The "UNIfied and VERSetile bio response Engine" - UNIVERSE

Dr. H. Liew, Prof. Dr. A. Mairani

- UNIVERSE: multipurpose mechanistic modelling framework of radiation action
- Goal: Translating the action of "effect-modifiers" (e.g., DNA damage inhibition) from readily available photon data to charged particle scenarios

The "UNIfied and VERSetile bio response Engine" -UNIVERSE

Open Access Article

Modeling the Effect of Hypoxia and DNA Repair Inhibition on Cell Survival after Photon Irradiation

by 🕐 Hans Liew ^{1,2,3,4,5,6} ⊠, 🕐 Carmen Klein ^{2,3,4,5} ⊠ 💿, 🕐 Frank T. Zenke ⁷ ⊠ 💿, 🕐 Amir Abdollahi ^{2,3,4,5} ⊠ 💿, ♥ Jürgen Debus ^{1,2,3,4,5,6} ⊠, ♥ Ivana Dokic ^{2,3,4,5,*†} ⊠ and ♥ Andrea Mairani ^{2,3,4,5,*,†} ⊠

Radiation Oncology • Biology • Physics -ASTRO

Physics Contribution

Deciphering Time-Dependent DNA Damage Complexity, Repair, and Oxygen Tension: A Mechanistic Model for FLASH-Dose-Rate Radiation Therapy

Hans Liew, MSc,*1248 Stewart Mein, PhD,*1248 Ivana Dokic, PhD,*1248 Thomas Haberer, PhD,[¶] Jürgen Debus, MD, PhD,¹²⁶1.¶# Amir Abdollahi, MD, PhD,*1248 and Andrea Mairani, PhD[#]***

Open Access Article

Modeling Direct and Indirect Action on Cell Survival After Photon Irradiation under Normoxia and Hypoxia

by 🕐 Hans Liew 1,2,3,4,5,6 🖂 🕐 Stewart Mein 2,3,4,5 🖂 🥠 Jürgen Debus 1,2,3,4,5,6 🖂 🥠 Ivana Dokic 2,3,4,5 🖂 and

Combined DNA Damage Repair Interference and Ion Beam Therapy: Development, Benchmark and Clinical Implications of a Mechanistic Biological Model

Hans Liew, MSc ** ☑ • Sarah Meister, MSc • Stewart Mein, PhD • ... Jürgen Debus, MD, PhD • Ivana Dokic, PhD • Andrea Mairani, PhD 옷 ☑ • Show all authors • Show footnotes

Open Access Article

Impact of DNA Repair Kinetics and Dose Rate on RBE Predictions in the UNIVERSE

by 🙁 Hans Liew 1,2,3,4,5,6 🖂 🙁 Stewart Mein 2,3,4,5 🖂 🙁 Thomas Tessonnier ⁵ 🖂 😢 Christian P. Karger 3,7 🖾 📀 😤 Amir Abdollahi 2,3,4,5 🖾 😢 Jürgen Debus 1,2,3,4,5,6 🖾 🧶 Ivana Dokic 2,3,4,5 🖂 and 😢 Andrea Mairani 2,3,4,5,* 🖂

MDPI

Article

The Impact of Sub-Millisecond Damage Fixation Kinetics on the In Vitro Sparing Effect at Ultra-High Dose Rate in UNIVERSE

Hans Liew ^{1,2,3,4,5,6}, Stewart Mein ^{2,3,4,5}, Thomas Tessonnier ⁵, Amir Abdollahi ^{2,3,4,5}, Jürgen Debus ^{1,2,3,4,5,6}, Ivana Dokic ^{2,3,4,5} and Andrea Mairani ^{2,3,4,5,*}

Open Access Article

Do We Preserve Tumor Control Probability (TCP) in FLASH Radiotherapy? A Model-Based Analysis

by 🙁 Hans Liew 1.2.3, 🙁 Stewart Mein 1.2.3.4, 🙁 Thomas Tessonnier 5, 😩 Amir Abdollahi 1.2.3 😊, 😩 Jürgen Debus 2.3.6.7, 😢 Ivana Dokic 1.2.3 and 😢 Andrea Mairani 5.8.* 🖂

Building blocks of the UNIVERSE – Giant Loops

Giant Loops:

Chromatin substructure containing \approx 2 Mbp, with either side attached to a backbone

Isolated DSB (iDSB):

- one DSB inside loop
- associated with fast repair kinetics

Clustered/Complex DSB (cDSB):

- two or more DSB inside loop
- associated with slow repair kinetics
- associated with high risk of chromatin loss

Survival in the UNIVERSE

- 1. Subdivide nucleus into **domains of** ≈ **2** Mbp (Giant Loops)
- 2. Simulate number of isolated and complex DSB (N_{iDSB} and N_{cDSB})
- 3. Associate DSBs with **inactivation probabilities** (K_{iDSB} and K_{cDSB})
- 4. Calculate the **Survival Fraction** following:

$$S = (1 - K_{iDSB})^{N_{iDSB}} \cdot (1 - K_{cDSB})^{N_{cDSB}}$$

Oxygen Status and Reference Radiation Quality in the UNIVERSE

Survival after irradiation with photons under hypoxia can be described by reducing the total number of induced DSB by a hypoxia reduction factor (HRF) while keeping K_{iDSB} and K_{cDSB} constant!

