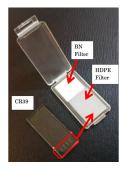
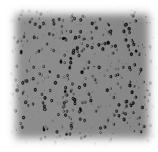
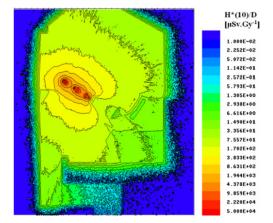


AlphaBeast: toward a 4D neutron monitoring system


Nicolas Arbor, Stéphane Higueret, The-Duc Lê (nicolas.arbor@iphc.cnrs.fr)


Neutron monitoring system

Solid Nuclear Track Detector (CR-39)

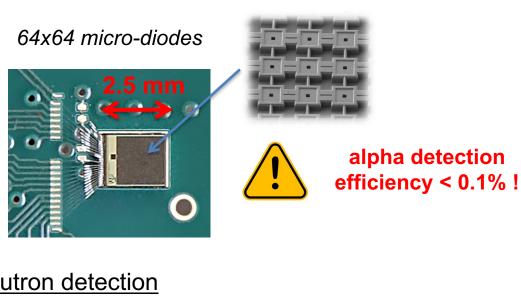


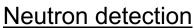
Chemical treatment

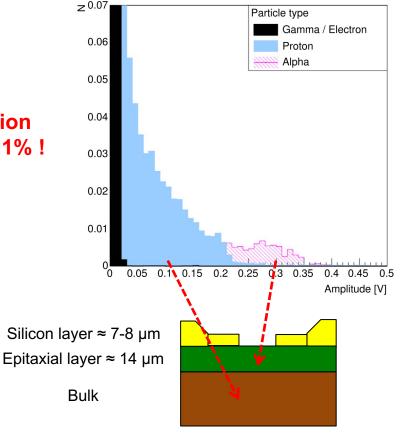
Detector reading

Tracks analysis

- Goal is to develop a 4D neutron monitoring system:
 - → sensor network (3D space)
 - real-time monitoring (1D time)
- Coupling with Monte Carlo neutron fields calculations



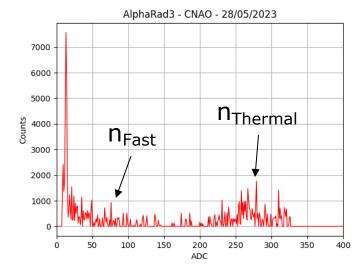

J. Farah, Phys. Med. Biol. **59** (2014)


AlphaRad3 (2017)

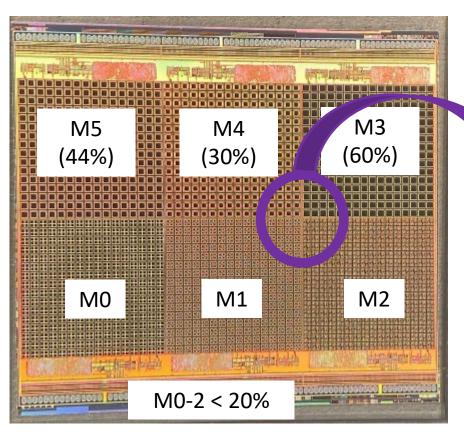
- Specially designed CMOS sensor for parallel detection of thermal and fast neutrons
- Compact and easy to use (real-time, integrated electronic, low power consumption)

- Neutrons are converted into:
 - protons (n_{fast}, PE)
 - alpha particles (n_{therm}, ¹⁰B)
- N. Arbor et al., PMB 62 (2017) N. Arbor et al., NIM A 888 (2018)

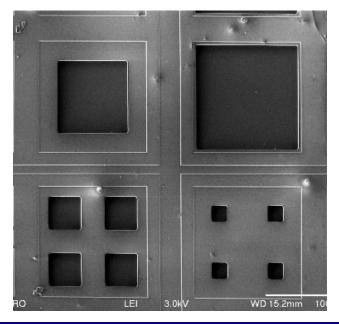
AlphaRad3 (2017)


• CNAO (April 2023): test of a prototype for autonomous measurements

It works!

