EPS-HEP2023 conference in Hamburg: selected highlights

CPPM seminar

Timothée Theveneaux-Pelzer

CPPM - CNRS/IN2P3 - Aix-Marseille Université

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 AMU

The EPS-HEP2023 conference

- Conference organised in Hamburg, by Universität Hamburg and DESY
 - o first EPS-HEP conference in person since 2019
 - most speakers present in person, though remote participation was still possible
 - 5 days (Mon-Fri) instead of 7 (Thu-Wed), no excursion quite convenient (I think)
- Conference website: https://www.eps-hep2023.eu/
 - ◊ plenary sessions (incl. EPS prizes, ECFA) + 10 parallel sessions (14 topics) + posters

- I will present few highlights of results shown this year
 - $\diamond~$ numerous interesting talks were given, so I can only show a partial selection
 - the selection of results is absolutely biased!

List of sessions

- Opening Link Plenary Link Closing Link
- Posters Link EPS prizes Link ECFA Link
- Astroparticle Physics and Gravitational Waves Link
- Gravitation and Cosmology
- Dark Matter
- Neutrino Physics
 Link
- Ultra-Relativistic Nuclear Collisions
- QCD and Hadronic Physics
- Top and Electroweak Physics
- Flavour Physics and CP Violation
- Higgs Physics
 Link
- Searches for New Physics
- Quantum Field and String Theory
- Detector R&D and Data Handling
- Accelerators for HEP
- Outreach, Education and EDI

Outline

- 1 Non-collider particle physics results
- 2 Heavy flavour physics
- CMS and ATLAS results

4 Theory

- 5 Astrophysics and dark matter
- 6 Future accelerators

Conclusion

Neutrinos: current status

Plenary talk: J. Łagoda

Current knowledge and open questions

neutrinos, origin of masses and mixing

Neutrinos: T2K and NOvA

Plenary talk: J. Łagoda

• Two ongoing neutrino experiments using v_{μ} and $\bar{v_{\mu}}$ beams from π decays in flight

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 AMU

Neutrinos: comparison of T2K and NOvA results

Plenary talk: J. Łagoda

T2K vs. NOvA

- both show a weak preference for NO
- some tension in δ_{CP} but remember: current results are statistically limited!
 - if IO: consistent preference for the 3π/2 (-π/2) region, small preference for upper octant
- · more data needed in both experiments!
- joint analysis T2K-NOvA in progress, results expected soon
- T2K statistical update expected soon
- new analyses from both expected 2024
- · Both undergoing upgrade:
 - NOvA beam power \rightarrow 900+ kW
 - T2K beam power → 1.3 MW, ND280 upgrade, SK-Gd
 - Goal: 3σ sensitivity for CPV (T2K) and MO (NOvA)

Neutrinos: CP violation in T2K

Parallel talk: Y. Prabhu

- Use of Jarlskog invariant to assess presence of CP-violation
 - same invariant as for quark sector EPS HEP prize awarded to Cecilia Jarlskog
- Absence of CP violation (J=0) disfavored

Results - Jarlskog Invariant, J_{CP}

• Note: θ_{13} reactor constraint is applied (sin² $2\theta_{13} = 0.0861 \pm 0.0027$)

Muon g-2: latest experimental results

Plenary talk: G. Venanzoni

- 6 runs of data collected by FNAL Muon g-2 experiment
 - only 3 of them analysed so far
- Run-1 result in 2021 confirmed earlier BNL deviation wrt. SM prediction (4.1σ)
- Latest result on August 9th including runs 2&3 5.1 o deviation wrt. SM predictions

Muon g-2

Muon g-2: SM predictions

Plenary talk: G. Venanzoni

- Hadron Vacuum Polarisation estimates dominates SM predictions uncertainties
- White Paper in 2020 included estimates from $e^+e^- \rightarrow had$ experiments
 - Iattice QCD calculations not sensitive enough to be included
 - ...until BMW20 was released, pretty much compatible with measurement
 - also: new CMD-3 prediction from $e^+e^- \rightarrow had$ in 2023, compatible with measurement \diamond

10/36

Muon q-2: summary

Plenary talk: G. Venanzoni

- A factor ~ x 3 data from Run4-6 with a projected twofold improvement on the ٠ uncertainty (analysis should be completed by 2025)
- Expect theory improvement on a similar timescale (https://muon-gm2-٠ theory.illinois.edu/)

Look out for other analyses too: EDM, CPT/LV and Dark Matter searches. ٠

LHCb: more tetraquarks and pentaquarks

Plenary talk: M. Franco Sevilla

- LHCb is seeing more and more baryons
 - see the full list in the plenary talk!
- Few Tetra- and Penta-quarks since the 2015 observation

