

Status of the NIKA2 Sunyaev-Zeldovich Large Program Preparation of the upcoming public data release

Corentin Hanser On behalf of the NIKA2 collaboration

CMB France 2023

PhD supervisor: Laurence Perotto

1. Introduction 2. Cluster sample map-making 3. From maps to clusters thermodynamical properties 4. Mean pressure profile estimates on simulations

Cosmology with the SZ effect

Cluster number count

SZ power spectrum

C. Hanser

Angular power spectrum of the SZ-map

Cluster abundance in intervals of mass and redshift depends on cosmological parameters

Compton parameter map Planck Collaboration XXII 2015

Current mean pressure profile estimates don't cover the whole mass and/or redshift and/or angular scale range

 $C_l^{tSZ} \sim \int dz \int dM \frac{d^2V}{dz d\Omega} \frac{dn}{dM} \frac{|y_l(M,z)|^2}{|y_l(M,z)|^2}$ Volume : background cosmology Halo mass function \rightarrow Highly sensitive to cosmology Holder et al., 2001 Model cluster SZ signal Mean pressure profile

The NIKA2 Sunyaev-Zeldovich Large Program (LPSZ)

IRAM 30m telescope and operating since 2017

C. Hanser

The NIKA2 camera : Millimeter camera of 2900 Kinetic Inductance Detectors (KIDs) installed at the

Observing band	150 GHz	260 GHz
FWHM [arcsec]	17.6 ± 0.1	11.1 ± 0.2
Field of view [arcmin]	6.5	6.5

Perotto et al. 2020

The NIKA2 Sunyaev-Zeldovich Large Program (LPSZ)

IRAM 30m telescope and operating since 2017

High angular resolution follow-up of 38 Planck and ACT galaxy clusters Mayet et al. 2020 Perotto et al. 2021 \rightarrow 300 hours of guaranteed observation time

 \rightarrow Precise estimation of pressure and mass profiles

C. Hanser

The NIKA2 camera : Millimeter camera of 2900 Kinetic Inductance Detectors (KIDs) installed at the

Observing band	1
FWHM [arcsec]	17
Field of view [arcmin]	

- → Synergy between NIKA2 and XMM-Newton

relation with clusters at intermediate to high redshifts 0.5 < z < 0.9

50 GHz 7.6 ± 0.1

6.5

6.5

260 GHz

 11.1 ± 0.2

Precise characterization with NIKA2 high angular resolution of the mean pressure profile and SZ-M scaling

Perotto et al. 2020

NIKA2 raw data

Time Ordered Information : raw data from the detectors (TOI)

NIKA2 scan strategy

We estimate and subtract the correlated noise terms $A(t) + E_{B_{\nu}}(t)$ in a process called 'noise decorrelation'

Hanser

$TOI_k(t) = S_k(t) + A(t) + E_{B_k}(t) + WN_k(t)$

At a fixed time t the detectors see :

- -Same atmosphere A(t)
- -Intrinsic noise $WN_k(t)$

Noise terms

-Different astrophysic signal $S_k(t)$ -Correlated electronic noise $E_{B_k}(t)$

Noise decorrelation method

Baseline decorrelation method:

C. Hanser

1. Mask the cluster signal in the TOIs (disk of radius r around the cluster center)

2. Compute the median of the TOIs outside the mask at each time t

3. Subtract the common mode from the TOIs and project them on a map

The residual correlated noise is one of the main systematic effects affecting NIKA2 maps → Decorrelation failure inside the mask: too large mask and complex noise

Nethod

New method of data quality assessment

Objective: Blind identification of problematics in individual scans (~3800 scans) \rightarrow We identified a list of uncorrelated criteria to define data quality: • Kid to kid correlation matrix : mean of the residual correlation • Low frequency noise at large scales f_{knee}^{α} • White noise at every scales *B* Integrated signal on the scan's map \rightarrow Each scan gets a score per criterion: $score_s = \frac{c_s - med(c)}{c_s}$ $\sigma(c)$ \rightarrow We rank scans in function of their score: max{score_s}_{crits}

Iwo parameters:

