Road to first light An overview of Simons Observatory in 2024

Benjamin Beringue - APC

Colloque national CMB-France#5 : Dec 4/5 2023

funded by Simons Foundation and Heising-**Simons Foundation**

> 300 collaborators

Simons Observatory telescopes

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes30.000 TES detectors
- -6 frequency bands [27, 39, 93, 145, 225, 280] GHz
- -Focusing on large scale polarisation modes (Bmodes)

SO Large Aperture Telescope (LAT)

- -6m cross-Dragone telescope
- -30.000 TES detectors
- -6 frequency bands [27, 39, 93, 145, 225, 280] GHz
- Observing small scale anisotropies over a large fraction of the sky

Simons Observatory site

Chajnantor plateau (~5200m above sea level)

Benjamin Beringue, CMB-France#5, 04/12/23

Done shot by Deborah Kellner

PolarBear / Simons Array

Benjamin Beringue, CMB-France#5, 04/12/23

CLASS

PolarBear / Simons Array

Benjamin Beringue, CMB-France#5, 04/12/23

CLASS

SIMONS Observatory

NÓMICO

Done shot by Deborah Kellner

10⁻³² seconds

1 second

100 seconds

380 000 years

Inflation

CMB photons decoupling

Radiation dominated expansion

Benjamin Beringue, CMB-France#5, 04/12/23

300-500 million years

Billions of years

13.8 billion years

Structure formation and galaxy evolution

Dark Ages

10⁻³² seconds

1 second

100 seconds

380 000 years

Inflation

CMB photons decoupling

– Imprints of ΛCDM

Radiation dominated expansion

Large scale B-modes

Primordial power

spectrum (via TT, TE, EE)

Primordial bispectrum

–
$$Y_p$$
 and $N_{\rm eff}$ (via

damping tail)

Benjamin Beringue, CMB-France#5, 04/12/23

300-500 million years

Billions of years

13.8 billion years

Dark Ages

Properties of reionisation: - Duration (via kSZ) - Mean free path of

photons (via kSZ)

Structure formation and galaxy evolution

 $-\Sigma m_{\nu}$ (via lensing potential)

- Galaxy evolution
- cluster properties (via tSZ)
- feedback efficiency (via tSZ)

- Properties of Dark energy:

 $-\sigma_8$ (via lensing and tSZ)

10⁻³² seconds

1 second

100 seconds

380 000 years

NOMICO

SIMONS Observatory

www.simonsogservatory.

Inflation

Radiation dominated expansion

Large scale B-modes Primordial power spectrum (via TT, TE, EE) Primordial bispectrum

, and $N_{\rm eff}$ (via damping tail)

Benjamin Beringue, CMB-France#5, 04/12/23

300-500 million years

imisation

an of

ia kSZ)

Billions of years

13.8 billion years

Structure formation and galaxy evolution

 $-\Sigma m_{\nu}$ (via lensing potential)

-Galaxy evolution

- cluster properties (via tSZ)
- feedback efficiency (via tSZ)

- Properties of Dark energy: $-\sigma_8$ (via lensing and tSZ)

10⁻³² seconds

1 second

100 seconds

DESI

380 000 years

Benjamin Beringue, CMB-France#5, 04/12/23

300-500 million years

Billions of years

13.8 billion years

Simons Observatory large aperture survey DESI

Stri

and

DESI

DES

roperties of reionisation: - Duration (via kSZ) -Mean free path of photons (via kSZ)

SIMONS Observatory

sobceridater

ournal of Cosmology and Astroparticle Physics

The Simons Observatory: science goals and forecasts

SO forecast paper (link)

- Forecasts of the constraints brought by SO under different scenarios (Pessimistic, Baseline, Goal)
- Highlight improvements over current (2019) constraints

Primordial perturbations

 e^{-}

Relativistic species Neutrino mass

Deviations from Λ

Galaxy evolution

Reionization

^{*a*} This column rep systematic error.

^b This is the nominal forecast, incress systematics, and rounds up to 1 s.f. ^c This is the goal forecast, has negli ^d Primarily from [44] and [287].

