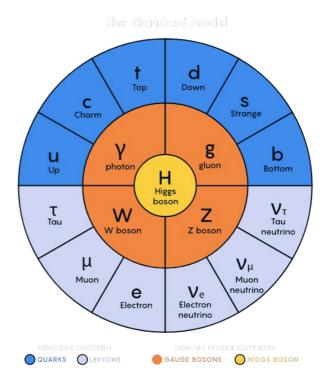


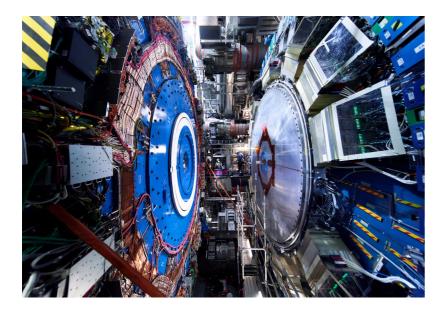
Search for a heavy scalar X decaying to a scalar S and a Higgs boson in the $X \rightarrow SH \rightarrow bb\gamma\gamma$ channel with ATLAS Run-2 data

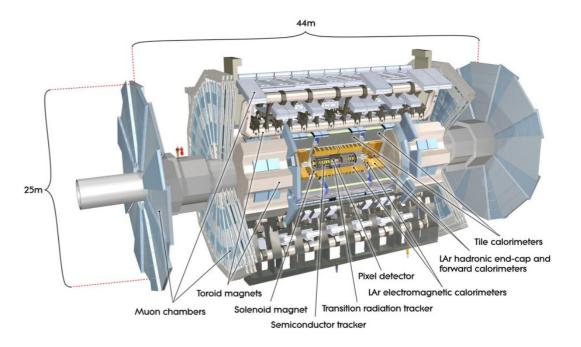
Maxime Fernoux Supervisors : Elisabeth Petit and Arnaud Duperrin

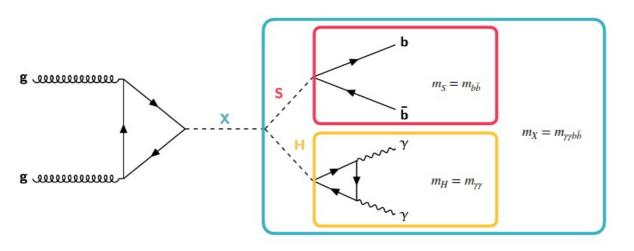
Aix-Marseille University / CNRS / CPPM

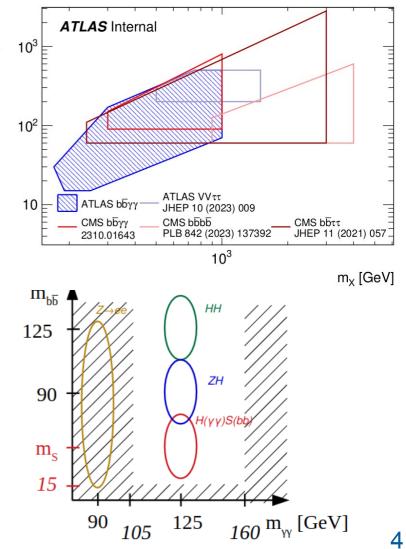

CPPM 3rd year PhD students seminar 27.11.2023

Search for Beyond Standard Model physics


- SM is great but have some caveats :
 - Doesn't explain gravity
 - Doesn't explain neutrino oscillations and mass
 - No dark matter candidate
 - \rightarrow We need physics beyond standard model (BSM)

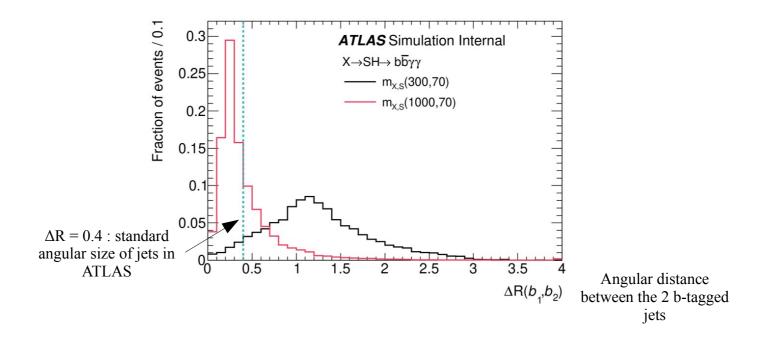

- Some BSM models predict additional scalar particles in different range of masses, notably in the Higgs sector
 - Double Higgs doublet model : 2HDM
 - Next-to-Minimal Supersymmetric Standard Model : NMSSM ... etc
 - \rightarrow Could be at reach of LHC and Atlas !


