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Thesis subject

1) Photometric redshifts calibration of 2) Tomographic analysis of photometric  
Euclid data using deep learning and galaxy clustering with the angular 
multi-band images : two-point correlation function :

     Simulated galaxies Flagship simulation of the Euclid survey 
       (Science Challenge 8)

 



Oct 30, 2023 V. Duret

3

Photometric redshifts calibration

● Goal : find the relationship between the input galaxy images and their redshift.

● Method : neural networks + optimization framework (Optuna)
● Networks :  CNNs, inception CNNs, ResNet and variants with additional inputs.
● Data : 500000 galaxies simulated from the Euclid Science Challenge 8 + simulated spec-zs.

Spectroscopic vs true redshifts from Flagship
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Photometric redshifts calibration

Tested neural networks : sequential CNN

  
 

Sequential CNN architecture
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Photometric redshifts calibration

Tested neural networks : sequential CNN, inception CNN

  
 

  Inception block architecture (arXiv:1512.00567)
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https://arxiv.org/abs/1512.00567
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Photometric redshifts calibration

Tested neural networks : sequential CNN, inception CNN, ResNet34
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Photometric redshifts calibration

● Goal : find the relationship between the input galaxy images and their redshift.

● Method : neural networks + optimization framework (Optuna)
● Networks :  CNNs, inception CNNs, ResNet and variants with additional inputs.
● Comparison for MLP (magnitudes) and inception CNN+MLP (images + magnitudes) : 
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Baryonic Acoustic Oscillations

● Specific scale where galaxies are more often found
● Result of the opposition between radiation pressure and the gravitational pull of matter

in the early Universe
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2pcf measurement

● Landy-Szalay estimator  

● Code : TreeCorr

● Flagship simulation :

- one octant of the sky (5157 sq.deg)

- 500 × 106 galaxies with VIS < 24.5

- fiducial cosmology :  Ωb = 0.049
Ωc = 0.27
h = 0.67
As = 2.1×109

ns = 0.96

● 13 bins between 0.2 < z < 2.5 0.200 < z < 0.303       1.677 < z < 2.500
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2pcf measurement

● Landy-Szalay estimator  

● Code : TreeCorr

● Flagship simulation :

- one octant of the sky (5157 sq.deg)

- 500 × 106 galaxies with VIS < 24.5

- fiducial cosmology :  Ωb = 0.049
Ωc = 0.27
h = 0.67
As = 2.1×109

ns = 0.96

● 13 bins between 0.2 < z < 2.5
Mean χ2

red = 1.09
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Full-shape analysis

● Scale cuts : 0.12° < θ < 1.7°

● Dark energy equation of state :

● MCMC on  Ωb, Ωc, h, As, ns, w0 and wa

At each step of the MCMC, a new
2-point correlation function is computed 
using the cosmology defined by these
parameters
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Theoretical 2pcf

Computed with the Core Cosmology Library (arXiv:1812.05995)

n(z) : normalized distribution of sources in redshift

→ used to compute the model in the likelihood.

 

https://arxiv.org/abs/1812.05995


Oct 30, 2023 V. Duret

13

Full-shape analysis with modified n(z) :

Small scales only : θ < 1.7 °

Bias of n(z) :

Shift < 0.2 σ
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BAO analysis

● No restriction to small scales since we’re interested in the BAO peak (≠ full-shape).

● Template :

● The cosmological parameters are fixed to
the fiducial cosmology (≠ full-shape)

α quantifies an eventual shift of the BAO peak
in the data with respect to the fiducial cosmology.
Since the 2pcf is measured on Flagship, we 
expect α = 1.

B is a nuisance parameters accounting for
corrections of the amplitude.
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BAO analysis

● No restriction to small scales since we want to extract the BAO peak (≠ full-shape).

● Several templates were tested to identify
the one providing the best constraints :

● Comparison templates 3 and 1 : σ3(α) = 0.88 σ1(α)
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BAO analysis

● Extracting α in each redshift bin allows us to constrain the Hubble parameter h = H0 /100
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Conclusion

● Promising results are obtained for photo-zs with the inception CNN + MLP model.
→ additional optimizations will be conducted to study the benefit from including other inputs.

● The pipeline for full-shape and BAO analyses with photometric galaxy clustering is ready
and will be used to check the influence of scale cuts, priors and other systematic effects.

● Next year : application of this work to the first Euclid data

 

Planned work for the BAO analysis

- robustness validation with respect to the redshift bins
- study of the scale cuts influence
- study of the impact of RSD
- study of the influence of the Limber approximation
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Thank you for your attention !