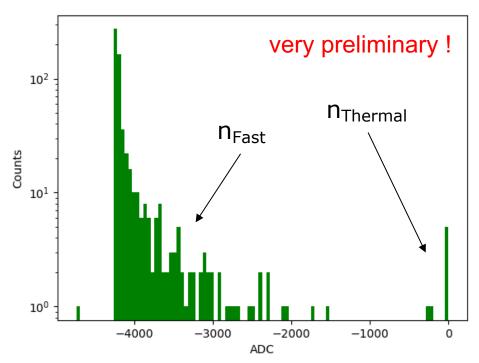


But:


- detection efficiency can be improved
- counting (thresholds on ADC signal) can be done by the CMOS itself

AlphaBeast (2023)

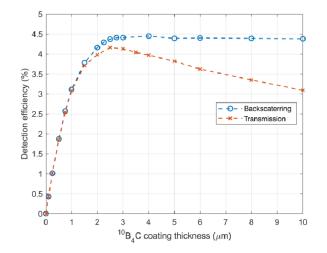
- New sensor designed in 2023 (coll. C4PI-IPHC platform)
- 6 different diodes configurations (matrix M0-M5)
- 3 internal thresholds (counters)



AlphaBeast (2023)

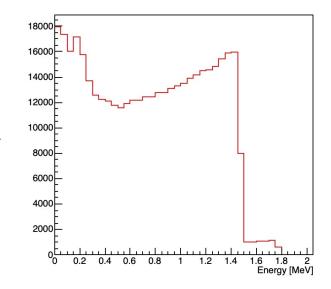
- New sensor designed in 2023 (coll. C4PI-IPHC platform)
- 6 different diodes configurations (matrix M0-M5)
- 3 internal thresholds (counters)
- CNAO (May 2023): very 1st measurements* with new sensor

AlphaBeast



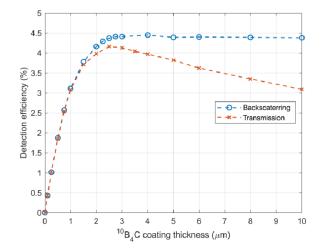
^{*} Bias parameters not optimized

Thermal neutron detection


- 10B converter on top of the sensor
- Conversion efficiency ≈ 4%

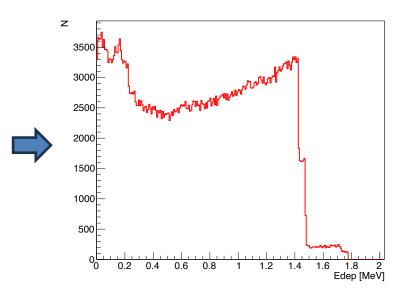
Duarte et al., 2022

Reaction (energies in MeV)	Q-value [MeV]	Cross-section [b]
3 He + 1 n \rightarrow 3 H (0.191) + 1 p (0.573) 6 Li + 1 n \rightarrow 3 H (2.73) + 4 α (2.05)	0.764 4.780	5,333 920
$^{10}\text{B} + ^{1}\text{n} \rightarrow {}^{\prime}\text{Li}(1.015) + ^{4}\alpha(1.777)$ $^{10}\text{B} + ^{1}\text{n} \rightarrow {}^{7}\text{Li}^{*}(0.840) + ^{4}\alpha(1.470)$	2.792 (g.s., 6%) 2.310 (1st exc. s., 94%)	3,837 3,837
$^{113}\text{Cd} + ^{1}\text{n} \rightarrow ^{114}\text{Cd} + \gamma (0.56) + e_{\text{conv.}}^{-}$ $^{155}\text{Gd} + ^{1}\text{n} \rightarrow ^{156}\text{Gd} + \gamma (0.09, 0.20, 0.30) + e_{\text{conv.}}^{-}$	9.043 [RJKcv ⁺ 13] 8.5 [KCM13]	20,600 60,600 [KCM13]
157 Gd + 1 n → 158 Gd + 2 γ (0.08, 0.18, 0.28) + 235 U + 1 n → fission fragments	7.9 [KCM13] 210	253,929 [KCM13] 583
238 Pu + 1 n \rightarrow fission fragments	160	748


Table 3.1: Overview of reactions and reaction products exploited for neutron detection. After [Owe12].