- ATLAS is a multipurposed detector using proton-proton collisions at the Large Hadron Collider (LHC) located at CERN
 - Higgs boson discovered in 2012
 - Make precision measurements to detect deviations from the SM
 - Search for BSM particles, especially in the Higgs sector



- We search for a heavy scalar X decaying into a light scalar S and the SM Higgs where $H \rightarrow$ $\gamma\gamma$ and S \rightarrow bb
- Search is **model-independent** and the targeted range of X and S masses mX and mS is : • 15 < mS < 500 GeV and 170 GeV < mX < 1 TeV m_s [GeV]
- Analysis uses 140 fb⁻¹ Run-2 data at $\sqrt{s} = 13$ TeV •

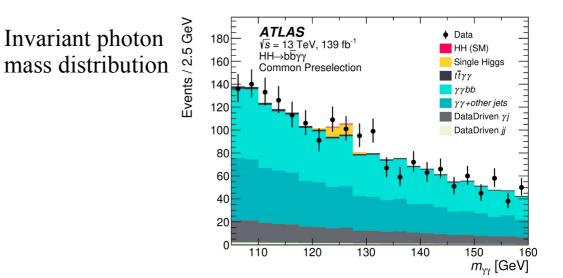
- Analysis is also heavily linked to HH \rightarrow bbyy analysis Di-Higgs is a major goal of LHC physics program
 - Can test new strategies with this final state
 - Could also help to remove potential background to HH signal



Different search regions

• A challenging situation arises when mS is much smaller than mX (mS/mX < around 0.1) : b-jets from the S decay are boosted and reconstructed as one b-tagged jet

 \rightarrow We separate the search space in a **resolved region** with 2 b-tagged jets and a **merged region** with only one b-tagged jet

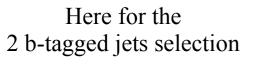


• Selection

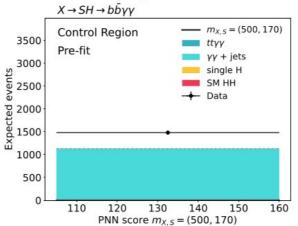
Table 4: The definitions of selections used in the analysis.

	2 b-tagged	1 b-tagged	
Number of 'tight' and isolated photons	≥ 2		
$m_{\gamma\gamma}$ [GeV]	∈ [105, 160]		
Number of leptons	= 0		
Number of central jets	∈ [2, 5]		
Number of b-tagged jets @ 77% WP	= 2	= 1	

• Predicted background yields (from theoretical cross sections) : main non-resonant background is $\gamma\gamma$ + jets, main resonant ones are ttH, ggH, ZH and also VBFH for 1 b-jet selection


2 b-tagged je	ts
	Selection
HH ggF+VBF	1.691 ± 0.004
ZH	3.691 ± 0.013
WH	0.207 ± 0.004
VBFH	0.685 ± 0.012
bbH	0.62 ± 0.023
ggH	5.453 ± 0.065
tHjb	0.969 ± 0.029
tWH	0.131 ± 0.005
ttH	8.313 ± 0.014
$Z(\rightarrow q q) \gamma \gamma$	20.345 ± 0.303
τīγγ	28.69 ± 0.109
$\gamma\gamma$ +jets	1418.32 ± 4.596
Total SM	1489.116 ± 4.608

1 b-ta	gged jet
	Selection
HH ggF+VBF	1.827 ± 0.004
WH	5.97 ± 0.021
VBFH	8.333 ± 0.042
ZH	5.941 ± 0.015
bbH	2.973 ± 0.047
gg H	48.532 ± 0.202
ggZH	1.581 ± 0.01
tHjb	2.681 ± 0.05
tWH	0.572 ± 0.01
ttH	11.681 ± 0.017
$Z(\rightarrow q q)\gamma\gamma$	53.728 ± 0.8
$t\bar{t}\gamma\gamma$	49.78 ± 0.142
$\gamma\gamma$ +jets	16298.8 ± 16.031
Total SM	16492.398 ± 16.053

