Direct search for dark matter with DarkSide-20k experiment

PhD supervisors: Fabrice Hubaut (CPPM), Emmanuel Nezri (LAM) 4th of December, 2023

DARKSIDE

Marie van Uffelen - 3rd year PhD student

Rich evidence for Dark Matter (DM) from gravitational effects at all scales

Gravitational lensing

Missing mass in the Universe **Standard model** does not provide particle candidate for dark matter

Direct search for WIMP dark matter

Direct search for WIMP dark matter

Direct search for WIMP dark matter

On Earth

How to search for WIMPs?

Create scalable detectors

DarkSide-20k : 20t of argon at liquid phase in fiducial volume (700t in total)

Largest TPC ever built for DM search purposes

Compute the sensitivity of the experiment

DarkSide-20k : competitive at M_{χ} > 100 GeV

Searching for WIMPs

Shield the detector from background

DarkSide-20k : located at LNGS under 1.4km of roc in Italy to shield from cosmic rays

Understand and discriminate backgrounds and signal

Argon: extremely powerful discrimination between backgrounds and signal

Background budget (after cuts): 0.1 event / 10y

How to search for WIMPs?

Create scalable detectors

DarkSide-20k : 20t of argon at liquid phase in fiducial volume (700t in total)

Largest TPC ever built for DM search purposes

Shield the detector from background

DarkSide-20k : located at LNGS under 1.4km of roc in Italy to shield from cosmic rays

Understand and discriminate backgrounds and signal

Argon: extremely powerful discrimination between backgrounds and signal

Background budget (after cuts): 0.1 event / 10y

for WIMPs

State of the art of WIMP direct detection

State of the art of WIMP direct detection

DarkSide-20k

Signal characteristics

- Nuclear Recoil (NR)
- Single scatter (SS)
- Energy Region of Interest (Rol) at low mass: $E \in [0 - 35]$ keV_{nr}

Background characteristics

- Photons & electrons (ER), neutrons (NR) from residual radioactivity

- Neutrinos (ER/NR)

S1/S2 very different for ER and NR + argon: **Pulse Shape** Discrimination (PSD) => verygood separation NR/ ER

The detection principle below M_{γ} =10 GeV

 sub-keV threshold to extract S2 signal (without producing S1) -> possibility to compute the sensitivity of DS20k at masses below 10 GeV if able to understand a S2 - only analysis (no separation ER/NR \rightarrow **not a background free** analysis anymore)

• DS50 proved to be able to perform such analysis (2207.11966 (WIMP NR), 2207.11967 (WIMP NR) with Migdal effect), 2207.11968 (other light DM <u>signals with electron final state</u>)

The detection principle below M_{γ} =10 GeV

 sub-keV threshold to extract S2 signal (without producing S1) -> possibility to compute the sensitivity of DS20k at masses below 10 GeV if able to understand a S2 - only analysis (no separation ER/NR \rightarrow **not a background free** analysis anymore)

Excellent bkg description above 4 N_{ρ^-}

DarkSide-20k : background model

Internal backgrounds

- Cosmogenic ³⁹Ar → bulk background ∝ FV size
- Assumption: activity of DS50 = 0.73 mBq/kg
- ➡DS50 : ⁸⁵Kr in data, here not taken into account thanks to cryogenic distillation

We estimated the **proportion of background** WIMP candidate events that we will **keep in the real data analysis** (events without pile up): **72%**

External backgrounds

- ➡Radio-contamination of the materials
- ➡SiPMs from the TPC, Gd loaded acrylic walls, Stainless steel vessel
- Precise material assays to
 d e t e r m i n e t h e i r
 contamination

ν background

- ➡Consider atmospheric and solar neutrinos
- →CE ν NS and ν ES interactions

DarkSide-20k : signal

Signal : WIMP NR

➡Rate of interaction computed with Standard Halo Model (SHM) & Recommended conventions Baxter et al. Eur.Phys.J.C 81 (2021) 10, 907

