Comité de Suivi Individuel 1ere année

Léo Boudet

Directrice de thèse : Lucia DI CIACCIO CSI : Corinne GOY (LPSC), Diego GUADAGNOLI (LAPTh)

27 octobre 2023

Léo Boudet (LAPP)

Comité de Suivi Individuel

1/40

Recherche de nouvelle physique avec les théories de champs effectives dans la production de dibosons WZ avec ATLAS

-

2 Analyse : Recherche de violation de CP avec la Standard Model EFT

ヨトィヨト

I - Projet de qualification

Programme du LHC

Électrons à bas p_T au LHC

Présence d'électrons isolés dans les états finaux de divers processus :

- $H \rightarrow ZZ \rightarrow 4I$
- Processus di-Higgs e.g. $HH \rightarrow \gamma \gamma b \bar{b}$

Incertitude sur l'efficacité d'identification parmi les plus importantes incertitudes systématiques.

Léo Boudet (LAPP)

Comité de Suivi Individuel

イロト イポト イヨト イヨト

Efficacité de détection des électrons

L'efficacité de détection des électrons peut se factoriser comme :

$$\varepsilon = \varepsilon_{trigger} \times \varepsilon_{cluster} \times \varepsilon_{reco} \times \varepsilon_{ID} \times \varepsilon_{iso} \tag{1}$$

ヨート

< □ > < 同 > < 回 > <

$$arepsilon_{ID} = rac{N_{ID}^{e-}}{N_{reco}^{e-}}$$

pour 24 bins de $(p_T, |\eta|)$ et pour chaque année (2)

 \rightarrow Critères d'identification basé sur les distributions attendues de plusieurs variables discriminantes (e.g. forme de la gerbe EM, association de la trace,...)

Procédure : utilisation de scalefactors

Efficacité mesurée séparément pour :

o données

```
\rightarrow scalefactor SF = \varepsilon_{ID}^{data}/\varepsilon_{ID}^{MC}
```

les simulations Monte-Carlo

Correction MC en appliquant ce SF "data-driven" pour améliorer la prédiction, comparaison des quantités mesurées à la théorie.

ENAEN E VQQ

Comment avoir des candidats e- reco dont on sait qu'ils sont bien des électrons sans appliquer de cut ID?

Utiliser les désintégrations en paire électron-positron, signal region autour de la résonance en mee.

La méthode Tag and Probe

Selon le p_T des électrons différentes résonances et méthodes.

Défis à bas p_T :

- background QCD complexe
- présence de J/ψ non-prompts

Nécessité de recalculer les ε et SF à chaque amélioration du programme de reconstruction d'ATLAS : **nouveau "release"**.

- release 21 \rightarrow release 22
- À p_T < 15 GeV, ε_{ID} et SF sont encore ceux calculés avec rel 21, sous-optimaux
- OBJECTIF : Réécrire le programme de calcul pour le Run 3 (2022 à 2025), recalculer ε_{ID} et SF pour Run 2 rel22 et fournir pour Run 3 rel22

Léo Boudet (LAPP)

Tag and Probe à bas p_T

Deux types de ${\it J}/\psi$:

- Prompt : donne e- avec comportement similaire aux ed'intérêt
- Non-Prompt : trace déplacée, comportement différent

$$\tau = \frac{L_{xy} m_{J/\psi}}{p_T}$$

(3)

Cut sur τ pour enrichir l'échantilon en prompt

$$\varepsilon_{ID} = (1 - f_{NP})\varepsilon_{ID}^{P} + f_{NP}\varepsilon_{ID}^{NP}$$
(4)

ightarrow Ma qualification porte sur les e- à $p_T \in [4.5-20]$ GeV par la méthode au-cut

Ma qualification

Le code général T&P (framework), à utiliser par **toutes** les analyses ATLAS, est en réécriture.

Objectif : Fournir SF fiables pour Run 2/3

New!

tp analyse

- Sélection évènements
 - Output : histogrammes

tp efficiency

Réimplémentation de la méthode τ -cut :

- Modèle de fit sur mee
- Combinaison des MC prompt et non-prompt
- Calcul efficacités + incertitudes

Améliorations apportées par le nouveau framework

- Structure uniformisée et cohérente pour différentes méthodes Tag&Probe
- Meilleure lisibilité et subdivision du code
- Se défaire des valeurs hard-codées
- Reproducibilité des résultats
- Procédure de fit plus stable que la précédente (notamment données)
- Perspective : Meilleure sélection des électrons dans le cas où plusieurs paires T&P possibles

= nan

医下颌 医下颌

Ma contribution

tp efficiency : \checkmark opérationnel depuis le mois de mars

- Programmé pour récupérer les histogrammes nécessaires d'un fichier .root
- Performe les fits sur les ditributions m_{ee} pour les données et MC avec succès
- Combine les Monte-Carlo P et NP avec les f_{NP} en input¹

Léo Boudet (LAPP)

Ma contribution

tp efficiency : √ opérationnel depuis Mars

Efficacités et SF rel 22 calculés pour différents likelihood WP plus ou moins stricts.

