

Cosmic Microwave Background Spectral Distortions Measurement Prospects

Xavier COULON

Supervisors: B. Maffei & N. Aghanim 04/12/2023

A (very) short history of our Universe

logv

Xavier COULON

μ-distortion (chemical potential)

Towards CMB spectral distortion measurement

Xavier COULON

CMB - France

04/12/2023

Towards CMB spectral distortion measurement

Xavier COULON

CMB - France

04/12/2023

Sky model: CMB spectral distortions

Sky model: spatially varying galactic foregrounds

Improve the sky model by taking into account the spatial dependence of galactic foregrounds :

Xavier COULON

CMB - France

Xavier COULON

CMB - France

Towards CMB spectral distortion measurement

Xavier COULON

CMB - France

Instrument model: concept

Calibrator = blackbody at 2.7K (reference for differential measurement)

Instrument model: photometric model

Calibrator = blackbody at 2.7K (reference for differential measurement)

: photometric model based on key instrument parameters + missions parameters (duration, scanning strategy, etc.)

PIXIE original concept (A. Kogut et al. 2011)

Split Polarizations

CMB - France

Xavier COULON

CMB - France

04/12/2023

Optimization of the instrument concept

Application case : FOSSIL

What can be done from space ?

 \rightarrow space mission proposal to answer ESA M7-call in 2022 https://www.ias.u-psud.fr/en/content/fossil

Space mission:

- full sky survey
- cryogenic mission

FOSSIL observation count map

FTS fOr CMB Spectral diStortIon expLoration (FOSSIL)

Xavier COULON

23

Xavier COULON

CMB - France

Application case : BISOU

What can be done from a balloon ? \rightarrow end of a successful CNES phase 0 study

Balloon Interferometer for **S**pectral **O**bservation of the Universe (BISOU)

Balloon constraint:

- Mass and size limit
- Limited observation time
- Line of sight
- Additional components
- Cryogenic chain
- Residual atmosphere

04/12/2023

Xavier COULON

CMB - France

Application case : BISOU

Main science objective:

- CMB mean temperature, T_{CMB}
- y-distortion monopole, y
- amplitude of CIB monopole

Evolution and trade-offs:

- 250-270K
- whole instrument cold
- thin window (low emissivity)
- one telescope
- raster scan
- need to split detection in 2 sub-bands
- could include more detectors

Forecasts assumptions:

- $v_{min} = 90 \text{ GHz}, v_{max} = 2000 \text{ GHz}$
- $\Delta v = 15 \text{GHz}$
- filters with 0.1% emissivity
- 5 days flight, 75% obs efficiency
- only 1 detector
- no atmosphere taken into account

Application case : BISOU vs FOSSIL

Main science objective:

- CMB mean temperature, T_{CMB}
- y-distortion monopole, y
- amplitude of CIB monopole
- μ -distortion monopole, μ

CMB - France

Application case : Forecasts

Targeting the first measurement of CMB spectral distortions

→ upper limits by COBE/FIRAS $\begin{vmatrix} y \\ y \end{vmatrix} < 15 \times 10^{-6}$ $\begin{vmatrix} \mu \\ \mu \end{vmatrix} < 47 \times 10^{-6}$

 $|\mu| < 4 / \times 10^{\circ}$ Fixsen et al., 2009, Bianchini et al., 2022

		У	μ	
BISOU	(SNR in σ)	5.6		2.8
FOSSIL	(SNR in σ)	186	1	76

only 1 detector

- \rightarrow improvement over COBE/FIRAS
 - \times 20 in balloon configuration
 - \times *few* 100 in space configuration

Conclusions and take away

only 1 detector

- CMB spectral distortions are powerful probes to access the full thermal Universe history
 - \rightarrow information beyond the last scattering surface
- ➤ Future large space mission in 2045-2055 (Voyage 2050)
 → need a pathfinder (hopefully BISOU in 2029)
 → efforts in foreground and instrument systematics

Annexes

Xavier COULON

Instrument model: Photometric model

Build photometric model of key elements of the instrument:

 \rightarrow simplified model with only relevant optical component in the optical path

• primary mirror

- window (only in balloon configuration)
- filters (numbers and temperature change according to configurations)
- dichroic (allow to split detection in 2 sub-bands)
- detectors