- Signal rate \propto FV size
- ➡Event rate :

$$\frac{dR}{dE} = \frac{\rho_0}{m_{\chi}m_A} \int_{v > v_{min}}^{v_{max}} \frac{d\sigma}{dE} v f(\vec{v}) d^3 \vec{v}$$

WIMP velocity distribution on Earth with kinetic uncertainties

Signal : WIMP NR

Rate of interaction computed with Standard Halo Model (SHM) & Recommended conventions Baxter et al. Eur.Phys.J.C 81 (2021) 10, 907

- \rightarrow Signal rate \propto FV size
- →Event rate :

$$\frac{dR}{dE} = \frac{\rho_0}{m_{\chi}m_A} \int_{v > v_{min}}^{v_{max}} \frac{d\sigma}{dE} v f(\vec{v}) d^3 \vec{v}$$

DarkSide-20k : signal

WIMP velocity distribution from DM + baryon

cosmological simulations

☆DS50 observed exclusion limit at 3 GeV

DS-20k low mass sensitivity

1 year

* Hypothesis : same ³⁹Ar activity as DS-50

DS20k: 25x more sensitive than DS50

Comparison with other experiments

DS-20k should quickly significantly improve existing limits at M_{γ} < 4 GeV

Tests of impacts from the models and other DM candidates

- Tests of different internal backgrounds
- Tests of different detector models 2.
 - XY resolution (nominal = 1cm, change to 2 cm and 5 cm)
 - Electron lifetime (nominal = 15.8 ms, change to 8 ms)
 - FV definition (nominal radial cut = 30 cm, change to 20 cm and 10 cm)
 - Single electron resolution (nominal = 0.27, chante to 0.15 and 0.50)
- Sensitivity increase with exposure 3.
- Analysis impact ($N_{e^{-}}$ cut, systematics, multi-variate analysis) 4.
- External background simulations with more recent version of simulation software 5.
- Signal systematics from astrophysical uncertainties
- Sterile neutrino)

Impact of experimental assumptions

- Sensitivity robust against detector model assumptions
- Main sensitivity change would come from wrong internal backgrounds level assumption
- Sensitivity increases with $\sqrt{exposure}$
- Multi-variate analysis won't improve much the result

Impact of theoretical assumptions

Sensitivity to other signals (ER) (LDM with F~1, LDM with F~1/q², Dark Photon, ALPs, WIMP ER with Migdal, **Other signal models**

How to search for WIMPs?

Create scalable detectors

DarkSide-20k : 20t of argon at liquid phase in fiducial volume (700t in total)

Largest TPC ever built for DM search purposes

10⁻⁴⁷

10⁻⁴⁸

10⁻⁴⁹ 0.01

[cr

σsı

Compute the sensitivity of the experiment

0.1

DarkSide-20k : competitive at **Asensitivity uncertainty:**

1

 M_{χ} [TeV/c²]

LZ 2.7 y (15.3 t-y)
 XENONnT 5 y (20.2 t-y)
 DS-20k Fid. 5 y (100 t-y)
 DS-20k Full 5 y (250 t-y)

- DS-20k Full 10 y (500 t-y) - DS-20k Full 20 y (1000 t-y)

theoretical uncertainties from the modeling of the DM halo At high and low mass

Searching for WIMPs s from halo Other commitments during PhD

Shield the detector from backgro

DarkSide-20k : located at LNGS under 1.4km of Italy to shield from cosmic rays

Understand and discriminate

ound
f roc in
Load Anchors
Calibration Pipe
Anode OP
PMMA Anode Plate
Wire Grid Frame
Anode
Veto Reflector
Titanium Vessel
Gd PMMA Barrel
51.1.1.0
Field Cage
Reflector Cage
Reflector Cage Cathode
Reflector Cage Cathode PMMA Cathode Plate
Reflector Cage Cathode PMMA Cathode Plate Cathode OP