- 2. Threshold for scan selection $\sigma_{threshold}$

→ Spherical hypothesis: compare radial profiles

1. Mask radius as a function of θ_{500} (~2-3 arcmin) from Planck/ ACT catalogs

Scan number

'18

Parameters optimization

Mask radius as a function of θ_{500} : $\alpha \in [0.45, 0.55, 0.65]$

C. Hanser

Flux density radial profiles

Compatible results between all analyses after scan selection until a certain value of the mask Less residual noise in the map (especially at cluster's scales)

We did the same analysis for all clusters, varying different parameters and looking at the convergence of the profiles: \rightarrow Mask size: 0.55 * $\theta_{500}^{Planck/ACT}$; Max mask size: 75"; $\sigma_{threshold} = 3.75$

Two different thresholds: no selection VS $\sigma_{threshold} = 3.75$

8 / 18

k [arcmin⁻¹]

Impact on the whole sample

Look at the improvements with mask size optimisation and scan selection

 \rightarrow Less noise at all scales \rightarrow No more artefacts in the maps

Hanser

NIKA2-LPSZ sample

NIKA2 150 GHz maps with signal-to-noise ratio contours starting from 3σ spaced with 1σ

→ Final version of the NIKA2-LPSZ maps

Hanser

10/18

Preliminary

Individual pressure profile estimate

SZ signal

Spherical symmetry : 3D pressure profile

->5 parameters : P_0 , r_p , a, b, c

-> 6 parameters : $P_0, P_1, P_2, P_3, P_4, P_5$

Points sources

Flux : free parameter in the MCMC

Hanser

NIKA2 150 GHz map = SZ signal + point sources + correlated noise LPSZ version of the PANCO2 public software

Individual pressure profile estimate

SZ signal

Spherical symmetry : 3D pressure profile

gNFW model : Nagai et al. 2007

 $-> 5 \text{ parameters} : P_0, r_p, a, b, c$

Binned model:

-> 6 parameters : $P_0, P_1, P_2, P_3, P_4, P_5$

Points sources

Flux : free parameter in the MCMC

Likelihood :

NIKA2 150 GHz map = SZ signal + point sources + correlated noise LPSZ version of the PANCO2 public software

Forward modelling Integrate along the line of sight : $D_{th} \propto \int_{I_{of}} P_e(r) dr$

Convolved by the NIKA2 instrumental response

Results obtained on a simulation NIKA2 instrumental response)

C. Hanser

\rightarrow Realistic LPSZ cluster sample simulation drawn from a spherical gNFW model (correlated noise +

Thermodynamical properties

Results obtained on a simulation NIKA2 instrumental response)

C. Hanser

\rightarrow Realistic LPSZ cluster sample simulation drawn from a spherical gNFW model (correlated noise +

 $M_{HSE}(< r) \propto \frac{r^2}{n_e(r)} \frac{dP_e(r)}{dr}$

Thermodynamical properties

Results obtained on a simulation NIKA2 instrumental response)

C. Hanser

→ Realistic LPSZ cluster sample simulation drawn from a spherical gNFW model (correlated noise +

$$\frac{4}{3}\pi R_{500}^3$$

Self similar approach

C. Hanser

Standard self-similar model (based on gravitation, Kaiser et al. 1986) : • Galaxy clusters are scaled versions of one another

• We can get normalized thermodynamical quantities \rightarrow rescaled pressure profile p

 $P(r) = P_{500} p(\frac{r}{R_{500}}), P_{500} \propto M_{500}^{2/3}$

Self similar approach

Hanser

Standard self-similar model (based on gravitation, Kaiser et al. 1986) : • Galaxy clusters are scaled versions of one another

 $P(r) = P_{500} p(\frac{r}{R_{500}}), P_{500} \propto M_{500}^{2/3}$

Compute the mean pressure profile using the re-scaled individual profiles

• We can get normalized thermodynamical quantities \rightarrow rescaled pressure profile p

Mean pressure profile estimates

- $\mathscr{L}_k(d_k \mid \vec{\theta'})$ of the individual fit of each cluster d_k

$$\ln \mathscr{L} = \sum_{k} \ln \mathscr{L}_{k} \quad \text{with } \mathscr{L}_{k}(d_{k} | \overrightarrow{\theta}_{\text{MPP}})$$
$$\overrightarrow{\theta} = \{p_{0}, c_{500}, \alpha, \beta, \gamma\} = \{P_{0} / P_{500}, R_{500} / n_{10}\}$$
thod accounts for the errors on R_{500}, P_{500} for each