Léo Boudet (LAPP)

tp analyse : sélection e- reco

Désaccord des SFs calculés précedemment à $p_T < 10$ GeV (jusqu'à 10%) Vérification très chronophage de la procédure n'a pas amélioré l'accord (peu de documentation)

Excellent accord avec T&P Z-mass (indépendante)

What plans after ending the qualification?

(En fait si, nous avons un plan ...)

Léo Boudet	(LAPP)
------------	--------

Comité de Suivi Individuel

Recherche directe de résonances infrucuteuse depuis le Higgs en $2012 \rightarrow$ nouvelles résonances au-delà de l'énergie disponible au LHC.

Nécessité de recherche **indirecte** de nouvelle physique!

Standard Model Effective Field Theory (SMEFT)

Le SM est une théorie effective à basse énergie d'un modèle plus complet : les champs contenus dans le SM sont les degrés de liberté pertinents aux énergies accessibles.

Soit Λ l'échelle d'énergie de la nouvelle physique :

$$m_i \ll \sqrt{s} \ll \Lambda$$
 pour i \in SM (5)

Le Lagrangien de la SMEFT s'écrit en ajouatnt des opérateurs de dimension supérieure :

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{c_{d,i}}{\Lambda^{d-4}} \mathcal{O}_{d,i}$$
(6)

où les $\mathcal{O}_{d,i}$ sont **composés des champs SM seuls**, $c_{d,i}$ sont les **coefficients de Wilson**.

Léo Boudet (LAPP)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Recherche de violation CP à travers les **couplages de jauge triples anormaux (aTGC)** dans le vertex WWZ.

Figure – Exemple de diagrammes de Feynman LO pour la production inclusive W^+Z avec possible aTGC

Les opérateurs de dim 6 pouvant indépendants contribuer sont ¹ :

$$\mathcal{O}_{\phi \tilde{W} B} = \phi^{\dagger} \sigma^{I} \phi \tilde{W}^{I,\mu\nu} B_{\mu\nu} \qquad \mathcal{O}_{\tilde{W} W W} = \varepsilon_{IJK} \tilde{W}_{\nu}^{I,\mu} W_{\rho}^{J,\nu} W_{\mu}^{K,\rho} \qquad (7)$$

1. arXiv:2110.02993v1

Léo Boudet (LAPP)

Comité de Suivi Individuel

Observables CP-odd pour $pp \rightarrow WZ \rightarrow e \nu_e \mu \mu$

Triple produit
$$ho_\perp(ec p_1,ec p_2,ec p_3)=ec p_1rac{ec p_2 imesec p_3}{ec p_2 imesec p_3}$$

Figure – Simulation MC des contributions à la section efficace différentielle (MadGraph + SMEFTsim interfacé avec Pythia). Ici $c_i/\Lambda^2 = 1 \text{ TeV}^{-2}$.

ightarrow Distributions et asymétries

$$A_x = \frac{\sigma(x>0) - \sigma(x<0)}{\sigma} \text{ ou } \Delta_x = \sigma(x>0) - \sigma(x<0)^1$$
 (8)

1. arXiv:2110.02993v1

Léo Boudet (LAPP)

Maximum likelihood fit avec eft-fun

eft-fun permet de fitter les distributions MC aux sur les données : **Input :** Distributions MC pour SM seul et SMEFT + données ATLAS **Output :** Fit, scan des coefficients de Wilson, test statistiques

En cours : utiliser les variables CP impaires précédentes pour contraindre les c_i/Λ^2

・ 同 ト ・ ヨ ト ・ ヨ ト

 $p_{\perp}(W,\mu^-,\mu)$ en GeV canal $W+Z
ightarrow \mu
u + \mu^-\mu^+$

Définir le binnning des variables pour unfolding (corrections effets détecteur)

Comparaison des 4 canaux, possible fusion pour réduire les incertitudes statistiques :

A API > 4

- $W + Z \rightarrow e\nu + ee$
- $W + Z \rightarrow \mu \nu + ee$
- $W + Z \rightarrow e\nu + \mu\mu$
- $W + Z \rightarrow \mu \nu + \mu \mu$

