

### The CLINM project at CNAO/ Centro Nazionale di Adroterapia Oncologica

### Chemical impact of <sup>12</sup>C ion beam fragmentation on the radiolysis of water

N. Arbor, C. Finck, L. Gesson, S. Higueret, T.D. Lê, C. Reibel, M. Vanstalle

<u>A. Arnone</u>, C. Galindo, C. Hoffmann, P. Peaupardin, Q. Raffy







- Hadrontherapy : Treatment of cancer by accelerated ions (~ Gy/min)
  - $\rightarrow$  Better localized dose deposition in the tumor (Bragg Peak phenomena)
  - $\rightarrow$  High LET  $\rightarrow$  density of energy deposition

Reduced damage to healthy tissue while maintaining a strong impact on tumors



Haettner, E. et al.(2013)



Protein :

- 20 % of the mass of a cell
- Important targets of radiation effects

Water:

- 70 % of the mass of a cell
- Great influence on the radiolysis of biomolecules







- Hadrontherapy : Treatment of cancer by accelerated ions (~ Gy/min)
  - → Better localized dose deposition in the tumor (Bragg Peak phenomena)
  - $\rightarrow$  High LET  $\rightarrow$  density of energy deposition

Reduced damage to healthy tissue while maintaining a strong impact on tumors



Haettner, E. et al.(2013)







- Hadrontherapy : Treatment of cancer by accelerated ions (~ Gy/min)
  - → Better localized dose deposition in the tumor (Bragg Peak phenomena)
  - $\rightarrow$  High LET  $\rightarrow$  density of energy deposition

Reduced damage to healthy tissue while maintaining a strong impact on tumors



Haettner, E. et al.(2013)



Relative dose as a function of the depth, in water equivalent

Nuclear fragmentation reactions along particle stopping path : Fragmentation  $\rightarrow$  attenuation of primary beam + build-up fragments

Hadrontherapy  $\rightarrow$  few data at the molecular level on radiolysis Fragmentation  $\rightarrow$  very few studies at molecular level





- Hadrontherapy : Treatment of cancer by accelerated ions (~ Gy/min)
  - $\rightarrow$  Better localized dose deposition in the tumor (Bragg Peak phenomena)
  - $\rightarrow$  High LET  $\rightarrow$  density of energy deposition

Reduced damage to healthy tissue while maintaining a strong impact on tumors



Haettner, E. et al.(2013)



Nuclear fragmentation reactions along particle stopping path : Fragmentation  $\rightarrow$  attenuation of primary beam + build-up fragments

Hadrontherapy  $\rightarrow$  few data at the molecular level on radiolysis Fragmentation  $\rightarrow$  very few studies at molecular level



Development of a dedicated experience to study the impact on the radiolysis of an <sup>12</sup>C ion beam fragmentation delivered by synchrotron



Chemical measurement

#### **Radiolysis of water**

- Measure of hydroxyl radical HO.
  - → Irradiation of KBr, Formate (HO<sup>•</sup> probes) in aerated solution
- Measure of hydrogen peroxide H<sub>2</sub>O<sub>2</sub> in pure water
  → Irradiation of H<sub>2</sub>O in aerated solution

Post irradiation analysis by UV spectroscopy :

• Ghormley reagents (KI et Phthalate)

Ionization Chamber  $\rightarrow$  dose deposition curve for each energy





**Development of setup:** 

**PEIGNE** (Portoir Essentiel pour Irradier un Grand Nombre d'Echantillons)

- 6 rows x 6 PMMA cells aligned with the beam
  → same time & same conditions
- 6 rows  $\rightarrow$  6 solutions
- 1,5 mL solution in each cell





 $\rightarrow$  Evolution all along the particle path





**Development of setup:** 

**PEIGNE** (Portoir Essentiel pour Irradier un Grand Nombre d'Echantillons)

- 6 rows x 6 PMMA cells aligned with the beam
  → same time & same conditions
- 6 rows  $\rightarrow$  6 solutions
- 1,5 mL solution in each cell



→ Energy degradation through the addition of RW3 plates (Polystyrene + TiO<sub>2</sub>) as degrader

→ Always 120 MeV/nu inside the system





**Development of setup:** 

**PEIGNE** (Portoir Essentiel pour Irradier un Grand Nombre d'Echantillons)

- 6 rows x 6 PMMA cells aligned with the beam
  → same time & same conditions
- 6 rows  $\rightarrow$  6 solutions
- 1,5 mL solution in each cell



- → Energy degradation through the addition of RW3 plates (Polystyrene + TiO<sub>2</sub>) as degrader
- → Always 120 MeV/nu inside the system













#### Similar experiment on HIMAC at QST (Japan)

HIMAC (Heavy Ion Medical Accelerator in Chiba)





→12C 400 MeV/nu

 $\rightarrow$  Dose measurement $\rightarrow$  Ionization Chamber

 $\rightarrow$  Measuring HO<sup>•</sup> radical production

→Determine N(HO<sup>•</sup>) /ion





### Similar experiment on HIMAC at QST (Japan)

HIMAC (Heavy Ion Medical Accelerator in Chiba)





→<sup>12</sup>C 400 MeV/nu

 $\rightarrow$  Dose measurement $\rightarrow$  Ionization Chamber

 $\rightarrow$  Measuring HO<sup>•</sup> radical production

 $\rightarrow$  Determine N(HO<sup>•</sup>) /ion

→ Similar evolution between the results obtained at CNAO and QST with <sup>12</sup>C 400 MeV/nu





# Hydrogen peroxide H<sub>2</sub>O<sub>2</sub>







Radiolysis of water  $\rightarrow$  Measuring H<sub>2</sub>O<sub>2</sub> species production Number of H<sub>2</sub>O<sub>2</sub> formed per ion (N(H<sub>2</sub>O<sub>2</sub>)/ion)

# Hydrogen peroxide H<sub>2</sub>O<sub>2</sub>





Number of H<sub>2</sub>O<sub>2</sub> species formed per incident ion as a function of the depth in water equivalent

### Hydrogen peroxide $H_2O_2$





Last cells in the fragment region:

- Similar steady **increase** evolution for both cells
- As energy increase  $\rightarrow$  More fragmentation
- $N(H_2O_2)$ /ion  $\nearrow$  even 3 cm after the Bragg peak

 $\rightarrow$  effect due to **Fragmentation** 

### Hydrogen peroxide H<sub>2</sub>O<sub>2</sub>





### **Conclusion and Perspectives**





Radiolysis of biomolecules

Proteir





# Thank you for your attention

anr®

### Acknowledgments





Rémi Barillon Quentin Raffy Catherine Galindo Philippe Peaupardin Nicolas Arbor Marie Vanstalle Lévana Gesson Claire Reibel



Marco Pullia Michele Ferrarini Angelica Facoetti





24/10/2023