Parameter	$SO-Baseline^{a}$	$\mathbf{SO} ext{-}\mathbf{Baseline}^b$	$\operatorname{SO-Goal}^c$	$\operatorname{Current}^d$	Method
	(no syst)				
r	0.0024	0.003	0.002	0.03	BB + ext delens
$^{-2 au}\mathcal{P}(k\!=\!0.2/\mathrm{Mpc})$	0.4%	$\mathbf{0.5\%}$	0.4%	3%	TT/TE/EE
$f_{ m NL}^{ m local}$	1.8	3	1	5	$\kappa \kappa \times \text{LSST-LSS} + 3$ -
	1	2	1		kSZ + LSST-LSS
$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$
$\Sigma m_{ u}$	0.033	0.04	0.03	0.1	$\kappa\kappa$ + DESI-BAO
	0.035	0.04	0.03		tSZ-N \times LSST-WL
	0.036	0.05	0.04		tSZ-Y + DESI-BAC
$\sigma_8(z=1-2)$	1.2%	2 %	1%	7%	$\kappa\kappa + \text{LSST-LSS}$
	1.2%	2 %	1%		tSZ-N \times LSST-WL
$H_0~(\Lambda { m CDM})$	0.3	0.4	0.3	0.5	$TT/TE/EE + \kappa\kappa$
$\eta_{ m feedback}$	2%	3 %	2%	50 - 100%	kSZ + tSZ + DESI
$p_{ m nt}$	6%	8%	5%	50 - 100%	kSZ + tSZ + DESI
Δz	0.4	0.6	0.3	1.4	TT (kSZ)

^a This column reports forecasts from earlier sections (in some cases using 2 s.f.) and applies no additional

^b This is the nominal forecast, increases the column (a) uncertainties by 25% as a proxy for instrument systematics, and rounds up to 1 s.f.

^c This is the goal forecast, has negligible additional systematic uncertainties, and rounds to 1 s.f. ^d Primarily from [44] and [287].

Simons Observatory science Science from the LAT

Constraints on the number of relativistic species

Benjamin Beringue, CMB-France#5, 04/12/23

Constraints on the neutrino masses

Constraints on cluster abundances

2

Simons Observatory science Science from the LAT

Constraints on the number of relativistic species

Much more in SO forecast paper !!

Benjamin Beringue, CMB-France#5, 04/12/23

Constraints on the neutrino masses

Constraints on cluster abundances

Simons Observatory science Science from the SATs

$-\sigma(r) = 0.003$ -Constraints on cosmic birefringence

Benjamin Beringue, CMB-France#5, 04/12/23

Where are we now? Deployment in Chile

Benjamin Beringue, CMB-France#5, 04/12/23

Done shot by Deborah Kellner

Where are we now ? **Deployment in Chile**

CLASS

Benjamin Beringue, CMB-France#5, 04/12/23

PolarBear / Simons Array

ACT

16

2.

Where are we now ? **Deployment in Chile**

Benjamin Beringue, CMB-France#5, 04/12/23

Where are we now ? Deployment in Chile

Benjamin Beringue, CMB-France#5, 04/12/23

LAT

LAT (Assembled and tested) Oct 2023

Si Maria

2 2 1

ing the l

Cased.

LAI (Assembled and tested) Oct 2023

Mirrors delivered next year (built in Germany by Vertex GmBH)

First light in 2024

Benjamin Beringue, CMB-France#5, 04/

LAT (Cooled down and dark tests) Aug 2023

TENING

Benjamin Beringue, CMB-France#5, 04/12/23

SAT MF1 (undergoing commissioning) Oct 2023

Benjamin Beringue, CMB rancea

SATINF1 (undergoing commissioning) Oct 2023

SAT MF2 (currently being assembled on site)

SALUFIF (Due to be shipped to Chile soon)

Benjamin Beringue, CMB-France#5

Pipeline development and testing B-mode pipeline validation on simulations:

The Simons Observatory: pipeline comparison and validation for large-scale B-modes