Mission context

COBE/FIRAS measures CMB intensity spectrum:

• sets the only existing limits on spectral distortions in 1992

CNES SPS (2019) / ESA Voyage 2050 (2021) / Astronet (2021)

Large mission horizon 2040-2050

Projects:

- **PIXIE** (2016): NASA led MIDEx (A. Kogut)
- **PRISTINE** (2018): answer to ESA F1 call (N. Aghanim)
- FOSSIL (2022): answer to ESA M7-call (N. Aghanim & B. Maffei)
- **BISOU** (2020 ...): CNES phase 0 (B.Maffei)
- **COSMO** (???): ground experiment at Dome C (Antarctic)
- TMS (???): ground experiment at Teide Observatory (Tenerife)

Instrument model: Photometric model

Example of instrument concept optimization

Grid exploration considering: actively cooled window / varying the maximum frequency

SNR of \boldsymbol{y} parameter as a function of the window temperature and maximum frequency

Example of instrument concept optimization

Identifying main parameters of interest:

Evolution according the maximal frequency of the instrument of:

- sensitivity (at 300GHz)
- NEP (at 300GHz)
- FWHM (at 300GHz)
- SNR on *y* parameters
- \rightarrow adjusting instrument parameters

Application case : BISOU

Application case : FOSSIL

What can be done from a space ?

Instrument development

Annexes

Rayonnement continue de freinage ou Bremsstrahlung

Rayonnement électromagnétique créer par la décélération d'une particule chargée par une autre particule chargée.

sources : ICM, région HII

Rayonnement synchrotron

Rayonnement électromagnétique émis par une particule chargée se déplaçant dans un champs magnétique et dont la trajectoire est déviée par ce champ

sources : Champs magnétique de la Galaxie, ...

e

Scanning strategy

Raster strategy : \succ

Preliminary scheme

SKY

Evolution and trade-offs :

- 250-270K
- whole instrement cold
- thin window (low emissivity)
- one telescope (unbalance optics, effect ?)
- raster scan
- need to split detection in 2 sub-bands
- could include more detectors

Dewar enveloppe

Instrument development: 3D model

IDM-CIC :

- sub-system management
- mass and power budget
- simplified 3D
- parametric model

ystem management			import data	import data			
V Svst	em properties						
olect name							
rsion							
omment							
Syst	em structure						
			ti Elemer	ti Elemente			
			Lieniei				
. Outro					-		
Subs	stems	Nama			0.4750044		
Acrony ETC	Submitteen ETS	manne	- AND INCOMENCE	AND A CONTROL OF A	- CALIFORN		
10	Subsettern TELESCOPE						
OPTIC	Subsection OPTICS						
CAL	Substatem CALERATOR	Subautem CALERATOR					
FPU	Subsystem FFU	Subsystem FPU					
CRYC	Subsystem CRYOGENIC	Subsystem CR1/DGENIC					
THER	M Subaptern THERMONET	Subaption THERMOMETRY					
POVE	R Subsystem POVER	Subsystem POVER					
ELEC	Subsystem ELECTROMIC	Subsystem ELECTRONICS & OCDH					
ELEV	Subspitem ELEVATION						
Lave	rs						
Acrony	ym Name	Description	Selected by default				
IIII. DEF	Default Def	sult lager	Yes				
Addi	tional properties	definitions					
1	Objections	Malua Aura	Harris	Data	Deer	animation of	
Ney	object type	value type	Martie	Note	Desi	anpuon	
Cate	gories						
Acrom	m Name	Description	Parent	Abstract +			
•					ID N	ame	

Future work

Short term :

- develop code giving accessible sky given time and position for balloon missions
- optimize the observing strategy BISOU end of phase 0 / phase A proposal \rightarrow specifications needed for CNES balloon division
- switch from Fisher to MCMC forecast

Longer term :

- participation R&T window (BISOU)
 - \rightarrow test definition and development / measurement and analysis
- simulate interferogram data from sky and instrument models
 - \rightarrow forecast instrument performance from mock data
 - \rightarrow development of data analysis method base on simulation
- analysis of systematic effects
 - → study case BISOU : constraint on pointing accuracy and stability and scanning speed
 - \rightarrow Study beam shape effect
- develop user interface for the sky and instrument simulation code

