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@ Ion-based innovative radiotherapies and biophysical models
© The NANodosimetry and OXydative stress (NanOx) model
© NanOx for hadrontherapy

@ NanOx for low-energy ion irradiations

© Summary of ongoing and future work
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lon-based innovative radiotherapies (RTs) and biophysical models

@ At a given dose, ions are biologically more
effective than photons. Rationale for ion-
based innovative radiotherapies.

o High-energy ions: Hadrontherapy (e.g. e
of ~100-400 MeV/n).

o Low-energy ions: TAT (a-particles of 4-9
MeV); BNCT (a-particles, ‘Li < 2 MeV).

o (Epithermal
neutrons

b N\
& e \ Alpha-particle
/@ : \‘ ;;thngth
/ o |-l @ 8B
. p .i'/

ele

The energy and range of emitted radiations is different in BNCT
(left) and TAT (right) (Naskar et al. 2021; Hoppenz et al. 2020)
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@ Biophysical models are needed to predict
the RBE of ions and optimize treatments.

@ Current models in clinical use are the local
effect model | (LEM I, Scholz et al. 1997)
and the modified microdosimetric kinetic
model (MMKM, Inaniwa et al. 2010).

@ Other biophysical models have been devel-
oped, including:

RMF (Carlson et al. 2008)

BIANCA (Carante et al. 2018).

GSM2 (Cordoni et al. 2022).

ANAKIN (Cordoni et al. 2023).

NanOx (Cunha et al. 2017).
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The NANodosimetry and OXydative stress (NanOx) model

@ Predicts cell survival to ionizing radiation.

o Considers:
» Stochastic nature of energy deposition
(micrometric and nanometric scales).
» Sublethal damage and oxidative stress
induced by free radicals (e.g., *OH).

@ Cell survival depends on two types of events:

» Local lethal events (LLE) —
inactivation of nanometric targets
(~ irreparable DNA damage).

» Global events (GE)— accumulation of
sublethal lesions and oxidative stress.
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Probability distributions of specific energy in a nanometric
target for a 2.6 MeV proton and a 12 MeV/u carbon ion
(Alcocer-Avila et al. 2022).
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NanOx parameters

@ NanOx can be applied to high- and low-
energy ion irradiations.

@ In both cases the predictions of the model
are based on 5 parameters:

> The geometry of the sensitive volume
(SV). For hadrontherapy only the radius
of the cell nucleus is needed. For BNCT
and TAT a more detailed geometry is
required.

» The quadratic coefficient 3¢ computed
from reference radiation (photons).

» The 3 parameters (2o, o, h) of the
effective local lethal function (ELLF),
used for calculating the survival to local
lethal events.

Illustration of a low-energy track within a cell geometry
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Comparison of NanOx predictions for high- and low-energy ions

@ The NanOx formalisms for hadronther-
apy and low-energy ion were compared
by computing the inactivation cross sec-
tion as a function of the initial kinetic
energy of ions.
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o Both approaches agree for E > 1
MeV /n.

Inactivation cross-section o (cm?)
Number of lethal events per keV (keV-1)

@ For E < 1 MeV/n, the low-energy for-
malism predicts decreasing inactivation \\ L o015
cross sections. \ ]

108 N\ 4
@ The influence of target geometry also . \ oo
. R —@— Hadrontherapy formalism, L = 1 um N X 1
becomes noticeable at low energies. > Low energy formalism, L = 1 m ~_ Ry ]
Low energy formalism, L = 7 pm S N = 0.0005
@ This shows that NanOx offers a consis- * Low energy formalism. L = 14 um ]
. 101 10° 10t
tent framework for all ion-based RTs. Initial kinetic energy of alpha particles (MeV/n)
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Basic assumptions in NanOx for hadrontherapy

@ One SV: the cell nucleus.

@ SV with cylindrical geometry and ion beam
parallel to the SV axis.

@ Irradiation in “track-segment” conditions.
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Cell geometry used in NanOx calculations for hadrontherapy
(Alcocer-Avila et al. 2022)
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@ Presence in ion tracks of a “core” and a
“penumbra”.
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A carbon ion track of 12 MeV/n and a zoom on its core
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Benchmarking of NanOx predictions for hadrontherapy

@ The main output of NanOx are the cell o A LQ fit can be applied to NanOx pre-
surviving fractions as a function of dose. dictions to construct tables of o and (8
Vi9cells CHO-K1 cells coefficients for use in TPS.
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ot @ A study showed that NanOx predictions are

- crssmn more often more accurate than the ones of
other biophysical models.
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Survival curves for V79, CHO-K1 and HSG cells irradiated by “LET (keV/um)

carbon ions of various energies. NanOx: solid and dashed lines; o values of HSG cells for carbon ions. Experimental data

experimental da;\? (F”edAr”C.lh ett all. 22002212) filled symbols (symbols) is compared to the predictions of several biophysical
(Alcocer-Avila et al. ) models (lines) (Monini et al. 2019)

M. Alcocer-Avila, V. Levrague, M. Pedrosa-Rivera, R. Delorme, E. Testa & M. Beuve P21, UCBL1

The NanOx framework for predicting the biological effects of ion irradiations 7/14



Towards a clinical application of NanOx: the BioDoseActor

o Ali et al. 2022 developed the BioDoseActor
module in GATE for computing the biologi-
cal dose for clinical beams in hadrontherapy.