Conclusion et suite

 Qualification : Fin en novembre 2023, documentation en cours d'écriture

ATLAS Note EGAM-2023-10 23rd October 2023

Léo Boudet^a ^aLaboratoire d'Annecy de Pirsiane des Particules

In this note is explained how the J/ψ τ -cut method has been reimplemented in the new

TagAndProbe software. We present identification efficiencies and scalefactors results within the range 4.5 < p_T < 20 GeV for Run 2 and early Run 3 in Release 22.</p>

- Opérations: 24 + 160 heures de shift en salle de contrôle ATLAS pendant les collisions proton-proton entre fin avril et début juillet, supervision des calorimètres et détecteurs Forward
- Analyse : Ajout d'observables dans le framework d'analyse, contribution à la prochaine publication diboson

< ロト < 同ト < ヨト < ヨト

Conclusion et suite

Écoles d'été :

- Methods of Effective Field Theory and Lattice Field Theory, Bad Honnef (Allemagne), 9-21 juillet (poster présenté!)
- European School of High Energy Physics, Grenaa (Danemark), 6-19 septembre

Merci pour votre attention!

3 x 3

Parcours d'un électron

- presampler : estimer perte d'énergie avant le calorimètre EM
- layer 1 : fine granularité, différencier e^-e^+ des π^0 ou γ convertis
- layer 2 : plus large, mesure dépôt d'énergie
- layer 3 : estimer la fuite vers le calorimètre hadronique

化口下 化塑下 化医下不足下

ID Likelihood working points

Eur. Phys. J. C (2017) 77:195

Page 7 of 45 195

 Table 2
 The variables used in the different selections of the electron identification menu

	Cut-bas	ed			Likelihood		
Name	Loose	Medium	Tight	Multilepton	Loose LH	Medium LH	Very Tight LH
R _{Had(1)}	~	~	~	√	~	 Image: A set of the set of the	✓
f_3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$w_{\eta 2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
R_{η}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	\checkmark
R_{ϕ}					\checkmark	~	√
Wstot	\checkmark	\checkmark	~	\checkmark			
Eratio	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	√
f_1					\checkmark	√	√
nBlayer		\checkmark	\checkmark	1	\checkmark	~	√
n _{Pixel}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark
n _{Si}	\checkmark	\checkmark	\checkmark	~	\checkmark	√	√
d_0		\checkmark	~			~	~
σ_{d_0}						√	√
$\Delta p/p$				\checkmark	\checkmark	√	√
nTRT		\checkmark	~	\checkmark			
$F_{\rm HT}$		\checkmark	\checkmark	\checkmark	\checkmark	√	√
$\Delta \eta$	\checkmark	\checkmark	\checkmark	1	\checkmark	~	√
$\Delta \phi$			\checkmark				
$\Delta \phi_{\rm res}$				\checkmark	\checkmark	√	√
E/p			\checkmark				
isConv			\checkmark				\checkmark

Léo Boudet (LAPP)

Comité de Suivi Individuel

27 octobre 2023

▲口 > ▲圖 > ▲ 国 > ▲ 国 > ―

$J/\psi(1S)$ DECAY MODES

	Mode	Scale factor/ Fraction (Γ_i/Γ) Confidence leve
Г1	hadrons	(87.7 ± 0.5)%
Γ2	virtual $\gamma \rightarrow hadrons$	$(13.50 \pm 0.30)\%$
Γ3	ggg	(64.1 ± 1.0)%
Γ4	γgg	$(8.8 \pm 1.1)\%$
Γ ₅	e ⁺ e ⁻	(5.971± 0.032) %
Γ ₆	$e^+e^-\gamma$	[a] (8.8 \pm 1.4) $ imes$ 10 $^{-3}$
Γ ₇	$\mu^{+}\mu^{-}$	(5.961± 0.033) %

T(15) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ ₁	$\tau^+ \tau^-$	(2.60±0.10) %	
Γ_2	$e^{+}e^{-}$	$(2.38\pm0.11)\%$	
Γ3	$\mu^{+}\mu^{-}$	(2.48±0.05) %	
		ladronic decays	
Гл	n'(958) anything	(2.94 ± 0.24) %	

Γ4	$\eta'(958)$ anything	(2.94±0.24) %
Γ5	$J/\psi(1S)$ anything	$(6.5 \pm 0.7) \times 10^{-4}$

$$f_{NP} = \frac{\sigma(pp \to B + X \to J/\psi + X')}{\sigma(pp \xrightarrow{inclusive} J/\psi + X'')} a$$
(9)

・ロト (雪下) (日下)