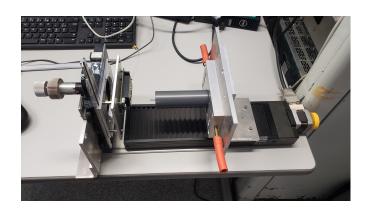
Alpha energy on AlphaBeast (Geant4 MC)

Thermal neutron detection

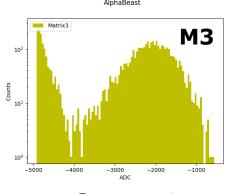

- ¹⁰B converter on top of the sensor
- Conversion efficiency ≈ 4%

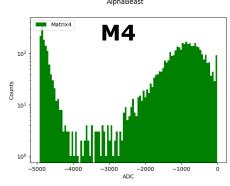
Duarte et al., 2022

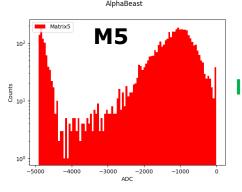
	Reaction (energies in MeV)	Q-value [MeV]	Cross-section [b]
	${}^{3}\text{He} + {}^{1}\text{n} \rightarrow {}^{3}\text{H} (0.191) + {}^{1}\text{p} (0.573)$	0.764	5,333
	$^{6}\text{Li} + ^{1}\text{n} \rightarrow ^{3}\text{H} (2.73) + ^{4}\alpha (2.05)$	4.780	920
Г	$^{10}\text{B} + ^{1}\text{n} \rightarrow {}^{\prime}\text{Li}(1.015) + ^{4}\alpha(1.777)$	2.792 (g.s., 6%)	3,837
L	$^{10}\text{B} + ^{1}\text{n} \rightarrow {^{7}\text{Li}}^{*}(0.840) + {^{4}}\alpha(1.470)$	2.310 (1st exc. s., 94%)	3,837
	$^{113}\text{Cd} + ^{1}\text{n} \rightarrow ^{114}\text{Cd} + \gamma (0.56) + e_{\text{conv.}}^{-}$	9.043 [RJKcv ⁺ 13]	20,600
	155 Gd + 1 n $\rightarrow ^{156}$ Gd + γ (0.09, 0.20, 0.30) + $e_{\text{conv.}}^{-}$	8.5 [KCM13]	60,600 [KCM13]
	157 Gd + 1 n $\rightarrow ^{158}$ Gd + γ (0.08, 0.18, 0.28) + $e_{\text{conv.}}^{-}$	7.9 [KCM13]	253,929 [KCM13]
	$^{235}\text{U} + ^{1}\text{n} \rightarrow \text{fission fragments}$	210	583
	238 Pu + 1 n → fission fragments	160	748


Table 3.1: Overview of reactions and reaction products exploited for neutron detection. After [Owe12].

Alpha deposited energy on AlphaBeast (Geant4 MC)


Alpha particles measurements


Alpha detection from ²⁴¹Am source with various distances



 $E_{alpha} \approx 5.48 \text{ MeV (d = 0 mm)}$

Measurements for distance d = 35 mm (<E_{alpha}> ≈ 1.25 MeV)

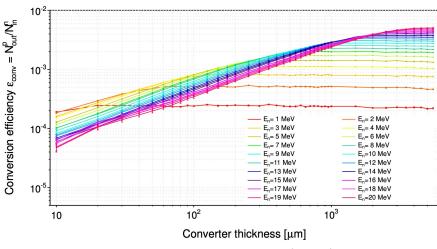
Intrinsic alpha detection efficiency > 99%!

$$\mathcal{E}_{\text{det}} \approx 59\%$$

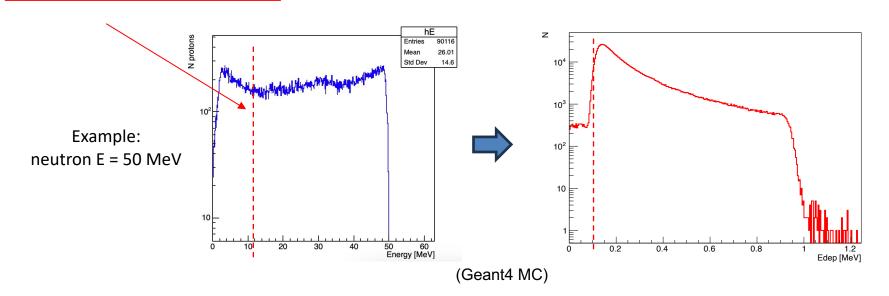
($\mathcal{E}_{\text{geo}} \approx 60\%$)

$$\mathcal{E}_{det} \approx 29\%$$

($\mathcal{E}_{geo} \approx 30\%$)


$$\mathcal{E}_{\text{det}} \approx 43\%$$
 ($\mathcal{E}_{\text{geo}} \approx 44\%$)