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 AMU

LHCb: hypertriton

Plenary talk: M. Franco Sevilla - parallel talk: H. Jage

- New source of ³*He* to explain AMS results?
 - ♦ reported ${}^{3}\overline{H}e$ candidates, but no \overline{d}
- Possible implications for neutron stars

LHCb: measurement of $\mathcal{R}(D^{(*)})$

Plenary talk: M. Franco Sevilla

- $\mathcal{R}(D^{(*)}) = Br(B \to D^{(*)}\tau v_{\tau})/Br(B \to D^{(*)}\ell v_{\ell})$: lepton flavour universality probe
- $\bullet\,$ New results by LHCb, combined with earlier results $\Rightarrow 3.3\sigma$ tension with SM

HCp	$\mathscr{R}($	$D^{0})/$	$\mathscr{R}(D^*)$ results 🧶
arXiv:2302.02886, submitted to Phys. Rev. Lett.	Uncer	t. [%]	Note that less than had of the systematic encortainty is multiplicate, the mapping time of each with multiplicate, the mapping time of each with multiplicate Exact Sime size on a factors of \$2, which accurate Dump 2 starts
Contribution	$\mathcal{R}(D^*)$	$\mathcal{R}(D^0)$	Hopefully will scale with data beyond Run 2, but it will require
Simulated sample size	5.3	10.2	faster FastSim, faster hardware progress, or more restrictive
DD bkg. shape	2.8	7.3	generator cuts
$\overline{B} \to D^{**}(\ell^-/\tau^-)\overline{\nu}$ FFs	2.8	2.7	Primarily 0.45 -Bello, PRL 118, 2(180) (2017) -LHCb, PRD 108, 0(2018) (2023) -LHCb, PRD 108, 0(2018) (2023)
Signal/norm. FFs	2.5	4.8	data driven 0.4 -Belle II, Lepton Photon (2023) -HFLAV average Summer 2023 -SM predictons (HFLAV aver.) -HFLAV average Summer 2023
Misidentified μ bkg.	2.5	2.7	₩ 0.35
Baryonic bkg.	2.5	2.7	May be able to 0.3 reduce but on a
DD bkg. model	2.1	1.6	case-by-case basis
$\overline{B} \to D_s^{**} \ell^- \overline{\nu} \text{ model}$	2.1	5.4	0.2 0.3 0.4 0.5 R(D) First
Total systematic	8.5	15.0	measurement of
Total statistical	6.4	13.6	Expect to reduce uncertainties with $\Re(D)$ at LHCb
Total	10.7	20.2	0.5-3% systematics floor

Belle-II: measurement of $\mathcal{R}(X)$

Plenary talk: A. Glazov - parallel talk: T. Koga

• $\mathscr{R}(X^{(*)}) = Br(B o X \tau v_{\tau})/Br(B o X \ell v_{\ell})$ is an alternative probe

• First measurement at a B factory

Complex analysis, requiring multiple corrections/reweighting to simulated samples Excellent agreement between electron and muon channel measurements:

 $R(X_{\tau/e}) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$

 $R(X_{\tau/\mu}) = 0.222 \pm 0.027~{\rm (stat)} \pm 0.050~{\rm (syst)}$

Systematics is largely from data-driven corrections in control regions

Combined result

$R(X) = 0.228 \pm 0.016(\text{stat}) \pm 0.036 (\text{syst})$

is consistent with SM 0.223±0.006, but also with measurements of $R(D^{(*)})$

10

Belle-II results

и

Belle-II: evidence for $B^+ \rightarrow K^+ v \bar{v}$ and tension with SM

Plenary talk: A. Glazov

- $B^+ \rightarrow K^+ \nu \bar{\nu}$ not yet observed
- New result released, combining two channels
 - evidence with 3.6σ
 - tension with SM at 2.8 σ level

Combination and comparison with other measurements

- Inclusive and hadronic measurements are combined, taking into account common correlated uncertainties. The resulting branching fraction is
 - $B_{comb}(B^+ \rightarrow K^+ \nu \nu) = (2.4 \pm 0.7) \times 10^{-5} = [2.4 \pm 0.5(stat)^{+0.5}_{-0.4}(syst)] \times 10^{-5}$ significance of observation is **3.6** the result is within **2.8** vs standard model
- Some tensions between inclusive and semileptonic results for Belle and BaBar, however overall compatibility of the results is good with $\chi^2/dof = 4.3/4$