The met

Problematic : we don't know for any arbitrary set of parameters θ the exact value of $\mathscr{L}_k(d_k \mid \theta')$ \rightarrow Very difficult to extrapolate

J. Hanser

• Basic approach: Take the median of the re-scaled profiles • Novel approach: Compute the best-fitting model θ for the mean profile using the likelihood distribution

 $(x) = \int d\vec{\theta}' \mathscr{L}_{k}(d_{k} | \vec{\theta}') \mathscr{N}(\vec{\theta}' | \vec{\theta}_{MPP}, \Sigma_{int})$

 $r_p, \alpha, \beta, \gamma\}$

ach cluster

Intrinsic scatter

Novel method

Results

True likelihood (from data) MG approx

C. Hanser

Novel method

The input mean pressure profile parameters are recovered within 2σ Small bias along the known $p_0 - \gamma$ degeneracy (Nagai et al. 2007)

Hanser

Intrinsic scatter

Simulations : no intrinsic scatter in input

C. Hanser

Intrinsic scatter

• LPSZ sample: Non-zero scatter may impact the MPP parameters

compatible with 0 at the 1σ level

• Simplified case : All intrinsic scatters are

C. Hanser

The proposed method efficiently recovers the input profile within 1σ

Mean pressure profile

Results obtained with the 2 gNFW methods on simulations (no intrinsic dispersion)

'/18

Conclusion

First standard analysis on the NIKA2 LPSZ sample Observations completed in January 2023

First complete characterization of the whole sample:

- sample

Mean pressure profile estimate

• New method that use all individual information and propagate errors from integrated quantities → Validation using LPSZ realistic simulations

Perspectives

- Preparation of the upcoming public data release

• Mapmaking: new tool for optimizing the decorrelation mask and flagging the outlier scans \rightarrow Final cluster maps (to be part of the upcoming public data release) • Standard pipeline to compute pressure and mass profiles validated on a realistic simulation of the LPSZ

→ First publication of the LPSZ mean pressure profile

• Study the implication on cosmology using Planck data

C. Hanser

Back-ups

Noise decorrelation method

Baseline decorrelation method: Most Correlated KIDs (a.k.a Common Mode One Block)

But the residual correlated noise is one of the main systematic effects affecting NIKA2 maps Trade-off between the filtering of the signal and the number of KIDs outside the mask to compute the CM

Hanser

1. Compute the kid-to-kid correlation matrix and get blocks of most correlated kids

2. Mask the cluster (=mask each TOI) in each scan to prevent the signal from being removed -> Disk of radius r centered at the cluster's pointing center

3. For each block compute a common mode (CM = median of the TOIs)

4. Subtract the common mode from the TOIs and project them on a map

Mask size optimisation

Two parameters:

Hanser

1. Mask radius as a function of θ_{500} (~2-3 arcmin) from Planck/ ACT catalogs 2. Threshold for scan selection $\sigma_{threshold}$

Our scientific goal: cluster pressure profiles computed with panco2 (F. Kéruzoré et al. 2023)

38 clusters

Inputs in panco2: Processed data map + Transfer function (TF) • Compare a combination of these 2 quantities: deconvolved data map • Sphericity hypothesis: compare radial profiles

Flux density profiles for 3 different analyses with panco2

- Many analyses to do:1 analysis with panco2 = several hours

/18

We can compare directly the flux density profiles

Identification of outlier scans

-> We suggest a list of criteria to define data quality

Hanser

Objective: Blind identification of problematics in individual scans

Kid to kid correlation matrix : mean of the residual correlation Low frequency noise at large scales f_{knee}^{α} White noise at every scales *B*

Integrated signal over a sphere of radius R = 30'' on the scan's map NEFD : Noise equivalent flux density

Scan number

Low frequency noise

Method : compute the noise power spectrum of each TOI after decorrelation Model : Low frequency + White noise

$$P(f) = B^2 \left(1 + \frac{f_i}{f_i} \right)$$

3 parameters : B, f_{knee}, α

Fit : iMinuit library

- f^{α}_{knee} Low-frequency noise at large scales Criteria: White noise at every scales - *B*

