

PEPITES : Status & Plans

PEPITES = Profileur à Electrons secondaires Pour Ions ThérapeutiquES

CNAO Meeting, 24/10/2023

Marc Verderi

Laboratoire Leprince-Ringuet, Ecole polytechnique For PEPITES Team

Overview

- PEPITES in a nutshell
- PEPITES status
- PEPITES plans @ CNAO

PEPITES status & plans @ CNAO

PEPITES in a nutshell

Ultra-thin Secondary Electron Emission (SEE) beam profiler

- SEE used for signal because:
 - Tiny amount of material needed (~10 nm)
 - Very linear (at least up to O(A) beams)
 - BTW : suitable for FLASH !
- Sensitive Area build using « Thin Film » techniques
- Operates in vacuum

Current version:

- 10 µm WET
- Low noise & high range read-out electronic
 - For continuous current beams
 - Designed by our CEA partner
- 2 × 32 channels (X & Y beam sampling)

PEPITES STATUS

PEPITES @ ARRONAX Installed in May 2022 68 MeV proton beam Continuous, 17 pA Continuous, ~20 nA Peak signal : 6 nA Peak signal : 400 fA FLASH, $\sim 1 \mu A$, 10 ms Peak signal : 400 nA

PEPITES NOMAD

- Here shown tested @ ARRONAX, in June 2023
- Some differences in responses between the two systems to be understood still
- It is the system we will start with @ CNAO
 - For the test beam of 19th & 20th of November
- Comes with:
 - Vacuum chamber + PEPITES inside
 - With 230 µm Kapon entrance & exit windows
 - Readout electronic & acq.
 - Vacuum Pump
 - Translation table (if needed)

Other PEPITES activities

• SPLIF :

- = SimPLe moniteur pour Intensités Flash
- FLASH therapy research very active now !
- Comparing FLASH and conventional irradiations is almost systematic these days
 - A portable apparatus able to monitor intensities in both cases is very welcome !
- SPLIF is a simplified PEPITES
 - Takes advantage of the high linearity of SEE

- PEPITES-UltraFlash :
 - PEPITES can measure FLASH beams
 - Is SEE signal able to withstand laser-plasma accelerated ultra-short beams ?
- French "MITI" funding started this year
 - Joint LLR + LOA project
 - 30 fs (!) e⁻ beam pulses, O(100) MeV, O(nC)
 - 1st test beam in October :
 - Just faced **aggressive** EM environment...
 - Next attempt in February

Money & Manpower

- CNRS CNAO agreement supposed to come with some funding
 - But limited
 - Finding other sources is unavoidable
- Manpower:
 - "Chronic lack of manpower at LLR" has been the realistic statement for a while
 - Physicists are one several topics, engineers and technicians too
 - Lost our main electronic engineer end 2022, while critical work have to be done here !
 - Improving now:
 - New and experienced electronic engineer joined LLR in October : 100% on PEPITES !
 - Great help for several left over things !
 - In particular : will start calibration/verification of electronic readout through signal current injection
 - SPLIF, even though independent on paper, hired an engineer for one year in September mechanics background, but multi-competences- and quite overlap between projects
 - Hoping this position will be extended !
 - 2 years researcher position offered to PEPITES group
 - One very good candidate found, **now in hiring process**, hoping process will go smooth...
 - For both PEPITES-UltraFlash & PEPITES @ CNAO
 - Manpower situation is greatly improving : we should not be sub-critical anymore !

PEPITES PLANS @ CNAO

PEPITES @ CNAO : plans [1/2]

First TB @ CNAO, 19th & 20th of November

- With PEPITES-NOMAD
- Will operate with C & p beams, at various intensities & energies
- State then on "what's next"

What's next options:

- We stop...
- We continue together:
 - Main anticipated R&D topic : reduction of material budget
 - PEPITES material budget is to sustain a sub-millimeter disturbance of the beam at the patient level for a monitor placed 2

 3 meters upstream, in the beam line
 - At CNAO : 2 3 meters → 6.5 meters !
 - Current 10 µm WET can be reduced:
 - WET gross-estimates:

Geometry	CP1™ (1.5 µm) membranes Cost : moderate	LuxFilm [™] (0.1 µm) membranes Cost : +++
2 strip planes + 2 anodes planes	~10 µm	~2.5 µm
2 strip planes + 2 off axis anodes	~5 µm	~1.25 µm
2D pattern + off axis anode	~2.5 µm	~0.63 µm

2D pattern

PEPITES @ CNAO : plans [2/2]

- What's next options (con't):
 - We continue together (con't)
 - Each of these options will have to be discussed and studied
 - They can be prototyped in a non-invasive way wrt CNAO, "à la nomade"
 - And ported to the line later on, if satisfactory
 - We hence have a rich potential program of R&D !
- One aspect to bare in mind:
 - The partnership with CEA –electronic designer– will have to be clarified
 - Not a problem now, in the R&D phase
 - But will have to be considered if converging to a system used in clinic @ CNAO

Thank you !