E 990

Systematic source	Variations
Cut sur $ au$	<i>τ</i> < 0.2 ps
	au < 0.4 ps
Isolation du probe e-	Aucune condition $p_T^{cone0.2}/p_T$ $p_T^{cone0.2}/p_T < 0.02$ $p_T^{cone0.2}/p_T < 0.20$
Chebychev SS background	Polynôme ordre 3 Polynôme ordre 2
<i>m_{ee}</i> signal region	[2.7, 3.4] GeV [2.8, 3.3] GeV

E 990

< ロ > < 同 > < 回 > < 回 > - < 回 > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □

Calorimètres d'ATLAS

Sac

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

Likelihood WP LooseAndBLayer, $10 < p_T < 15$ GeV (baseline variation)

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

Likelihood WP LooseAndBLayer, $10 < p_T < 15$ GeV (baseline variation)

イロト イポト イヨト イヨト

Likelihood WP LooseAndBLayer, $10 < p_T < 15$ GeV (baseline variation)

32/40

< ロ > < 同 > < 回 > < 回 >

Dénominateur

Léo Boudet (LAPP)

27 octobre 2023

900 33/40

Accord MC release 21

Léo Boudet (LAPP)

Comité de Suivi Individuel

27 octobre 2023 3

34/40

臣

Exemple : Incertitudes pour efficacité MC, LooseAndBLayerLLH working point, année 2018.

Statistique

< ロ > < 同 > < 回 > < 回 >

Systématique

э

Négliger les opérateurs de dimension 8 car $O(\Lambda^{-4})$ avec $\frac{1}{\Lambda}\ll 1$

$$|\mathcal{M}|^{2} = |\mathcal{M}_{SM}|^{2} + \frac{2}{\Lambda^{2}} \Re(\mathcal{M}_{SM}^{*}\mathcal{M}_{6}) + \frac{1}{\Lambda^{4}} |\mathcal{M}_{6}|^{2}$$
(10)

Terme quadratique $O(\Lambda^{-4})$ également.

Pour rester cohérent, seul l'effet de l'interférence pris en compte

э.

医下颌 医下口

Opérateurs dim 6 dans la base Varsovie

	(X^3)		$(\psi^2 \phi^3)$		$(\psi^2 \phi^2 D)$	
$O_{\tilde{G}GG}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$O_{u\phi}$	$(\phi^{\dagger}\phi)(\overline{q}u\tilde{\phi})$	$O_{\phi ud}$	$i(\tilde{\phi}^{\dagger}D_{\mu}\phi)(\overline{u}\gamma^{\mu}d)$	
$O_{\tilde{W}WW}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$O_{d\phi}$	$(\phi^{\dagger}\phi)(\overline{q}d\phi)$			
		$O_{e\phi}$	$(\phi^{\dagger}\phi)(\bar{l}e\phi)$			
$(X^2\phi^2)$			(ψ^4)		$(X\psi^2\phi)$	
$O_{\phi \tilde{G}}$	$\phi^{\dagger}\phi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	O_{ledq}	$(\bar{l}^j e)(\bar{d}q^j)$	O_{uG}	$(\overline{q}\sigma^{\mu\nu}T^A u)\tilde{\phi}G^A_{\mu\nu}$	
$O_{\phi \tilde{W}}$	$\phi^{\dagger}\phi\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	$O_{lequ}^{(1)}$	$(\overline{l}^{j}e)\epsilon_{jk}(\overline{q}^{k}u)$	O_{uW}	$(\overline{q}\sigma^{\mu\nu}u)\tau^I\tilde{\phi}W^I_{\mu\nu}$	
$O_{\phi \tilde{B}}$	$\phi^{\dagger}\phi\widetilde{B}_{\mu u}B^{\mu u}$	$O_{lequ}^{(3)}$	$(\overline{l}^{j}\sigma^{\mu\nu}e)\epsilon_{jk}(\overline{q}^{k}\sigma_{\mu\nu}u)$	O_{uB}	$(\overline{q}\sigma^{\mu\nu}u)\tilde{\phi}B_{\mu\nu}$	
$O_{\phi \tilde{W}B}$	$\phi^{\dagger} \tau^{I} \phi \widetilde{W}^{I}_{\mu u} B^{\mu u}$	$O_{quqd}^{(1)}$	$(\overline{q}^j u)\epsilon_{jk}(\overline{q}^k d)$	O_{dG}	$(\overline{q}\sigma^{\mu\nu}T^Ad)\phi G^A_{\mu\nu}$	
		$O_{quqd}^{(8)}$	$(\overline{q}^j T^A u) \epsilon_{jk} (\overline{q}^k T^A d)$	O_{dW}	$(\overline{q}\sigma^{\mu\nu}d)\tau^{I}\phi W^{I}_{\mu\nu}$	
				O_{dB}	$(\overline{q}\sigma^{\mu\nu}d)\phi B_{\mu\nu}$	
				O_{eW}	$(\bar{l}\sigma^{\mu\nu}e)\tau^{I}\phi W^{I}_{\mu\nu}$	
				O_{eB}	$(\bar{l}\sigma^{\mu\nu}e)\phi B_{\mu\nu}$	

Table 1: List of CP-odd dimension-6 operators present in the Warsaw basis for one fermion generation.

