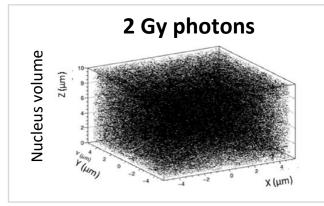
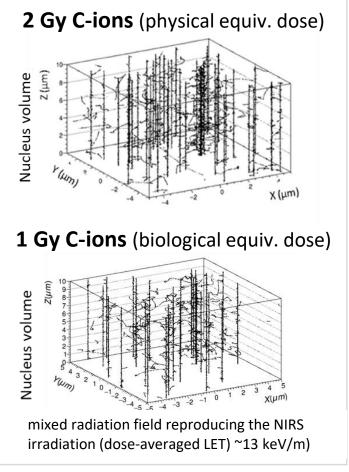
BioHadron Specificities of the tumor molecular response to carbon ions


Pr Claire Rodriguez-Lafrasse Cellular and Molecular Radiobiology UMR CNRS/IN2P3 5822 - IP2I Lyon-Sud Medical School

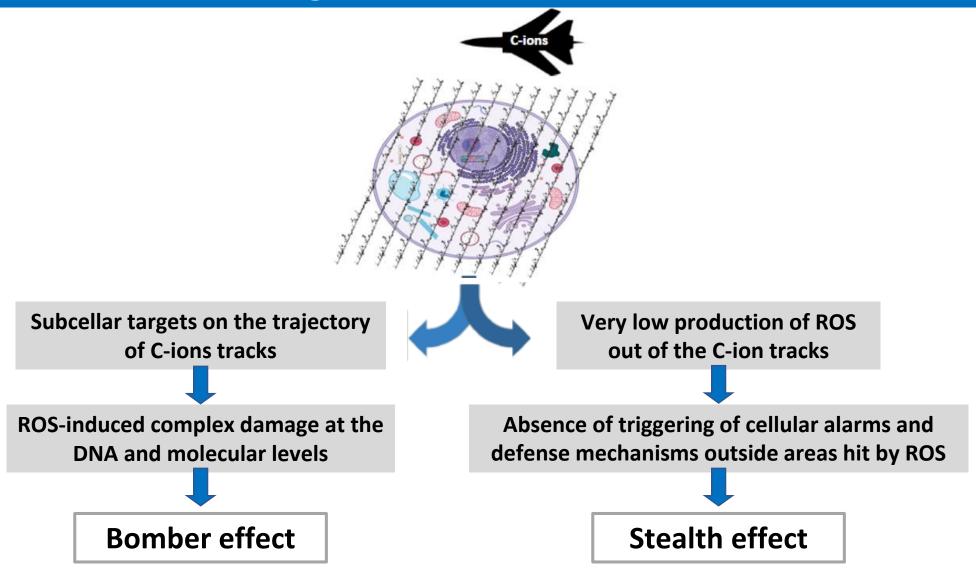
Joint Meeting CNAO – CNRS / IN2P3 24.10.2023


Relies on the local distribution of Reactive Oxygen Species (ROS) at the nanometric scale

Monte-Carlo simulation of **OH**° at 10⁻¹²s:

simulations C. Monini & M Beuve

uniform distribution



Wozny et al. Cancers 2019

concentrated along the tracks

Very different consequences at the subcellular and molecular levels!

Our experimental data supporting both effects?

Wozny & Rodriguez-Lafrasse, BJC 2023

The Bomber effect

- Increased clustered DNA damage
- More complex chromosomal aberrations
- Non-transmission of chromosomal lesions to progeny
- Killing independent of the telomere length
- Enhanced mitochondrial dysfunction
- More cell death (cancer stem cells)
- Low dependence on the oxygen concentration
- Low dependence on the dose-rate
- Abnormal proteostasis

DNA

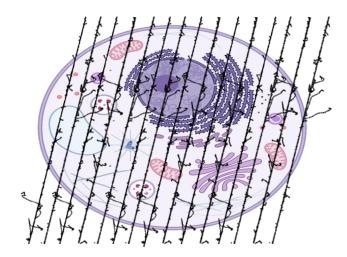
Maalouf *et al.* 2009, IJROBP Hanot *et al.* 2012 Plos One Alphonse *et al.* 2013 BMC cancer Ferrandon *et al.* 2013 Mol Neurobiol Bertrand *et al.* 2014 Stem Cell Rep Ferrandon *et al.* 2015 Mol Cancer Ferrandon *et al.* 2015 Cancer Letter Moncharmont *et al.* 2016 Oncotarget Wozny *et al.* 2016 Frontiers in Oncology Wozny *et al.* 2017 British J. Cancer Wozny *et al.* 2019 Cancers Wozny *et al.* 2020 Scientific Reports Wozny *et al.* 2021 Cancers Louati *et al.* in preparation Wozny *et al.* in preparation

Wozny AS, Rodriguez-Lafrasse C. The 'stealth-bomber' paradigm for deciphering the tumour response to carbon-ion irradiation. Br J Cancer. 2023 Apr;128(8):1429-1438. doi: 10.1038/s41416-022-02117-6.