@ First tested for the Hyogo lon Beam Medi-
cal Center (HIBMC) 320 MeV//u carbon-ion
beam line using NanOx and the mMKM.

provided by BioDoseActor as a function of target depth: NanOx
(red), mMMKM (green) and experimental data (black)
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@ Recently extended to 3D for reproducing
patient treatment plannings.
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Biological dose simulated with GATE/NanOx
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Adaptation of the NanOx formalism for low-energy ions

NanOx was adapted for calculations with
the low-energy, short-range ions found in
TAT and BNCT.

— “Track-segment” approximation no
longer valid

Need of considering:

@ The energy loss of the ion in the SV.

@ The change in the number of lethal
events as a function of the ion's energy.

@ The impact of cell geometry and the
distribution of the therapeutic agent.
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Change in ion's kinetic energy when traversing a SV
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Work on targeted alpha therapy (TAT)

@ TAT exploits the properties of a-particles @ Victor Levrague PhD thesis (LPSC, Greno-
emitted by various radionuclides to destroy ble).
cancer cells.
o Dosimetric study of **At for TAT.
@ o-particles with energies of 4-9 MeV, high- 72h
LET (55-225 keV/um) and short range (30- swec / 211p¢
100 pm) (Hofmann et al. 2020). 02s
2115 r
ad2% g
m S

«100% |

207Pb

211
Basis of TAT (Nelson et al. 2020) Decay scheme of “**At (Abel et al. 2019)
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Multicellular target modeling for TAT

Coupling of Geant4 + CPOP + NanOx: Calculations considering:

o Geant4 provides the physics for ion @ The energy loss of a-particles in the SV: algo-
transport. rithm recovering the energy of primary ions at
e CPOP to generate multicellular geome- the entrance (E;) and exit (E) of the SV.
try (spheroid). @ An spheroid of 95 um radius, 75% compaction.
@ NanOx to compute cell survival and @ The cell nucleus as the only SV.
tumor control probability (TCP). o At uniformly distributed in different cell com-
partments.

Cytopl Nucleus

Different investigated distributions of the radionuclide

Cytoplasm’
7N\

Nucleus
\__/

Multicellular geometry simulated in the study with the
CPOP code (Maigne et al. 2021)
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Tumor Control Probability (TCP) results

@ TCP computed from NanOx cell sur-
viving fractions as:

n

TCP =[[(1-5)

i=1

@ The TCP was plotted as a function of
the number of a-particles per cell.

@ Main finding:
> The intracellular distribution of
the radionuclide may impact
the TCP for low radionuclide
concentrations, low compaction
spheroids, and for small tumors
(i.e. with radius < 50 pm).
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Summary of ongoing and future work

Ongoing work and outlook for TAT and
BNCT modeling

o Calculations in TAT will be compared with
experimental data (e.g. Neti et al. 2007).

@ Further TAT studies will be performed to
evaluate the impact on TCP of radionuclide
distribution inside the tumor, including its
diffusion kinetics.

@ Inclusion of a second (extranuclear) SV to
predict the biological effects due to the irra-
diation of specific cell compartments. The
model parameters will be adjusted on new
experimental data to characterize the sensi-
tivity of both SVs.
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@ The NanOx formalism is being adapted to
take into account all radiation contributions
to the biological dose in BNCT.

Other future work on the NanOx model
may focus on:

@ Response to high doses and high dose-rates
(e.g. applications in FLASH RT).

@ lIrradiation under hypoxia conditions.

o Indirect effects of irradiations, e.g. by-
stander and abscopal effects.
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NanOx: Cell survival calculation in hadrontherapy

@ The average cell surviving fraction is computed as:

= 2 PK.D) - (9),,

P(K, D): probability to have K impacts at dose D
(%S).,: mean survival over all configurations.

@ The surviving fraction includes the contribution of
local and global lethal events, considered as indepen-
dent:

Image of HSG cells (Kim et al. 2019)
NS =K S11E X Sce

@ NanOx has been applied for computing surviving
fractions of several cell lines (e.g. HSG, CHO-K1,
V79, SQ20B) irradiated by photons and different ions
(Monini et al. 2017).

Image of CHO-K1 cells


https://www.phe-culturecollections.org.uk/media/55034/CHOK1_09C035_6_hours.JPG

Cell survival to local lethal events

@ The modeling of LLE is based on the inac-

tivation of a single local target among N
distributed uniformly in the SV.

