Prompt Gamma Time Imaging: a novel technique for ion treatment monitoring

Sara Marcatili

on behalf of the PGTI collaboration

LPSC - Laboratory of Subatomic Physics and Cosmology

CNRS – National Centre of Scientific Research

Treatment monitoring through the exclusive measurement of PG TOF

Goal: measure the PG vertex (r_v) distribution and exploit its correlation to the proton range

- 30 compact detectors surrounding the anatomical region of interest
- No collimator => high detection efficiency

A dedicated image reconstruction: PGTI

$$TOF = t_{stop} - t_{start} =$$
$$= T_{proton}(\mathbf{r}_{v}, v_{p}) + T_{PG}(\mathbf{r}_{v}, \mathbf{r}_{d})$$

2 unknowns: \mathbf{r}_v = PG vertex v_p = ion speed

Allows combining the response of multiple detectors:

- to reach uniform sensitivity all over the ion range
- for IMPT compatibility

The better the time resolution, the higher the technique sensitivity for ion range measurement

Reducing bunch-width related time uncertainties

S2C2 synchro-cyclotron: 8 ns bunch width, 7 p/bunch, thin target

Jacquet et al. Scientific report (2023) 13:3609

Reducing bunch-width related time uncertainties

S2C2 synchro-cyclotron: 8 ns bunch width, 7 p/bunch, thin target

Jacquet et al. Scientific report (2023) 13:3609

Proposed strategy. lower the beam intensity to Single Proton Regime (SPR)

Dauvergne et al, Front. Phys. 8:567215 (2020)

- SPR is the intensity allowing single proton tagging
- It depends on the accelerator time structure

		Synchrotron (CNAO, HIT)		Cyclotron (IBA, Varian)	Synchro-cyclotron (S2C2 IBA)
		¹² C		Protons	
Typical intensity (ions/s)		107	10 ⁹	1010	1011
Macro-structure	Period (s)	1 - 10		Ø	10-3
	Bunch width (ns)	20 - 50		0.5 - 2	8
Micro-structure	Period (ns)	100 - 200		10	16
	lons/bunch	2-5	200 - 500	200	105

Source: CLaRys collaboration

* For more info: https://arxiv.org/abs/2012.09275

Method

Non-iterative binary search for zeros to find the PG vertex distribution (λ)

Input data

- Patient's CT scan to calculate T_{proton}
- Detectors' position (centroids)

Features

 <u>Event-by-event</u> reconstruction during acquisition and very fast convergence => Real-time first spot probing

DOES NOT provide actual PG distribution in case of anatomical variation but sensitive enough to detect a variation from TPS

Simplified PGTI reconstruction: MC validation

10

MC validation

- 100 MeV protons •
- Air cavity of variable thickness •
- 30 detection modules (1 cm³) •
- 0.6% overall detection efficiency ٠

Sensitivity is a compromise between time resolution and proton statistics

CTR (RMS)	# protons	# PG	Sensitivity at 1 σ	Sensitivity at 2 σ	Beam Intensity	Goal
100 ps	107	3 x 10 ³	2	3	Single proton regime	Pre-treatment probing
100 ps	10 ⁸	3 x 10 ⁴	1	1		
1 ns	10 ⁹	3 x 10 ⁵	1	2	Nominal	On-line monitoring
n.a.	10 ⁸	3 x 10 ⁴	2	4		

Jacquet et al. Phys. Med. Biol. 66 (2021) 135003;

CNAO-IN2P3 Collaboration meeting, CNAO, October 24th 2023

Simplified PGTI reconstruction: MC validation

5/12

2022. Experimental validation with one module (63 MeV, SPR)

EXPERIMENTS

CNAO-IN2P3 Collaboration meeting, CNAO, October 24th 2023

Gamma detector development

Beam monitor developments (c.f. Gallin-Martel's talk)