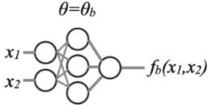

Analysis recap – Strategy

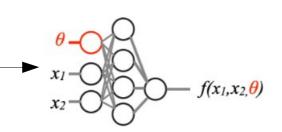
• The $m_{\gamma\gamma}$ distribution is used to split the events into a SR with $120 < m_{\gamma\gamma} < 130$ GeV and a sideband control region (CR)

Events / 1.0 GeV Internal AS 10 SB Data = 13 TeV, 139 fb⁻¹ HH →SH→bδγγ 10 2 b-tagged SB Single Higgs ttγγ 10³ γγ+jets 102 10 10 Data/Pred. 120 130 110 140 150 160 m,, [GeV]

• The CR allows to correct the normalisation of the $\gamma\gamma$ + jets events using true data

PNN discriminant


 $\theta = \theta_a$

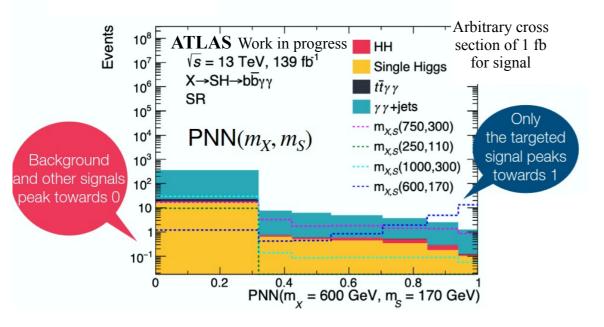

• A parameterised Neural Network (PNN) is used as discriminant in the SR. It is trained with simulated events that pass each selection (SR + SB)

Training variables = x_1, x_2 , Parameter = θ

One NN for each value of θ

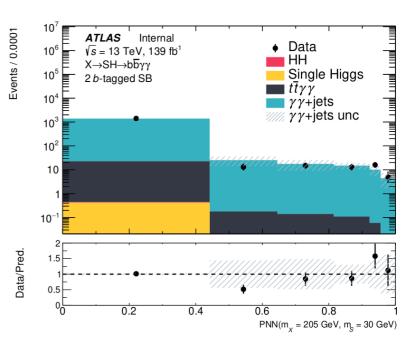
One global PNN with parameter θ

1 PNN(heta) can act as M NNs optimised to target a specific heta


- Two separate PNNs :
 - 2 b-tagged :

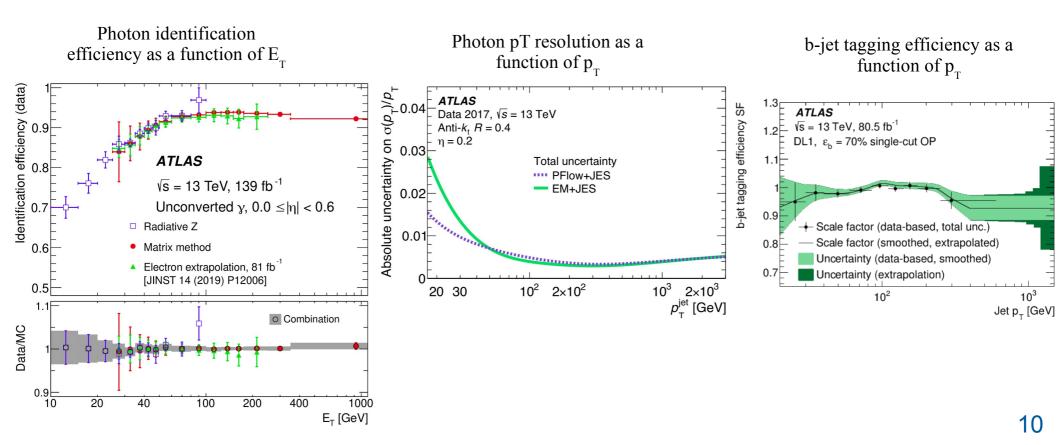
Parameter $\theta = \mathbf{mX}$, \mathbf{mS} Training samples : signal, ttH, ggH, ZH and $\gamma\gamma$ + jets backgrounds (no HH – too signallike and confuses the network) Training variables : \mathbf{m}_{ij} and $\mathbf{m}^*_{\gamma\gamma jj} = \mathbf{m}_{\gamma\gamma jj} - (\mathbf{m}_{\gamma\gamma} - 125 \text{ GeV})$