The bomber effect

Consequences of the bomber effect: abnormal proteostasis ?

Protein oxidation = alteration of cellular functions and metabolism


The bomber effect

Consequences of the bomber effect: abnormal proteostasis

Kinetic studies of radiation-induced oxidized proteins

Non published data

The stealth effect

A large proportion of cell volume at the nanometric scale not hit by C-ions: thresholds of ROS necessary to trigger survival and defense mechanisms not reached

C-ions cross cell radars and lines of defense without being spotted

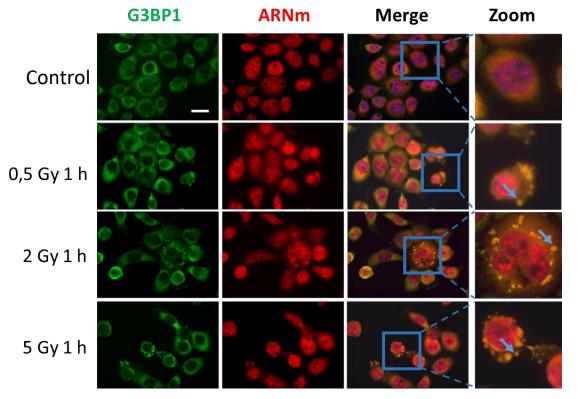
Wozny & Rodriguez-Lafrasse, BJC 2023

The Bomber effect

- Increased clustered DNA damage
- More complex chromosomal aberrations
- Non-transmission of chromosomal lesions to progeny
- Killing independent of the telomere length
- Enhanced mitochondrial dysfunction
- More cell death (cancer stem cells)
- Low dependence on the oxygen concentration
- Low dependence on the dose-rate
- Abnormal proteostasis

The Stealth effect

- Lower DNA damage detection and repair
- No HIF-1 α stabilisation
- No/lower invasion & migration
- No/lower activation of cell survival pathways (cancer stem cells)
- No stress granules formation


Maalouf *et al.* 2009, IJROBP Hanot *et al.* 2012 Plos One Alphonse *et al.* 2013 BMC cancer Ferrandon *et al.* 2013 Mol Neurobiol Bertrand *et al.* 2014 Stem Cell Rep Ferrandon *et al.* 2015 Mol Cancer Ferrandon *et al.* 2015 Cancer Letter Moncharmont *et al.* 2016 Oncotarget Wozny *et al.* 2016 Frontiers in Oncology Wozny *et al.* 2017 British J. Cancer Wozny *et al.* 2019 Cancers Wozny *et al.* 2020 Scientific Reports Wozny *et al.* 2021 Cancers Louati *et al.* in preparation Wozny *et al.* in preparation

Wozny AS, Rodriguez-Lafrasse C. The 'stealth-bomber' paradigm for deciphering the tumour response to carbon-ion irradiation. Br J Cancer. 2023 Apr;128(8):1429-1438. doi: 10.1038/s41416-022-02117-6.

The stealth effect

Consequences of the stealth effect: stress granule formation ?

- non-membrane cytoplasmic aggregates
- dynamically store mRNAs in response to different (oxidative) stress
- regulate gene expression by delaying the translation of specific transcripts

Formation of SG in **radiosensitive** cells from 30' to 2h after **photon irradiation** depending on **ROS**

Laouti et al., IJROBP 2023

Carbon ions : Non published data

Specificities of the tumor molecular response to carbon ions

Efficacy of the combination of carbon ion, protons, and photons with Immunotherapy?