Local targets modeled as cylinders with di-
ameter dy = 20 nm and length Ly = 10 nm

NanOx calculations are based on the effec-
tive number of local lethal events (EN-
LLE):

C/’,Ckn* = —1n (1 _ C/’f(C/',Ckz))

Cif(%°z): probability that target i is inac-
tivated after an impact with configuration
¢k inducing the restricted specific energy
CisCkz in f

@ The cell surviving fraction to LLE for a con-

figuration ck of radiation impacts can be
expressed in terms of an effective local
lethal function (ELLF) F(z):

K
Sy = [ [ exp (=F (2))
k=1

with:

F(z) = —Nln(1 - f(2))



The effective local lethal function (ELLF)

@ The ELLF characterizes the response of .
X

each cell line by means of 3 free param- —
eters (20,0, h) determined through a 200 | Lo 2% &
fit to experimental values of o (Monini L
et al. 2020). 150
LL:/ L
h 7z — 7 100—
F(z)=[l+erf( O)] -
2 g 50—
. H | | 103
Zg: threshold of t.he function 5 . 55 e 4 gy
o extent of the increase Specific energy z (Gy)

h: helght of the response Effective local lethal function for the V79 cell line



Cell survival to global events

@ The computation of the cell survival to GE
uses the notion of chemical specific en-

ergy, Z:
7 = KRCE - Z

°«RCE is the relative chemical effective-
ness, defined as the ratio of the chemi-
cal yield (i.e., number of reactive chemical
species generated per 100eV) of the ion,
°K G, to that of reference radiation, G;:

CKG

CK E —
RC G

@ These quantities are obtained from MC sim-
ulations with the LQD/PHYCHEML/CHEM
codes (Gervais et al. 2006).

o Currently only primary *OH are considered
for cell survival calculation.

@ The cell surviving fraction to GE for a con-
figuration ck of radiation impacts is then:

®Sa = exp (—aGCKZ — 5G°KZ2)

@ ag and B¢ are determined for each cell
line from cell survival curves for reference
radiation.

e We currently set ag = 0 Gy™! to perform an
independent adjustment of local and global
events.
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RCE? as a function of time for hydrogen, helium, carbon and neon ions of different energies (Alcocer-Avila et al. 2023)



The NanOx codes

@ From a practical point of view, NanOx simulations require the use of several codes, as
shown in the diagram below:

CELL
DHEEIS |LQD | | TED| ?kf?af\%ﬁ SURVIVAL
CALCULATOR

PHYCHEML '—> CHEM

e TED, ALPHA CORE CALCULATOR and CELL SURVIVAL CALCULATOR are fully written
in C++; the other codes are written in C.

@ In terms of performance the bottleneck of a full NanOx calculation is usually located at the
beginning and end of the process: the calculations with the codes DHEEIS and CELL
SURVIVAL CALCULATOR can take several hours.

@ All codes run in sequential mode (no parallelization implemented yet).



Planning Innovative Cancer Therapies Using RadioElements (PICTURE)

¢

Aim: To contribute to the optimization of inno- -
vative RTs based on low-energy ion irradiations
(e.g., TAT and BNCT)

Evaluating the impact on biological dose of:
o Cell geometry.
@ Microdistribution of therapeutic agents.

@ Radioinduced events in sensitive sites other than
the cell nucleus (extranuclear SV).

— Experimental part: irradiations in full and partial
cell traversal conditions.

— Modeling part: extension of NanOx, coupling
with Geant4/Geant4-DNA including realistic cell ge-
ometries obtained from microscopy images.

Irradiations in full and partial cell traversal conditions.



Examples of cell geometries

Noyau :

A { Ellipse
L1 "b (7,05x7,05x2,5 um)

formée deau

s,

Cytoplasme :

sem 1-ellipse

f *l‘p— attachée

(M4,1x14,1x10 pm)
form ée d’eau

Simplified and 3D microscopy cell models in GATE



Overview of the NanOx formalism for low-energy ions

For low-energy ions, the number of LLE and GE
will vary as a function of the ion’s energy across
the SV. Main hypothesis are:

@ The ENLLE is given by:

Sk E; ty,t
bt % _ kE; tn,tk dn*
n dE
tkEf dE

@ Negligible fluctuations from one radiation where tFE;, * E; denote the energy of the

configuration to another (average over a ion at the beginning and end of the track in
large number of particles of the same type the SV.

Tk and energy Ey).

@ Narrow tracks.

o Similarly, for GE the concentration of pri-

@ The cell survival to LLE and GE can be . . .
mary reactive chemical species is expressed

computed from the effective number of lo-
cal lethal events and the concentration of
primary reactive chemical species, respec-
tively.

as:

1 (B
—f % G(E)dE

ms Jex g,

th:

with mg the mass of the SV.



Examples of TCP prediction in TAT and BNCT
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