- **1 b-tagged** : target low mS/mX values Parameter $\theta = mX$ Training samples : signal, VBFH, HH, ttH, ggH, ZH and $\gamma\gamma$ + jets backgrounds Training variables : b-jet p_T and m*_{$\gamma\gamma j} = m_{<math>\gamma\gamma j} - (m_{\gamma\gamma} - 125 \text{ GeV})$ </sub></sub>



• Example of PNN distribution

- Final results are computed with a binned log-likelihood fit on the PNN distribution
- Consistency between data and MC is checked in the SB


- PNN shapes of backgrounds and signal comes from MC samples
- The binning is constrained to have at least 1 background event in every bin

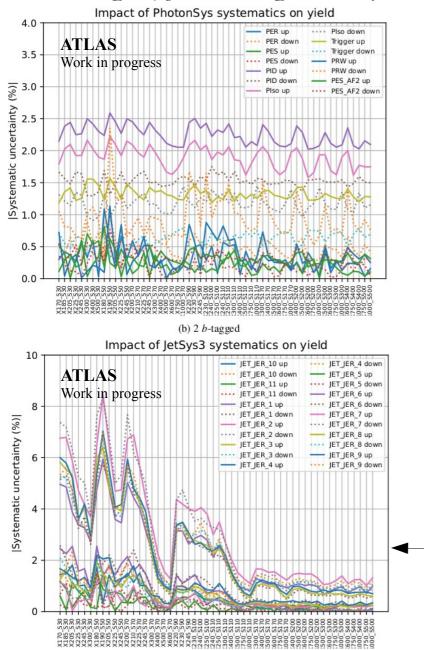
Experimental Systematics

- Physics is an experimental science \rightarrow we have uncertainties affecting the measures
- Eventually at our analysis level it can have various impacts :
 - Particle identification can change the number of events in the CR and SR
 - Flavour tagging change the number of b-tagged jets
 - pT and energy resolution can change the position and width of the peak in the m_{yy} , m_{bb} and

 $m_{_{bbyy}}$ distributions and eventually the shape of the PNN distribution

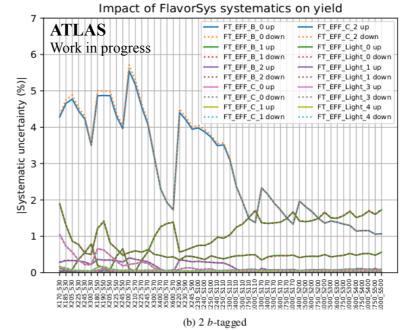
Experimental Systematics – Yield change

- Systematics change both the yields and the shape of the PNN distribution of the samples
- Here we look at the yields change first