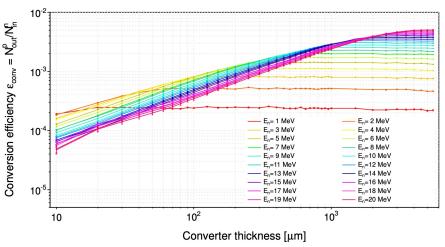
Fast neutron detection


PE converter (1 mm)

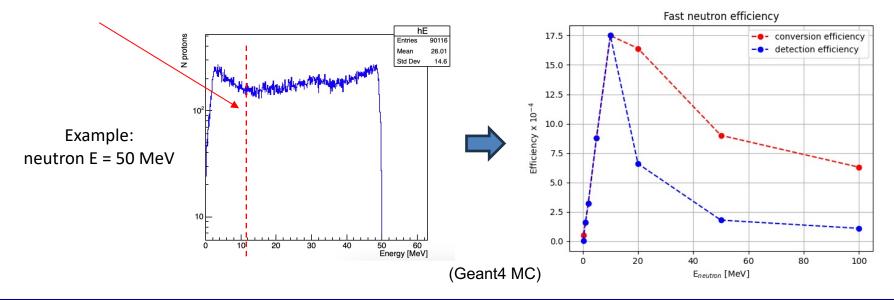
$$T = \frac{4Mm_n}{(M+m_n)^2} E \cos^2 \theta \approx \frac{4A}{(A+1)^2} E \cos^2 \theta$$

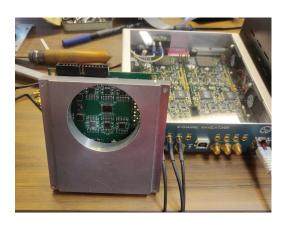
 ΔE_{min} detection ≈ 100 keV ⇔
Proton E_{max} ≈ 10 MeV

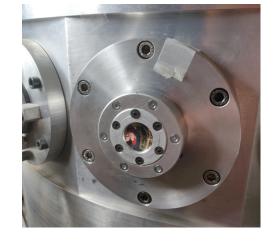
M. Vanstalle PhD (2010)

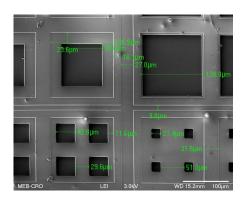


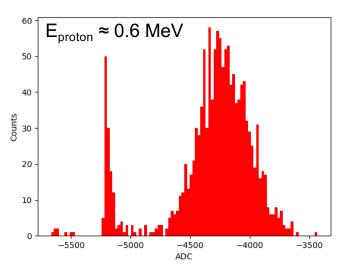
Fast neutron detection

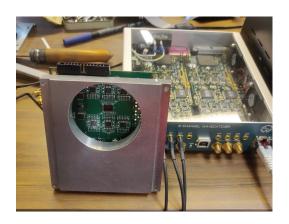

PE converter (1 mm)

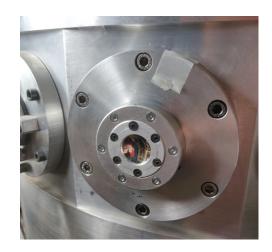

$$T = \frac{4Mm_n}{(M+m_n)^2} E \cos^2 \theta \approx \frac{4A}{(A+1)^2} E \cos^2 \theta$$