Kevin Wolz^{1, 2} *, Susanna Azzoni^{3, 4}, Carlos Hervías-Caimapo^{5, 6}, Josquin Errard⁷, Nicoletta Krachmalnicoff^{1, 2, 8}, David Alonso³, Carlo Baccigalupi^{1, 2, 8}, Antón Baleato Lizancos^{9, 10}, Michael L. Brown¹¹, Erminia Calabrese¹², Jens Chluba¹¹, Jo Dunkley^{17, 18}, Giulio Fabbian^{12, 13}, Nicholas Galitzki¹⁴, Baptiste Jost^{7, 15}, Magdy Morshed⁷, and Federico Nati¹⁶

SO BB pipeline paper (link)

- Tested three different pipelines using different sky models - $\sigma(r = 0) = 0.003$ (SO nominal)

24

Pipeline development and testing LAT pipelines extensively tested on ACT DR6

The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth

FRANK J. QU,¹ BLAKE D. SHERWIN,^{1,2} MATHEW S. MADHAVACHERIL,^{3,4} DONGWON HAN,¹ KEVIN T. CROWLEY,⁵ IRENE ABRIL-CABEZAS,¹ PETER A. R. ADE,⁶ SIMONE AIOLA,^{7,8} TOMMY ALFORD,⁹ MANDANA AMIRI,¹⁰ STEFANIA AMODEO,¹¹ RUI AN,¹² ZACHARY ATKINS,⁸ JASON E. AUSTERMANN,¹³ NICHOLAS BATTAGLIA,¹⁴ ELIA STEFANO BATTISTELLI,¹⁵ JAMES A. BEALL,¹³ RACHEL BEAN,¹⁴ BENJAMIN BERINGUE,⁶ TANAY BHANDARKAR,³ EMILY BIERMANN ¹⁶ BORIS BOLLIET ¹ I RICHARD BOND ¹⁷ HONGRO CAL ¹⁶ ERMINIA CALABRESE ⁶ VICTORIA CALAFUT ¹⁷

arxiv:2304.05202

arxiv:2307.01258

The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky

William Coulton,¹ Mathew S. Madhavacheril,^{2,3} Adriaan J. Duivenvoorden,^{1,4} J. Colin Hill,^{5,1}
Irene Abril-Cabezas,^{6,7} Peter A. R. Ade,⁸ Simone Aiola,^{1,4} Tommy Alford,⁹ Mandana Amiri,¹⁰ Stefania Amodeo,¹¹
Rui An,¹² Zachary Atkins,⁴ Jason E. Austermann,¹³ Nicholas Battaglia,¹⁴ Elia Stefano Battistelli,¹⁵
James A. Beall,¹³ Rachel Bean,¹⁴ Benjamin Beringue,⁸ Tanay Bhandarkar,² Emily Biermann,¹⁶ Boris Bolliet,^{6,7}
I Richard Bord ¹⁷ Hongbo Cai ¹⁶ Erminia Calabrese ⁸ Victoria Calafut ¹⁷ Valentina Capalbo ¹⁵ Felipe Carrero ¹⁸

What's next? SO family's is getting bigger !

SO nominal (~2024)

- -3 telescopes
- -30.000 TES detectors
- -6 frequency bands

- -6 telescopes
- -60.000 TES detectors
- -6 frequency bands

What's next? SO family's is getting bigger !

Photovoltaic Array

-Reduced carbon footprint (reduce diesel consumption by 70%)

-Increase efficiency by 9%

-Reduced maintenance costs

Observatory

The enhanced observatory will be used to analyze previously undetectable traces of background radiation created billions of years ago during the Big Bang

May 9, 2023

ALMA 8 km

SO Site

~1 MW Peal **Photovoltaic Array**

LAT Tubes

- -6 additional optics tubes for the LAT
- Doubling of the mapping speed
- -More efficient transient detection
- -Using same technology (no tech. development required)

Detecting faint traces of universe's explosive birth is aim of NSFsupported Advanced Simons

Data Management

- -Full maps processed in 6 months
- Daily transients alerts
- Tools and maps delivered to the community
- -Systematics mitigation across detector arrays

What's next? **SO first science observation in 2024**

Benjamin Beringue, CMB-France#5, 04/12/23