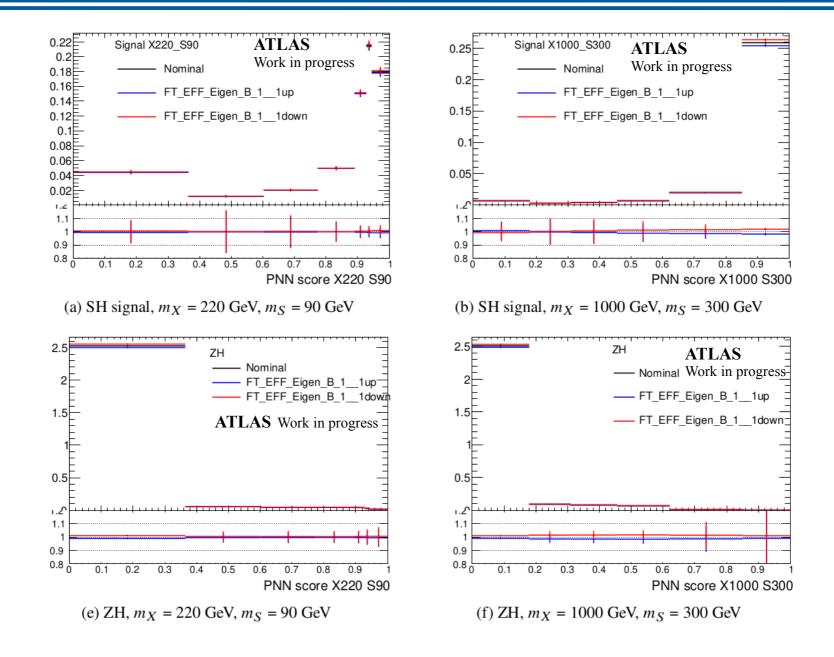

Main uncertainties

Yield uncertainty [%]										
	Source	ttH	ZH	ggHH	ggH	ggZH	tHjb	VBFHH	Zqqyy	Zbbyy
Event- based	Photon Trigger Pile-up reweighting	1.01 0.88	1.02 0.76	1.00 0.56	1.04 0.43	0.98 0.60	1.03 0.99	1.02 0.60	1.00 3.69	1.25 1.15
Photon	Photon Energy Resolution Photon Energy Scale Photon ID Photon Isolation	0.42 0.17 1.59 1.55	0.42 0.18 1.61 1.57	0.34 0.12 1.44 1.45	0.42 0.07 1.64 1.60	0.43 0.11 1.49 1.46	0.63 0.18 1.60 1.59	0.43 0.24 1.59 1.59	2.79 14.53 1.72 1.27	0.78 0.90 1.96 1.88
Jet	Jet Energy Scale Jet Energy Resolution	1.36 7.33	0.94 4.60	0.55	1.81 7.50	0.74 3.36	0.76 4.88	0.72 3.08	5.30 0.68	1.09 5.37
Flavour- tagging	b-jet efficiency c-jet efficiency light-jet efficiency	2.07 0.40 0.79	2.99 0.71 0.38	2.51 0.06 0.40	3.05 1.68 2.72	2.55 0.60 0.51	2.30 0.92 0.90	2.83 0.07 0.42	0.10 13.12 1.85	3.36 0.22 0.48

Table 18: Uncertainty [in %] on the yield for backgrounds in the 2 *b*-tagged category.


Experimental Systematics – Yield change

• For signal, yields changes are dependent on mS and mX

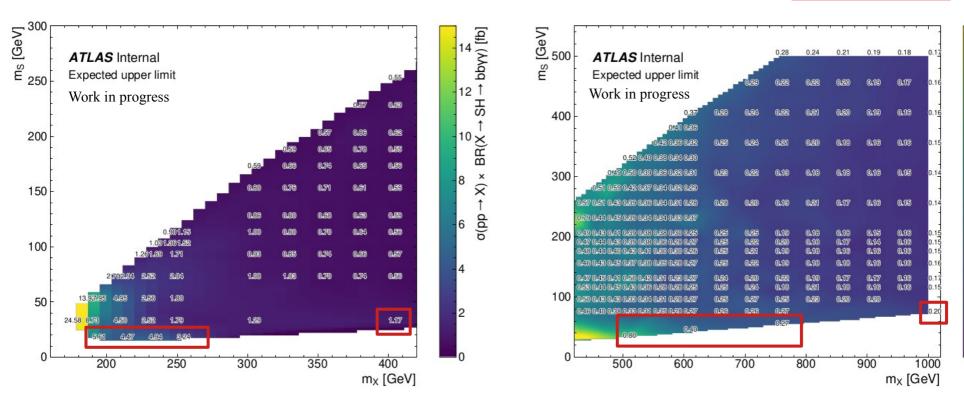

(b) 2 b-tagged

For instance here are the systematics NP related to photon, jet and flavour tagging as a function of mS and mX

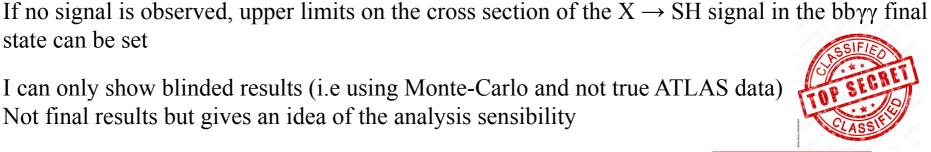
Jet energy resolution systematics are the most important but remain below 10%

Experimental Systematics – Shape change

• NB : for $\gamma\gamma$ + jets, only shape changes are used as normalisation is imposed by the sideband