Non published data

Project at CNAO

Mathilde TISSOT (PhD student 11/2023 – 10/2026)

Anne-Sophie Wozny (Assistant Professor)

Gersende Alphonse (Research Engineer)

1. Beam characterization and biological data for NanOx model

- ✓ Cell survival curves at **different positions in the SOBP** (Carbon ions, Helium)
- ✓ RBE determination for different endpoints in HNSCC, glioblastoma and CHO cultured cells and spheroids

2. Specificities of the tumor molecular response to carbon ions

• In cellulo experiments

Investigating the abnormal proteostasis to support the bomber effect:

- ✓ Characterization (identification) of the oxidized proteins (Coll. B. Cambien (TIRO), Nice)
 - at different TEL
 - at different doses
 - with C-ions and Helium
- ✓ Determination of the fate of oxidized proteins

Investigating the non-activation of survival pathways to support the stealth effect:

✓ MAPK and NF-KB pathways

2. Specificities of the tumor molecular response to carbon ions

• In cellulo experiments

Investigating the Stealth bomber paradigm in response to other ions:

- ✓ Protons, Helium ?
- ✓ LET-dependent effect?

H. He. Li. Be. B. C. N. O. Ne. Na. Mg. Si. Ca. Ti. Fe. Z=1. Z=2. Z=3. Z=4. Z=5. Z=6. Z=7. Z=8. Z=10. Z=11. Z=12. Z=14. Z=20. Z=22. Z=26.	and the second sec	X. X.	A A A A A A A A A A A A A A A A A A A		A. A. S. Martin and the second	A Contraction of the second second	· · · · · · · · · · · · · · · · · · ·	the sector of the sector of the sector		the state of the s	
								Mg. Z=12.			

• In ovo experiments

Alternative to mammalian tumor models, no ethical committee, easy to manipulate

- In vivo experiments (if possible, ethical committee)
 - ✓ Confirmation of results and continuation of experiments in mice with HNSCC tumors, treated with carbon ions or helium combined or not with immunotherapy
 - MITI Project (coll IRSN) : Understanding the influence of tumor cell irradiation with different types of beams (photons, protons, carbon ions) on endothelial cell phenotype and the immune system

THANK YOU FOR YOUR ATTENTION !

Cellular and Molecular Radiobiology Lab UMR CNRS/IN2P3 5822 – IP2I

UMR CNRS 5822 IN2P3

RCM:

C. Rodriguez-Lafrasse

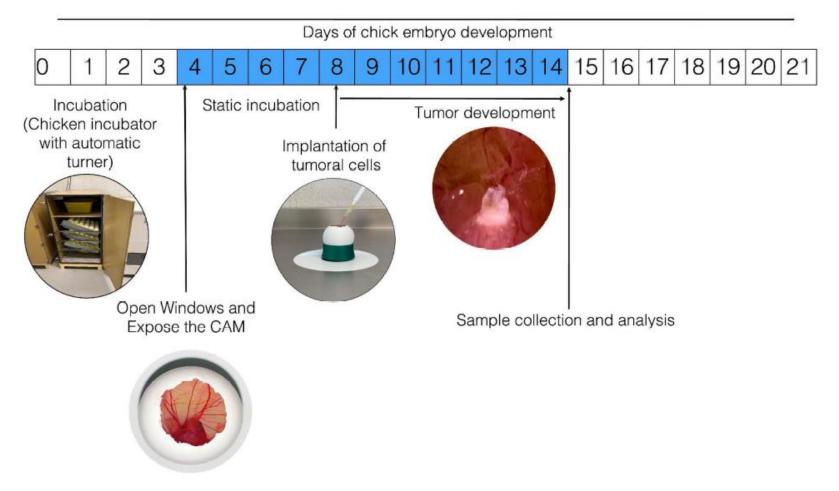
- M.-T. Aloy
- G. Alphonse
- D. Averbeck
- A. Gauthier
- P. Lalle
- N. Magné
- C. Malésys
- C. Perrin
- P. Philouze
- V. Varoclier
- A.-S. Wozny

PHABIO:

- M. Beuve
- E. Testa
- M. Alcocer
- T. Berger

Collaborations

- B. Cambien (TIRO, Nice)
- F. Chevalier (IRCM, DSV, CEA, Caen)
- O. Guipaud (IRSN)
- F. Milliat (IRSN)
- T. Nakajima (NIRS, Chiba)
- M. Soumboundou (Dakar)
- M.J. Stasia (CDiReC,
- F. Chevalier (IRCM, DSV, CEA, Caen)
- O. Guipaud (IRSN)
- F. Milliat (IRSN)
- T. Nakajima (NIRS, Chiba)
- M. Soumboundou (Dakar)
- M.J. Stasia (CDiReC, Grenoble)
- O. Tillement (ILM, Lyon)
- C. Tomasetto (IGBMC, Strasbourg)



Patiño-Morales, IJMS 2023