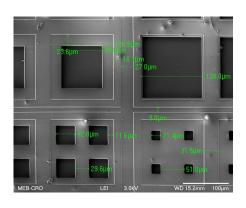

 ΔE_{min} detection ≈ 100 keV ⇔
Proton E_{max} ≈ 10 MeV

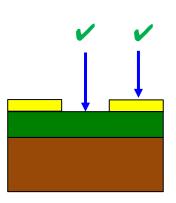

M. Vanstalle PhD (2010)

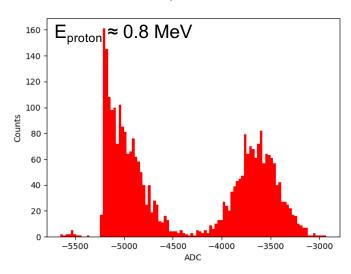


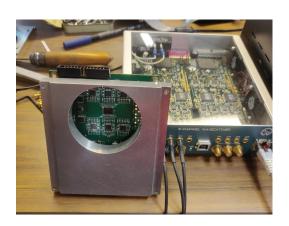

Deposited energy sub-structures

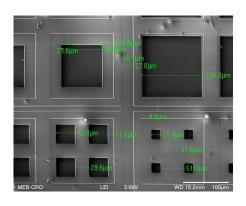


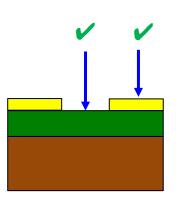

AlphaBeast

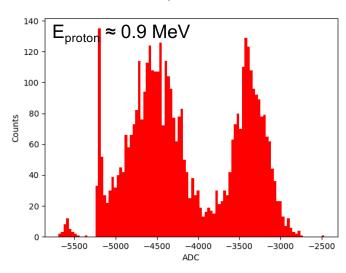


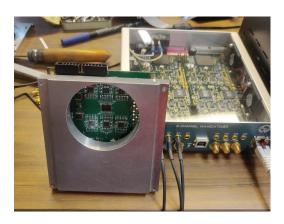


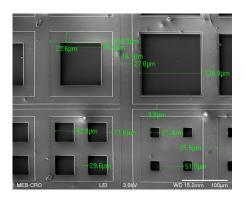

Deposited energy sub-structures

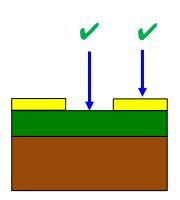

AlphaBeast

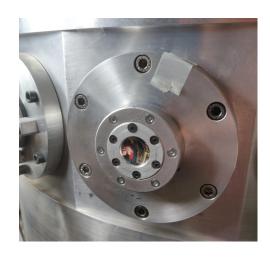


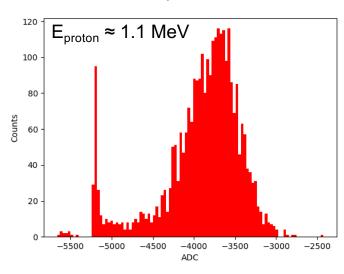


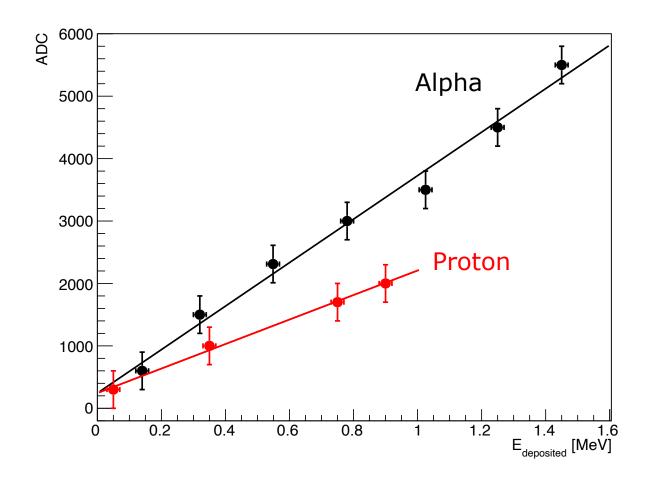

Deposited energy sub-structures



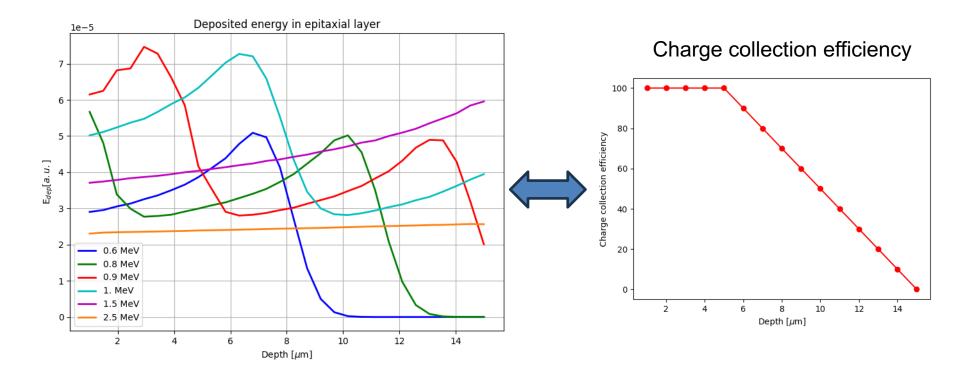

AlphaBeast



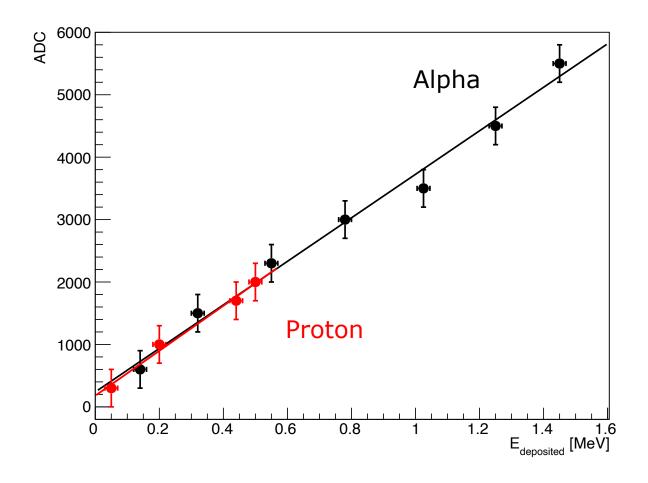




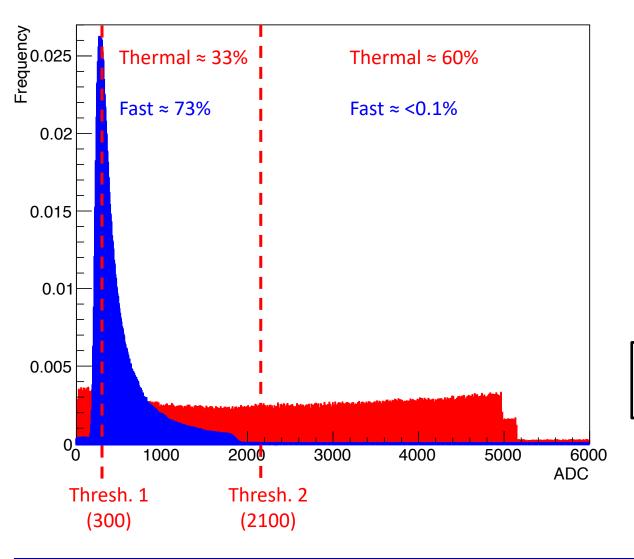
AlphaBeast


AlphaBeast energy calibration

1st hypothesis: 100% charge collection efficiency


AlphaBeast energy calibration

- 2nd hypothesis: charge collection inefficiency with depth in epitaxial layer
 - \rightarrow alpha particles deposit energy in 3-4 μm