• Limits range from 0.15 to 25 fb Sensibility is better in high mass region

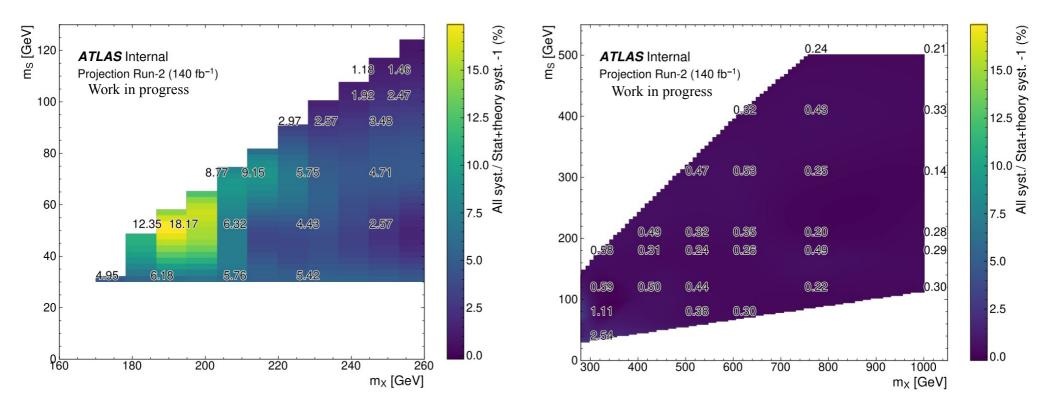

Blinded expected limits

•

state can be set

I can only show blinded results (i.e using Monte-Carlo and not true ATLAS data) . Not final results but gives an idea of the analysis sensibility