Plastic detector (preliminary version): 2x2 cm²

2023. Experimental validation with two modules at S2C2 (148 MeV, SPR)

TIARA \gamma module (1.5 cm)³ PbF₂ coupled to SiPMs

Beam monitor for SPR ~ 4cm² plastic detector

- **CTR = 124 ps RMS** measured with thin target
- PG TOF distributions measured with large target

- Negligible background
- Low statistic acquisition ~ 10⁷ incident protons
- Uniform sensitivity all over the range expected

$$PGTI reconstructions; alternating approach = \int_{0}^{\lambda} \frac{1}{v(s)} ds + \frac{1}{c} ||x(\lambda) - d||^{2}$$

$$Courtesy of A. Chemi. To be submitted to PMB$$

$$T(\lambda) = T_{p}(\lambda, v) + T_{PG}(\lambda) - d||^{2}$$

$$T(\lambda) = T_{p}(\lambda, v) + T_{p}(\lambda) - d||^{2}$$

$$T(\lambda) = T_{p}(\lambda, v) + T_{p}(\lambda, v)$$

Does not require any a priori knowledge of the proton speed (or time), but using a close guess speeds-up convergence $2\sigma^2$ "

` , Depth in the geometry world (cm)

SIMULATIONS

Example: 148 MeV protons impinging on a water sphere

We can use directly the dE/dx to assess the proton range. But for this, we need a uniform sampling of the PG TOF.

=> paves the way to online dosimetry

Preliminary results

Conclusions and perspectives

1. We are developing a new approach to PG imaging with the following characteristics

- Very high sensitivity (statistically significant information within a single spot in SPR)
- Capable of measuring proton beam deviations in any direction thanks to 3D coverage (IMPT)
- Direct determination of dE/dx with uniform sensitivity

2. So far validated in SPR with cyclotron and synchrocyclotron at CAL

Future needs for the project

- Tests at nominal intensity with 8 module prototype (first test scheduled November 2023)
- The technique/detector performances ultimately depend on the accelerator time structure
 => Need to test with protons from synchrotrons
- Test the PGTI technique with carbon ions

Acknowledgements and credits

This work was partially supported by the ANR (project ANR-15-IDEX-02), INSERM Cancer (TIARA project) and by the European Union (ERC project PGTI, grant number 101040381). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

LPSC

S. Marcatili, ML. Gallin-Martel, A. André C. Hoarau, J-F Muraz, L Gallin-Martel.

GRENOBLE | MODANE

CPPM

Y. Boursier, A. Cherni, C. Morel M. Dupont, A. Garnier,

CAL D. Maneval, J. Hérault

Two positions available in the PGTI project

Postdoc fellow (2-years) **Monte Carlo simulation and data reconstruction** *Start date: asap* <u>https://inspirehep.net/jobs/2705316</u>

Research engineer/postdoc (2-years) **Development of a fast digital TDC** *Start date: asap* <u>https://euraxess.ec.europa.eu/jobs/94746</u>

Contact: sara.marcatili@lpsc.in2p3.fr

Fig. The two TOF distributions are produced by the same proton beam, but they extend on different time ranges as the PG TOF contribution depends on the detector position. TOF distributions from detectors placed at different angles **cannot be summed up in the time domain**.

But, we need to increase the number of detectors in order to:

- Increase the detection efficiency
- Have a uniform response all over the proton range (for dosimetry)
- Build a system compatible with IMPT

PGTI reconstruction allows to combine the response of multiple detectors.

Measurement of lateral beam displacement with TIARA and COG

N = total number of PG detected n_i = number of PG detected in module $_i$ Y_i = x coordinated of gamma detector Jacquet et al. Phys. Med. Biol. 66 (2021) 135003;

Possible to distinguish a lateral beam displacement of **2 mm at 2 sigma**

- **3D info:** multiple detectors allow a full angular coverage to measure deviations in any direction.
- Could be compatible with IMPT

PG TOF detection with Carbon ions (Monte Carlo)

PG Time-Of-Flight