 - \rightarrow protons deposit energy at different depths (btw 0 to 15 μm)


AlphaBeast energy calibration

2nd hypothesis: charge collection inefficiency with depth in epitaxial layer

AlphaBeast settings (on-going)

3 internal thresholds to be set for autonomous counting

Detection efficiency:

 $\mathcal{E}_{th} \approx 1 \%$ $\mathcal{E}_{fast} \approx 0.1 \% (10 \text{ MeV})$

Geometrical efficiency:

 $\varepsilon_{\text{geo}} \approx 4 \% \text{ (cm}^{-2}\text{)}$

<u>Total efficiency:</u>

 $\mathcal{E}_{th} \approx 4x10^{-4} \text{ hit/(n.s}^{-1}.\text{cm}^{-2})$ $\mathcal{E}_{fast} \approx 4x10^{-5} \text{ hit/(n.s}^{-1}.\text{cm}^{-2})$

Conclusion & Outlook

Important steps for the development of a 4D neutron monitoring system:

- 1) Prototype for autonomous measurements (*AlphaRad3* CNAO 04/2023)
- 2) Characterization of new CMOS sensor AlphaBeast
 - alpha detection efficiency ≈ 100%
 - energy calibration alpha / protons
 - internal threholds setting (counters)

Next steps?

- tests in radiotherapy room (ICANS Strasbourg)
- measurement of 3D charge collection efficiency map using alpha/proton micro-beam facility (AIFIRA – LP2i Bordeaux)
- applications @ CNAO for radiation protection (BNCT, ... ?)