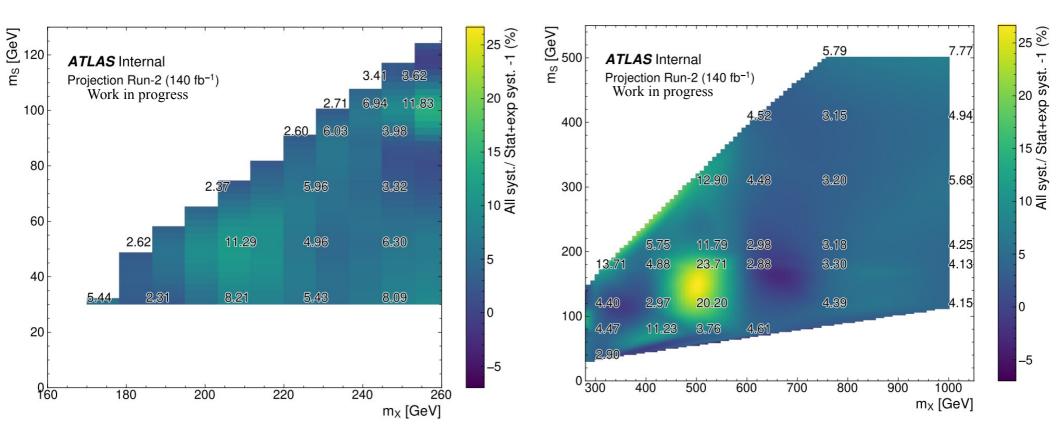
1 b-tagegd jet points


1.0 [q]] (\\\\qq ← HS ← X) × BH(X) × (X ← dd)c 0.4 0.4

0.2

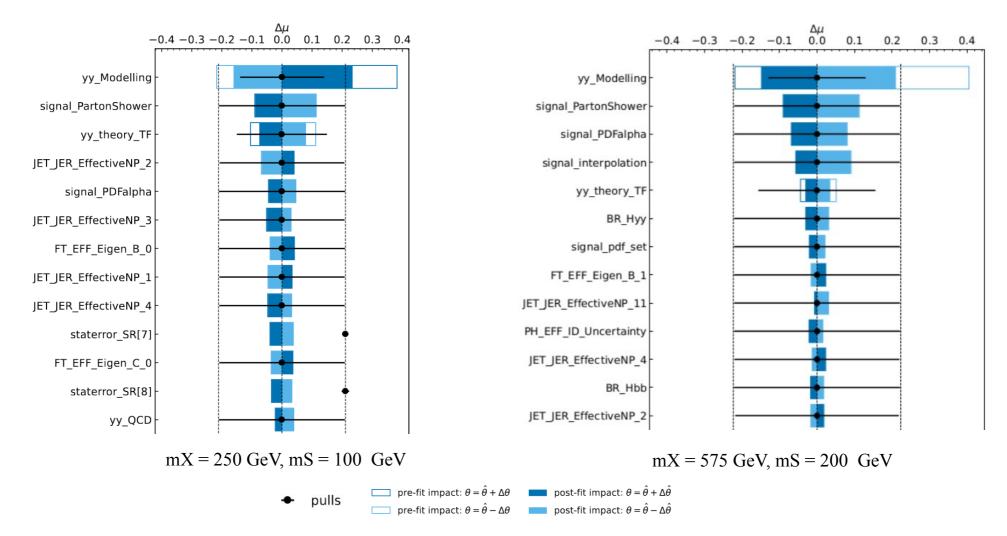
0.0

Impact of experimental systematics uncertainty


• Here we plot the ratio between blinded expected limits and the limits obtained without taking into account experimental systematics to check their impact :

• Their impact on limit can reach 18% but are mostly between 5-10% at low mass and below 1% at high mass

Impact of theoretical systematics uncertainties


• Same plot as before but with theoretical uncertainties

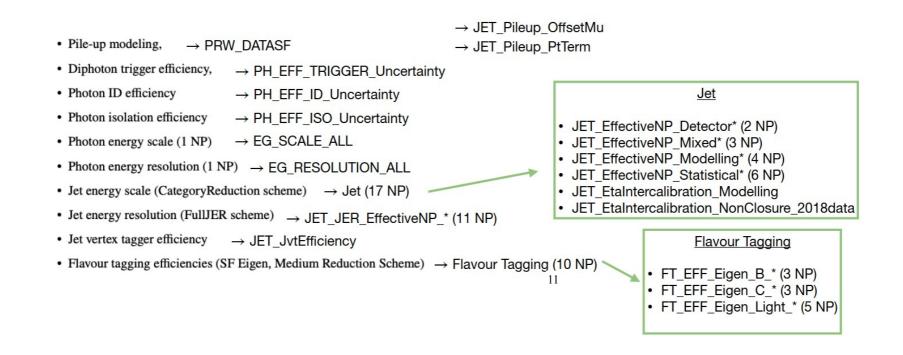
- Theory systematics impact depends a lot on mX and mS and can reach 20%
- They are dominated by γγ modelling Other theoretical systematics account for 3-4%

Impact of systematics uncertainty – ranking plots

• Ranking plots : class the uncertainties with the impact they have on the fit POI

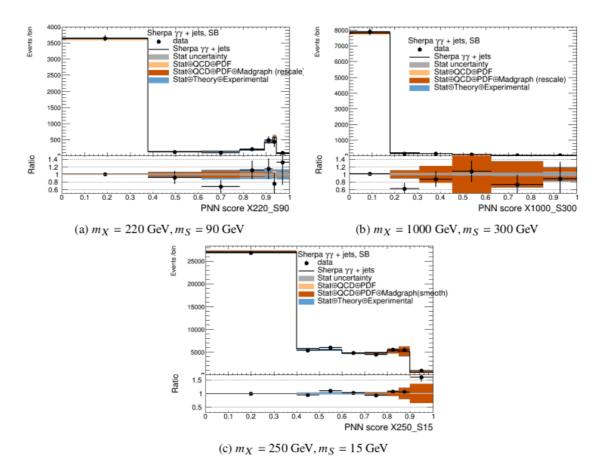
- Largest systematics is the modelling of the $\gamma\gamma$ + jets background
- Largest experimental systematics are flavour tagging and jet energy resolution

- A search for a resonant scalar particle X decaying into a scalar S and SM Higgs is performed on the $X \rightarrow SH \rightarrow bb\gamma\gamma$ channel with the ATLAS Run-2 data
- Most interesting point in this analysis is the parameterised neural network (PNN) that has been developped to target the signal for any values of mX and mS
- Analysis currently in ATLAS internal review New analyses will come with Run-3 data, for both HH and SH !