Back up

Results of DarkSide-50

DS50 low mass analysis

Background model

Excellent bkg description above 4 N_{e^-}

DS50 low mass analysis **WIMP NR**

Excellent bkg description above 4 N_{ρ^-}

Migdal effect = possible additional effect of emitted electrons in NR

DS50 low mass analysis

WIMP NR + Migdal

With NR + additional ER component, higher probability to exceed detection threshold \rightarrow scan lower WIMP masses

Light Dark Matter (LDM)

20MeV - 1GeV

Elastic scatter of LDM off bound electrons

LDM = Sub GeV fermion or scalar boson

Mediator can be heavy (\rightarrow F~1) or light $(\rightarrow F \sim 1/q^2)$

Axion Like Particles (ALPs)

30eV - 20keV

Absorption of ALP by bound electrons \rightarrow monoenergetic signal

ALP = pseudo scalar particle

Coupling ALP - electrons $\rightarrow g_{Ae}$

Other DM signals (ER)

Sterile neutrino

7keV - 35keV

Inelastic scatter of sterile ν off bound electrons

Possible mixing with active neutrinos \rightarrow PMNS-like matrix element $|U_{e4}|^2$

Dark Photon (DP)

30eV - 20keV

Absorption of DP by bound electrons \rightarrow monoenergetic signal

DP = vector boson particle, mediator of a new dark force with new local U(1) symmetry

Kinetic mixing between DP and SM photons \rightarrow strength κ

DS50 low mass analysis

Other DM signals E DarkSide-50 (2018) 0⁻³³ 10 (2021) Sterile ν PandaX-II XENON10 . (2017) 10^{-2} 10-34 DarkSide-50 (2022) 2 $|U_{e4}|$ ¹⁷⁷Lu β Spectrum (1996) 10-35 ³⁵S β Spectrum (1993) Neutrino 1000 **10**⁻³ ⁶³Ni β Spectrum (1999) 10-12 Ч , DarkSide-50 (2022) Ster 10⁻¹³ ¥ NuSTAR (2020) 10⁻¹⁴ 044 10^{-4} 15 20 25 10 30 m_{ν} (keV/ c^2) 10⁻¹⁵ ห ช บ

27

10⁻¹⁶

10-17

10

Theoretical sys. uncertainties from the DM halo modeling

Signal systematics from DM halo (astro) uncertainty

TPC calibration

The calibration of DarkSide-20k DARKSIDE **Design and stakes** 32

Goals of the calibration

- Calibrate energy deposits of NR signal and ER background
- Study the linearity of the detector response
- Study its spatial uniformity
- Study its time stability

DARKSIDE

Simulation of the calibration - software = GEANT4-based

Impact of the tubes on the detector *Veto's Light Collection Efficiency (LCE)*

LCE			Relative loss of LCE (%)
Full veto buffer (3D)			0.9
Octants with pipes			1.1
Errors on these numbers are < 1e-2 (Gaussian statistical errors)			
	With r	reflecto	r-wrapped stainless
			► = Be

Tubes can absorb the light emitted by the argon when scintillating: this could lower the veto LCE

Asymmetry between octants up to 0.3 %

tests of optical boundaries

Very low background experiment & stainless steel tubes => control radio-purity

	²³⁸ U up	²³⁸ U mid	²³⁸ U low	²³² Th	235 U	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs
Activity (mBq/kg)	1	0.72	1	0.83	0.046	0.49	3.1	0.86
Neutron yield (n/ decay)	1.1e-9	4.8e-7	1.1e-9	1.8e-6	3.7e-7			

Background induced in the veto and in the TPC

From (α, n) reactions due to natural contamination in ²³²Th and ²³⁸U and spontaneous fission of ²³⁸U

	²³⁸ U up	²³⁸ U mid	²³⁸ U low	²³² Th	235 U
NR bknd / 10 years (200 t.y.)	4.0e-9	1.3e-6	4.0e-9	5.7e-6	6.0e-8

NR background from pipes represents < 0.01% of DS20k budget: fully negligible

• Same study for ER : ER background also negligible + S1/S2 ratio and PSD (= argon asset)

