power spectrum, so that a precise knowledge of *be*(*k*,*z*) is not required. In the future, if we want to apply our results to apply our results to apply our results to apply our

- electrons density power spectra through their base ingredient: early state electron power spectrum of Fig. 2, showing *Pee*(*k*,*z*) for the first of our six simulations. shu the NSZ <u>power spectra</u> through their base ingredier
...tww. \mathcal{L} be the sum of homogeneous and patchy ks \mathcal{L} a, showing *Peer and the ksz nower* spectra through their hase ingredient: Therefore, we choose in this work to use the use a direct parametering when $\frac{1}{2}$ tion of the scale and redshift evolution of *Pee*(*k*,*z*) during reion-<u>er spectra</u> through their c
- \sim 1000 μ Look at the evolution of P_{ee}(k,z) in high resolution hydrodynamical simulations tion of the scale and redshift evolution of *Pee*(*k*,*z*) during reion-Tor r_{ee}(K,Z) in high resolution hydrodynamical simul \sim 1 ook at the evolution of P $\left(k, \frac{1}{2}\right)$ in high resolution hydrodynamical simulations and \overline{a} , are defined as i fiigh resolution hydrodynamical simulations

cient for this work since σ this work since σ this work since σ

to modes 10³ < *k*/Mpc¹ < 1 where *Pee* follows the matter

spectrum, we will need a better model as the observed signal as the observed signal as the observed signal α

required. In the future, if we want to apply our results to apply our results to apply our results to con-

is a biased matter it on our simulation of the evolution of $P_{ee}(k, z)$ $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1$ Depends on cosmology and a few reionisation paramete 1/5 1 + [*k*/]3 *xe*(*z*) $\frac{1}{2}$ fluctuations of $\frac{1}{2}$ (kg) Depends on cosmology and a few reionisation parameters (z_{re}, z_{end,}, α₀, κ)...

$$
P_{ee}(k, z) = [f_{\rm H} - x_e(z)] \times \frac{\alpha_0 x_e(z)^{-1/5}}{1 + [k/\kappa]^3 x_e(z)} + x_e(z) \times b_{\delta e}(k, z)^2 P_{\delta \delta}(k, z)
$$

High-redshift
(power-law)
George+2020
Shaw+2012

. (13) The contract of the contract of the

related to the typical bubble size, in the bias between the H i and

early stages of reionisation as can be seen on the right panel

lines on the figure corresponds to *k* = 91/⁴/*R* (dashed vertical

This behaviour is close to what we observe in the free

In log-space, on large scales, *Pee* has a constant amplitude which, as mentioned above, depends on the filling fraction and therefore reaches its maximum ↵⁰ at the start of the reionisation

Pee(*k*,*z*) ⁼ ↵⁰ *xe*(*z*)

⁵ The bubble radii actually follow a Gaussian distribution centred on

Article number, page 4 of 14

15 px with standard deviation 2 px.

^V ² ⁼ ¹ Combining kSZ / 21cm PS *N* r I *^x*loc(*k*)*x*loc(*^k* ⁺ *ⁱs*) *^x*¯²

k=1 o Relate the 21cm and the kSZ power spectra through their base ingredient: *^x*loc(*k*)*x*loc(*^k* ⁺ *ⁱs*) *^x*¯² the electron power spectrum

kSZ

$$
C_{\ell}^{\text{kSZ}} \propto \int \frac{dz}{H(z)} \bar{n}_e(z)^2 k^3 v_{\text{rms}}^2(z) e^{-\tau(z)} d_c(z) \times P_{ee}(k, z)
$$

$$
\frac{P_{21}(k, z)}{T_0(z)^2} = x_e(z) \left\{ P_{ee}(k, z) + [1 - 2x_e(z)] P_{bb}(k, z) \right\}
$$

k=1

21cm PS

*C*kSZ ` / *H*(*z*) o Use the analytical model of P_{ee} to generate both observable for a given set of *n*¯*e*(*z*) ²*k*3*v*² rms(*z*)e⌧(*z*) reionisation parameters in a forecast → constrain reionisation *dc*(*z*) ⇥ *Pee*(*k, z*) (10)

 $\overline{}$

Combining kSZ / 21cm PS

o With only three data points, one can recover the reionisation mid- and endpoint with very good accuracy

 $\frac{3.5 \text{ mpc}}{2.5}$ $\mathcal{S}_{\mathcal{A}}$ 21cm: 1000hrs of observation with SKA, 2 data points at $k = 0.5$ hMpc⁻¹ & $z = 6.5$, 7.8. pkSZ: 1 data point at l=3000 with 10% error bar.

prep Georgiev, Gorce & Mellema in prepMellema in ಹ Gorce Georgiev,

Combining kSZ 71cm PS 6*.*08 *<u>__</u>*
• $\overline{\mathsf{c}}$

o With only three data points, one can recover the reionisation mid- and endpoint with very good accuracy

SKA 1000 h 3k2z

- 21cm: 1000hrs of **observation with SKA, 2 data points at k = 0.5** *hM* nc⁻¹ & z = 6.5, 7.8. point 10% error bar. pkSZ: 1 da
- o With one extra 2 Lcm data point at a different scale, we also constrain the with one extra z_{reionisation} **22.25 Property Countries**
22.25 Countries Extra data point at k=0.5Mpc-1 and z=6.5 $\overline{\mathbf{A}}$

 $\frac{1}{2}$ wo 21cm data poin hree 21cm data points

3*.*00

 $\log \alpha_0$

3*.*25 0*.*8

3*.*50 1*.*6

d*z* = *z*re ° *z*end

0*.*15 0*.*18 0*.*21 0*.*24 ∑

2*.*50

0*.*12

6*.*24

2*.*50 0*.*12

2*.*75 0*.*20

We can also make an independent measurement of the Thomson optical depth!

> 0*.*18 0*.*05 0*.*21 0*.*24 [∑] ⁰*.*⁰⁶⁰⁰ 0*.*06 0*.*07 0*.*08 τ

> > $\tau = 0.065 +/- 0.001$

0*.*0650

6*.*16

4*.*5

*z*end

0*.*0650

Georgiew, Gorce & Mellema in pres

orce

Mell ∞

ø

0*.*0625

To understand reionisation, using all the available data is necessary to overcome systematics and uncertainties.

- o These works demonstrated the potential of jointly fitting data sets
- o Strong constraints possible even with early 21cm data!
- A lot of exciting results to expect with forthcoming 21cm and kSZ data!

