

Characterising galaxy clusters' completeness in Planck with hydrodynamical simulations

Stefano Gallo, Marian Douspis, Elie Soubrié, Laura Salvati

CMB-France, 05/12/2023

https://arxiv.org/abs/2309.11544

We can use CMB surveys (e.g. *Planck satellite*) to detect galaxy clusters

Cosmology with Galaxy Clusters

Different ingredients are needed to compare the observed counts with the theory:

- Galaxy clusters number counts \rightarrow depend on cosmological parameters: $\Omega_m, \sigma_8, \dots$

Selection Function

One of the main ingredients in cosmological analyses:

(1 - probability of false detection)

Survey and detection strategy

Selection function

Observed population

Selection Function

One of the main ingredients in cosmological analyses:

Selection Function

One of the main ingredients in cosmological analyses:

(1 - probability of false detection)

Incorrect characterisation

Possible biases in cosmological parameters

Completeness

be estimated as:

$$P\left(d \mid Y_{5R500}, \sigma\left(\theta_{500}\right), q\right) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{Y_{5R500} - q \sigma\left(\theta_{500}\right)}{\sqrt{2}\sigma\left(\theta_{500}\right)}\right)\right]$$

and check how many are recovered by the detection algorithm

• If one assumes Gaussian errors on the Compton-y signal, the completeness can

PlanckXX(2013), PlanckXXIV(2015)

Another approach: inject simulated cluster signals in the Planck frequency maps,

Completeness

be estimated as:

$$P\left(d \mid Y_{5R500}, \sigma\left(\theta_{500}\right), q\right) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{Y_{5R500} - q \sigma\left(\theta_{500}\right)}{\sqrt{2}\sigma\left(\theta_{500}\right)}\right)\right]$$

and check how many are recovered by the detection algorithm

• If one assumes Gaussian errors on the Compton-y signal, the completeness can

PlanckXX(2013), PlanckXXIV(2015)

Another approach: inject simulated cluster signals in the Planck frequency maps,

Injected Cluster Images

 Y_{500}/R_{500}^2)

Simulation images

- IllustrisTNG-300 hydrodynamical simulation
- $M_{500} \gtrsim 1 2 \times 10^{14} M_{\odot}$
- 0.05 < z < 0.3
- 6 projections per cluster → almost 9000 images

Spherical images

- Integrated gNFW profile (Arnaud+2010)
- Same $(Y_{5R500}, \theta_{500})$ distribution as simulation

Completeness of spherical images ~ analytical ERF estimation

BUT

Simulation images show higher completeness than spherical ones

If we use a set of images with **higher concentration**, we get a completeness similar to the one of the **simulation images**

Testing the impact of two completeness cases on cosmological constraints

Shift in (Ω_m, σ_8) space:

Higher completeness → Lower values

Lower completeness —> Higher values

Conclusions

- These results suggest that the completeness depends on different cluster **parameters** beyond those of the ERF estimate.
- In particular, we see how a steeper cluster profile leads to an increased probability of detection, while a **flatter** profile reduces it.
- Furthermore, we tested the impact of **cluster morphology** on the completeness, finding that more elliptical objects are slightly more difficult to detect.
- Changing the completeness in the cosmological analysis moves the constraints on (Ω_m, σ_8) along the same direction of the mass scaling relations.

Need for more precise determination of clusters' profiles

Backup

Cluster images

Simulation

gNFW

Planck XXVII 2015

R/*R*₅₀₀