Questions ?
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Back-up
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Photometric redshifts

Euclid bands :

VIS 550-900 nm
Y 920-1146 nm
J 1146-1372 nm
H 1372-2000 nm

Euclid preparation: I. The Euclid Wide Survey
(arXiv:2108.01201)

 

https://arxiv.org/abs/2108.01201
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Photometric redshifts

Loss function used to train : mean squared error

Metrics :

- Standard deviation of residuals σ = std(Δz) wtih Δz = zphot – zspec

- Bias : mean( | Δz | / (1 + zspec) )

- Outlier fraction at 15 % :  #(bias > 0.15) / #(test set)
+ fractions at 10 % and 5 %

- σNMAD = 1.4826 × median(| Δz | - median(Δz))

- σMAD    = 1.48 × median( | Δz | )
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Photometric redshifts

Side plots :

Learning error ξ = p(zphot
 - zspec | zspec)

→ in each bin of the histogram, I compute the mean and standard deviation of the zpredicted,i - zbin 

for all zspec,i falling into that bin

Prediction uncertainty µ = p( zphot
 - zspec | zphot)

→ in each bin of the histogram, I compute the mean and standard deviation of the zspec,i - zbin 

for all zpredicted,i falling into that bin

Additional statistics on ξ and µ :
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Photometric redshifts

Example of PDFs produced after adaptation of the networks :

PIT distribution of the PDFs
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Photometric redshifts

Characterization of the PDFs :

Probability Integral Transform (PIT), for a galaxy i of redshift zspec = zi

If PDFs are often too narrow then the zspec will more often be under/overestimated and  
the PIT value will be close to 0 or 1.
If they are too wide then zspec will often be in the PDF, which favors intermediate PIT values

→ study of the PITs distribution : 
- if PDFs have inadequate shapes then the distribution will either be concave or convex. 
- if there is a bias between the predicted redshifts and zspec then it creates a slope

→ an ideal PIT distribution is horizontal and has no curvature.

 

CDF i(z i)=∫
0

zi

PDF i(z)dz
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Photometric redshifts

Example of a bad PIT distribution :

Many PDFs miss zspec The PIT distribution is convex

 



  

Vanishing gradients

The update of weights is proportional to the gradient of the loss function with respect to current 
weights. In the backpropagation, the chain rule for partial derivatives is used, which implies that
we can end up multiplying very small gradients in chain. This entails the death of some neurons
because their weights no longer change.

As for exploding gradients, Rectified activation functions like ReLu limit this issue because they 
can only saturate by negative values but the issue can still appear. Some oscillating functions
can be used to counter this problem 
like the  Growing Cosine Unit

https://commons.wikimedia.org/wiki/File:Growing_Cosine_Unit_(GCU)_activation_function.png
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https://arxiv.org/abs/1512.03385

The layer n give its output to layer n+1 and layer 
n+5 (in ResNet34) or n+3,… depending on the 
architecture

Benefit : when the number of layers is increased in a 
neural network, results improve before reaching a 
maximum and then degrade (vanishing gradients).

Idea :
residual = output – input ↔ output = residual + input

This enables the identity operation when the residual is fixed to 0. This is useful since the 
identity can’t be the output of a neural network if there is no skip connection (non linear 
activation functions) → the least useful layers have weights close to 0 but won’t make
gradients vanish because the skip connection will have larger weights.

Residual blocks
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Flagship 2.1

- one octant of the sky, 145 < ra < 235 deg, 0 < dec < 90 deg
- 500 × 106 galaxies with VIS < 24.5 and photo-zs.
- fiducial cosmology :  Ωb = 0.049

Ωc = 0.27
h = 0.67
As = 2.1×109

ns = 0.96
- 13 bins between 0.2 < z < 2.54
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Flagship 2.1

Equipopulated bins n(z) : Measured galaxy bias:
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Full-shape analysis with modified n(z)

Goal of GCPHz WP paper 3 : study systematic uncertainties like n(z) model misspecifications

Modifications of n(z) :

Additive bias Broadening
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Full-shape analysis with modified n(z) :

Broadening of n(z) :

Shift of 0.15 σ on h and Ωc
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Full-shape analysis with modified n(z)

Influence of n(z) model misspecifications
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BAO analysis

BAO extracted from the 2pcf measured on Flagship, in each bin of redshift

θBAO and its error are obtained by MCMC.

 

 



  

BAO analysis

MCMC with the previous measurement (left) and the new one (right) :

The error on α is divided by 2 with the new measurement.

 

 



  

BAO analysis

Comparison including or excluding the last redshift bin :

In agreement at 1σ but there is an obvious systematic shift towards larger α and errors.
The robustness of the results with respect to the redshift bins used should be checked.
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