Mission context

COBE/FIRAS measures CMB intensity spectrum:

• sets the only existing limits on spectral distortions in 1992

CNES SPS (2019) / ESA Voyage 2050 (2021) / Astronet (2021)

Large ESA mission horizon 2040-2050

Projects:

- **PIXIE** (2016): NASA led MIDEx (A. Kogut)
- **PRISTINE** (2018): answer to ESA F1 call (N. Aghanim)
- FOSSIL (2022): answer to ESA M7-call (N. Aghanim & B. Maffei)
- BISOU (2020 ...): CNES phase 0 (B.Maffei)
- **COSMO** : ground experiment at Dome C (Antarctic)
- TMS : ground experiment at Teide Observatory (Tenerife)

Foreground modeling

Foregrounds:

Galactic

- Thermal dust
- Synchrotron
- Free-free
- Anomalous Microwave Emission
- Zodiacal emissions

Extragalactic

- Cosmic Infrared Background (CIB)
- Cumulative CO

$$\Delta I_D(\nu) = A_D x^{\beta_D} \frac{x^3}{(e^x - 1)},$$

$$\Delta I_{CIB}(\nu) = A_{CIB} x^{\beta_{CIB}} \frac{x^3}{(e^x - 1)}.$$

$$\Delta I_S(\nu) = A_S \left(\frac{\nu}{\nu_0}\right)^{\alpha_S} \left[1 + \frac{1}{2}\omega_S \ln^2\left(\frac{\nu}{\nu_0}\right)\right],$$

$$\nu_{ff} = \nu_{FF} (T_e/10^3 K)^{\frac{3}{2}}$$
$$\Delta I_{FF}(\nu) = A_{FF} \left(1 + \ln \left[1 + \left(\frac{\nu_{ff}}{\nu} \right)^{\frac{\sqrt{3}}{\pi}} \right] \right),$$

$$\Delta I_{ZT}(\nu) = \epsilon(\nu) \frac{2h\nu^3}{\left(e^{\frac{h\nu}{kT_{ZT}}} - 1\right)}, \quad \epsilon(\nu) = \epsilon_{ZT} \times \begin{cases} 1, & \text{if } \nu > 2\text{THz} \\ \left(\frac{\nu}{\nu_0}\right)^2 & \text{if } \nu < 2\text{THz} \end{cases}, \\ \nu_0 = 2\text{THz} \quad \Delta I_{ZS}(\nu) = \epsilon_{ZS} \frac{2h\nu^3}{\left(e^{\frac{h\nu}{kT_{ZS}}} - 1\right)}. \end{cases}$$

CMB spectral distortions

- Blackbody component : $\Delta I_v/I_v \sim 10^{-5}$
- y-distortion (thermal SZ) : $\Delta I_v^y/I_v \sim 10^{-6}$
- μ -distortion (chemical potential) : $\Delta I_p^{\mu}/I_p \sim 10^{-8}$

$$\Delta I_{\nu} = \Delta B_{\nu} + \Delta I_{\nu}^{y} + \Delta I_{\nu}^{rel-tSZ} + \Delta I_{\nu}^{\mu} + \Delta I_{\nu}^{fg}$$

$$\Delta B_{\nu} = I_0 \frac{x^4 e^x}{(e^x - 1)^2} \Delta_T,$$

$$\Delta I_{\nu}^{y} = I_0 \frac{x^4 e^x}{(e^x - 1)^2} \left[x \coth\left(\frac{x}{2}\right) - 4 \right] y,$$

$$\Delta I_{\nu}^{y} = I_{0} \frac{x^{4} e^{x}}{(e^{x} - 1)^{2}} \left[\frac{1}{\beta} - \frac{1}{x} \right] \mu,$$

$$\Delta I_{\nu}^{rel-tSZ} = I_0 \frac{x^4 e^x}{(e^x - 1)^2} \left[Y_1(x)\theta_e + Y_2(x)\theta_e^2 + Y_3(x)\theta_e^3 + \left[Y_2(x)\theta_e^2 + 3Y_3(x)\theta_e^3 \right] \omega_2^{eSZ} \right] y,$$