Back-up

Main uncertainties

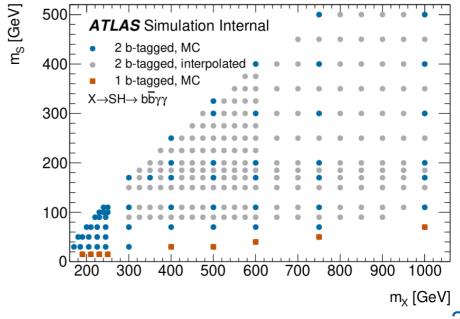
		Signal	HH ggF	HH VBF	ttH & ZH	Other Single Higgs	Continuum $\gamma\gamma$ +jets	
Theory	Normalisation	$BR(H \to \gamma \gamma)$	$BR(H \to \gamma \gamma)$ $BR(H \to b\bar{b})$ $PDF + \alpha_S$ $Scales + m_t$	$BR(H \to \gamma\gamma)$ $BR(H \to b\bar{b})$ $PDF+\alpha_S$ Scales	$BR(H \to \gamma \gamma)$	$BR(H \to \gamma \gamma)$ PDF+ α_S Scales	$\gamma\gamma$ transfer factor	
	Shape+Norm.	Scales, PDF+ α_S Parton shower Interpolation	Parton Shower		Scales, PDF+ α_S Parton Shower		Scales, PDF+ α_S Modelling	
Exp.	Shape+Norm.	Pile-up modelling Diphoton trigger efficiency Photon identification and isolation efficiency Photon energy scale and resolution Jet energy scale and resolution Jet vertex tagger efficiency Flavour tagging efficiency						


Experimental Systematics

- In the analysis framework experimental systematics are studied through MC samples at +/- 1σ away from nominal values from each effect
- They have been produced for major backgrounds only : ttH, ZH, ggH, ggHH and VBFHH, ggZH, $\gamma\gamma$ + jets and Z(bb/qq) $\gamma\gamma$
- Systematics are treated as nuisance parameters (NP) in the fit \rightarrow 47 in total !

Theoretical systematics uncertainties

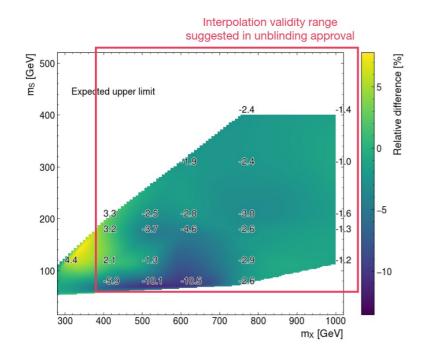
- Largest theoretical uncertainty is the modelling of $\gamma\gamma$ + jets events which is difficult to handle
- Normalisation of the $\gamma\gamma$ + jets events is determined by a normalisation factor from the sideband distribution
- The uncertainty regarding the modelling is evaluated by comparing simulated events from two different MC generators : Sherpa and MadGraph

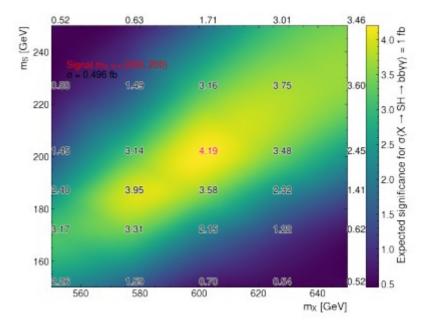

Interpolation strategy

• Why interpolate ?

 \rightarrow We need to be able to look for any signal in the region and granularity is not precise enough with MC samples

- Interpolation works separately for signal and background
 - PNN score can be computed for any mX, mS values in background samples
 - For signal we need to interpolate both the yields and the PNN shape
 - The shape is obtained with Lorentz transforms
 - The yields are obtained using Delaunay triangulation from the available MC samples





Interpolation range and validity

- Where should we interpolate ?
- Injection tests are made to ensure granularity is enough to allow us to be sensible to any signal in the probed region

 \rightarrow we inject signal at $\sigma = 2^*$ expected limit and want at least one neighbouring point to have an expected significance ≥ 3

- Validity of interpolation is evaluated by comparing interpolated and MC signal limits
- Difference is below 5% for most points with a maximum of ~10%
- Interpolation is more difficult in low mS regions where there are some jets overlap

 \rightarrow Interpolation is made for points with $mX \geq 300$ GeV and $mS \geq 70$ GeV