-> We bin the power spectrum : $P_{data}(f_i) = med(P_{data}(f)_{bin_i})$ $\sigma_{P_i} = mad(P_{data}(f)_{bin_i})$

Power spectrum of one TOI from one KID (blue) and associated fit (yellow)

Methodology

Method : Select independent data quality criteria Compute a score for each criterion *c* per scan *s*Find a threshold to discriminate outliers

C. Hanser

We verified that 4 out of the 5 criteria are uncorrelated

Scan ranks

Example of PSZ2G111: worst scans (left) and best scans (right)

X-axis: $\sigma_{threshold}$ Y-axis: Number of scans removed

We want to remove the outliers only \rightarrow Optimise the mask and the threshold

Hanser

Ranking the scans as a function of the score: Considering the highest score over the criteria per scan $max{score_s}_{crits}$

			ACTION22
			ACTJ0215
			ACTJ0223
			ACTJ0240
			- AC1J2302
			PLCKG079
			PLCKG227
			PSZ1G080
			PSZ1G226
			PSZ2G045
			PSZ2G046
			PSZ2G080
			— PSZ2G081
			PSZ2G084
			— PSZ2G085
			PSZ2G086
			— PSZ2G087
			PSZ2G091
			— PSZ2G094
			PSZ2G099
			— PSZ2G104
			— PSZ2G108
			PSZ2G111
			— PSZ2G126
			— PSZ2G133
			PSZ2G141
			PSZ2G144
			— PSZ2G155
			— PSZ2G160
			— PSZ2G183
			PSZ2G193
			PSZ2G201
			PSZ2G211
			— PSZ2G212
			PSZ2G228
4.25	4.50	4.75	5.00

Improvements on the whole sample

Mean excess variance under the mask

 \rightarrow Make a histogram of the pixels under the mask \rightarrow Make a histogram of the same volume of pixels outside the mask \rightarrow Compute the ratio of the scatters: σ_{in}/σ_{out}

Hanser

Pressure profiles of the NIKA2-LPSZ sub-sample

We have designed a first standard analysis pipeline

 \rightarrow On-going studies on the systematics affecting the profiles reconstruction (point sources, model, ...)

Preliminary study on 20 clusters

• gNFW fit on data

First measurement of the pressure profiles on a NIKA2-LPSZ sub sample

Hanser

Mean pressure profile estimates

- $\mathscr{L}_k(d_k \mid \vec{\theta'})$ of the individual fit of each cluster d_k

$$\ln \mathscr{L} = \sum_{k} \ln \mathscr{L}_{k} \quad \text{with } \mathscr{L}_{k}(d_{k} | \overrightarrow{\theta}_{\text{MPP}})$$
$$\overrightarrow{\theta} = \{p_{0}, c_{500}, \alpha, \beta, \gamma\} = \{P_{0} / P_{500}, R_{500} / P_{500} / P_{500}, R_{500} / P_{500} / P_$$

 $\rightarrow \text{We get } \mathscr{L}_k(d_k \mid \overrightarrow{\theta'})$

C. Hanser

• Basic approach: Take the median of the re-scaled profiles • Novel approach: Compute the best-fitting model θ for the mean profile using the likelihood distribution

The method account for the errors on R_{500} , P_{500} for each cluster \rightarrow We compute $R_{500}^{j} P_{500}^{j}$ for each set of parameters $\{P_0, r_p, \alpha, \beta, \gamma\}^{j}$ in the MCMC chains \rightarrow We compute the corresponding re-scaled parameters

 $P_{P} = \int d\vec{\theta}' \mathscr{L}_{k}(d_{k} | \vec{\theta}') \mathscr{N}(\vec{\theta}' | \vec{\theta}_{MPP}, \Sigma_{int})$ $r_{p}, \alpha, \beta, \gamma\}$

Intrinsic scatter

Corner plot mean pressure profile : gamma fixed

Euclid School 2023

Intrinsic scatter

Simulations : intrinsic scatter on p_0 only

ofile Ō Φ S \mathcal{O} (\mathbf{D}) \mathbf{O} С Ф Σ

S

Ф

 \mathbb{O}

 \mathcal{O}

 \mathcal{O}

C. Hanser

Intrinsic scatter

We recover the intrinsic scatter for p_0