The HRF resembles the Oxygen Enhancement Ratio (OER)

Radiation Quality:

Low Energy Photons (e.g. X-rays) and High Energy Photons (e.g. LINAC)/Electrons induce different amounts of DSB per unit dose (yield)

Effect **directly considered** using RBE_{DSB} from the literature as yield modifying factor.

A FLASH in the UNIVERSE?

- A search for "FLASH radiotherapy" using Google Scholar finds ~14.000 results published since 2014
- Wide range of **biological endpoints, radiation qualities, doses, dose-rates** and **environmental oxygen levels** employed complicate clear characterization
- UNIVERSE can model their impact and aid development, experimentation and assessment of FLASH and other dose-rate effects
- Development of a time-dependent **dynamic UNIVERSE**

Dose-Rate: Repair

- Rejoining-Kinetics of DSB can be described by double-exponential decay (fast and slow component)
- Tommasino et al. succesfully predicted ratio of fast and slow component by associating N_{iDSB} with fast and N_{cDSB} with slow repair
- $\tau_{iDSB} \sim minutes$
- $\tau_{cDSB} \sim hours$

Dose-Rate: Radiolytic Oxygen Depletion

Time-dependent oxygen level O(t)			as suggested by Petersson et al. 2020	
	• $\frac{dO}{dt} = -g \dot{D} O(t)$ • $\frac{dO}{dt} = \lambda (O_{env} - O(t))$	oxygen depletion re-oxygenation	g: depletion rate constant (0.053 Gy^{-1}) λ : oxygen recovery rate (1 s ⁻¹) O_{env} : environmental oxygen level	
	$ \rightarrow \frac{dO}{dt} = -g \dot{D} O(t) + \lambda (O_{er}) $	$\frac{\partial}{\partial t} = -g \dot{D} O(t) + \lambda \left(O_{env} - O(t) \right)$		
	$ \rightarrow O(t) = O_{env} \left(\frac{\lambda}{\gamma} + \left(1 - \frac{\lambda}{\gamma} \right) e^{-\gamma t} \right) $ with: $\gamma = g$		$\gamma = g\dot{D} + \lambda$	
	\rightarrow HRF(t) = $\frac{K+mO(t)}{K+O(t)}$	m = 3.	1 K = 0.27	

UNIVERSE predicts in vitro data (Adrian et al. 2019)

DU145 survival after irradiation with conventional (0.23 Gy/s) and high dose-rate (600 Gy/s) of 10 MeV electron radiation under normoxia (20% O2) (A), hypoxia (1.6% O2) (B) and different oxygen levels at 18 Gy (C) taken from Adrian 2019. Lethality parameters fitted to high dose-rate data under normoxia. <u>Repair half-life times taken from literature [El-Awady 2003]</u>.

UNIVERSE predicts in vivo data

(A) Relative Tumor Volume Suppression of U87 xenografts in mice, after irradiation with 5-6 MeV electrons at 0.1 Gy/s (red) and 125 Gy/s (black) [Bourhis 2019]
 (B) ND50 of mice tail necrosis over dose-rates of 10 MeV electrons in oxygenated (blue) and anoxic environment (green: N2 + clamping of tail) [Hendry 1982]
 (C) LD50 after whole-body-irradiation of mice with either 250kV x-rays (purple) or ~8 MeV electrons (orange) over a range of dose-rates [Hornsey 1966+1971]

FLASH dependencies in UNIVERSE

Impact of

A: Dose
B: Environmental Oxygen Level
C: Repair Half Life of iDSB
D: Repair Half Life of cDSB

Dose: 16 Gy $[O_2]$: 2.5 % $T_{iDSB}^{1/2}$ = 30 minutes $T_{cDSB}^{1/2}$ = 5 hours

Oxygen Depletion or Nothing?

- Any mechanism that reproduces the same DSB yield kinetics would produce identical results
- Possibly a connection to indirect damage that is susceptible to radio-chemical mechanisms?
- Also **subpopulations** would be possible to implement using **sampling**

Core of the UNIVERSE

Radiosensitization

- Hypothesis: Supression of DNA-Damage-Repair by drugs and mutations only influences the lethality of isolated DSB (K_{iDSB})
- Introduction of **"Radiosensitization Factor" = RSF**

$$S = (1 - RSF \cdot K_{iDSB})^{N_{iDSB}} \cdot (1 - K_{cDSB})^{N_{cDSB}}$$

Survival of DNA Repair Deficient Cell Lines

Survival of HPV Positive/Negative Cell Lines

Ions hypoxic model and ion FLASH?

- Hypothesis: Oxygen in track and Oxygen depletion hypothesis
- -> Development of MonteRay-DNA: a flexible MC for biological investigations

Thank you for your attention!