・ロト (雪) (ヨ) (ヨ)

Coefficients de Wilson : contraintes existantes

Wilson	Includes	95% confidence	95% confidence interval [TeV ⁻²]		
coefficient	$ \mathcal{M}_{d6} ^2$	Expected	Observed		
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%	
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%	
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%	
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%	
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%	
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%	
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%	
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%	

Publication sur la Vector Boson Fusion $Z + ii^{1}$

Table 4: Expected and observed 95% confidence interval for the four Wilson coefficients, using fits to the EW Zjj differential cross-section measured as a function of $\Delta \phi_{ii}$. Results are presented when including or excluding the pure dimension-six contributions to the EFT prediction. The *p*-value quantifying the compatibility with the SM hypothesis is also shown for each Wilson coefficient. The global p-value associated with constraining these four Wilson coefficients is investigated using pseudo-experiments, as outlined in the text.

1. arXiv:2006.15458

Léo Boudet (LAPP)

f

Triple produits d'intérêt

Calcul des asymétries pendant le stage de M2 l'an dernier

Observable	Asymétries Δ (fb)		
	SM	$SM+\mathcal{O}_{\tilde{W}WW}$	$SM+\mathcal{O}_{\phi \widetilde{W}B}$
$p_{\perp}(\sum \vec{p}^{z}, \vec{p}_{Z}, \vec{p}_{e})$	0.001	0.618	-0.129
$oldsymbol{ ho}_{\perp}(ec{ ho}_{W},ec{ ho}_{\mu^{-}},ec{ ho}_{e})$	0.019	0.548	-0.093
$oldsymbol{ ho}_{\perp}(ec{ ho}_{W},ec{ ho}_{\mu^+},ec{ ho}_{e})$	-0.030	0.506	-0.100
$oldsymbol{ ho}_{\perp}(ec{ ho}_W^{z},ec{ ho}_e,ec{ ho}_{\mu^-})$	-0.056	-0.237	0.062
$p_{\perp}(\sum \vec{p}^{z}, \vec{p}_{\mu^{-}} + \vec{p}_{e}, \vec{p}_{\mu^{+}})$	-0.025	-0.378	0.061
$p_{\perp}(\sum \vec{p}^{z}, \vec{p}_{\mu^{+}} + \vec{p}_{e}, \vec{p}_{\mu^{-}})$	-0.011	-0.259	0.040
$\sin \phi_{WZ}$	-0.034	- 0.749	- 0.041
Stat. uncertainty	\pm 0.03	\pm 0.008	\pm 0.03

Table – Asymétries pour SM et SM+SMEFT avec l'échelle d'énergie $c_i/\Lambda^2 = 1 \text{ TeV}^{-2}$

・ロト (雪下) (日下)

э.

Comparaison simulation SM aux données

Observable	A_{MC}	A _{data}
$p_{\perp}(\sum \vec{p}^{z}, \vec{p}_{Z}, \vec{p}_{e})$	0.003	-0.007
$p_\perp(ec{p}_W,ec{p}_{\mu^-},ec{p}_e)$	0.001	-0.004
$p_{\perp}(ec{p}_W,ec{p}_{\mu^+},ec{p}_e)$	0.000	0.008
$p_{\perp}(\vec{p}_W^z,\vec{p}_e,\vec{p}_{\mu^-})$	-0.004	0.002
$p_{\perp}(\sum \vec{p}^{z}, \vec{p}_{e} + \vec{p}_{\mu^{-}}, \vec{p}_{\mu^{+}})$	-0.002	-0.005
$p_{\perp}(\sum \vec{p}^{z}, \vec{p}_{e} + \vec{p}_{\mu^{+}}, \vec{p}_{\mu^{-}})$	-0.001	-0.004
$\sin \phi_{WZ}$	-0.000	0.009
Stat. uncertainty	\pm 0.003	\pm 0.004

Table – Asymmetries measured in Run 2 data and computed from SM only simulation.

< A

Figure – Comparaison MC pour SM seul, ATLAS Run 2 data

Léo Boudet (LAPP)

40/40