*Belle reports upper limits only; branching fractions are estimated using published number of events and efficiency

W

Example of BSM search with LHC Run 3 data

Plenary talk (CMS highlights): F. Canelli

- Search for long-lived particles with CMS using run 3 data
- Improvements in trigger strategy wrt. run 2
 - better results in part of the parameter space, even with less data

Run 3 results – long lived particles

first search for new physics: inclusive search for long-lived exotic particles decaying to a pair of muons Using 36.7 fb⁻¹ of data taken in 2022, selecting muons originating from a common secondary vertex spatially separated from the primary interaction point by distances ranging from several hundred µm to several meters

CMS-PAS-EXO-23-014

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 AMU

Highlights of EPS-HEP2023 - CPPM seminar

New

First Higgs result with run 3 data by ATLAS

Plenary talk (Higgs): T. Masubuchi

First Higgs result with run 3 data by ATLAS

Plenary talk (Higgs): T. Masubuchi

19/36

New $t\bar{t}H(H \rightarrow b\bar{b})$ result by CMS: CMS-PAS-HIG-19-011

Parallel talk (Higgs): P. Baertschi (and comparison with ATLAS'JHEP 06 (2022) 97)

- First full run-2 CMS result
- Different channels used
 - ◊ 0ℓ: CMS only
 - $\diamond~1\ell$ boosted: ATLAS only
- STXS fit in 5 bins
 - ◊ highest pT: > 300 GeV (ATLAS > 450 GeV)
 - low pT split 0-60-120 GeV (not in ATLAS)
- Inclusive Xsec lower than SM
 - p-value: 2% (ATLAS 8.5%)
- To be scrutinised:

 - correlations accross years and channels

Updated Higgs mass measurement by ATLAS

Plenary talk (Higgs): T. Masubuchi

- Making the best with run 2 data: updated Higgs mass measurement
- Time-consuming efforts to reduce systematics rewarded by much improved results

Mass Measurement

- Fundamental parameter in the SM, it determines production and decay rates of Higgs
 →Need to measure experimentally
- H→γγ has excellent mass resolution
 - Extensive efforts on the photon energy calibration in Run2
 - · Reduce photon energy scale/resolution uncertainties

320 MeV (previous Run 2 results) → 80 MeV

Measured Higgs mass with H→γγ (Run 1+2) 125.22±0.11(stat)±0.09(syst) GeV (0.11% precision!)

Combine H→γγ and H→ZZ→4l channels (Run1+Run2) 125.11±0.09(stat)±0.06(syst) GeV (0.09% precision!)

The excess around 95 GeV

Parallel talk (Higgs and BSM): T. Biekoetter

- CMS γγ excess at 95 GeV:
 - $\diamond~$ 2.9 σ (local) released for Moriond 2023
 - $\diamond~$ ATLAS result in June 23: 1.7 σ
 - \diamond same mass as for LEP $b\bar{b}$, CMS $\tau\tau$ excesses
- 2HDM interpretation?
 - o excess may be the A in 2HDM model
 - \diamond would work better as an additional scalar \Rightarrow S2HDM

Combination: $\mu_{\gamma\gamma}^{\text{ATLAS+CMS}} = 0.24^{+0.09}_{-0.08}$

New exp. results in 2023: Full Run 2 di-photon searches below 125 GeV

- \rightarrow CMS: Significance of excess unchanged, signal strength reduced
- \rightarrow ATLAS: Same sensitivity, excess at the right spot, but less significance

S2HDM interpretations: $h_{95} \approx h_S$ as singlet-like scalar mixed with h_{125}

 \rightarrow LEP $b\bar{b}$ excess \checkmark CMS + ATLAS $\gamma\gamma$ excess \checkmark CMS $\tau^+\tau^-$ excess (\checkmark)

 \rightarrow Predicts $|c(h_{125}VV)|<1,$ will be probed at HL-LHC and Higgs factory

 \rightarrow No tension with indirect constraints

 \rightarrow Interesting connections to other anomalies

 \rightarrow Dark matter and galactic-center excess [TB, M.O. Olea, 2108.10864]

 \rightarrow W-boson mass discrepancies [TB, S. Heinemeyer, G. Weiglein, 2204.05975]

2HDM interpretations: $h_{95} \approx A$ as dominantly CP-odd scalar

 $\rightarrow \mathsf{LEP} \ b\bar{b} \ \mathsf{excess} \ \checkmark \qquad \mathsf{CMS} \ + \ \mathsf{ATLAS} \ \gamma\gamma \ \mathsf{excess} \ \checkmark \qquad \mathsf{CMS} \ \tau^+\tau^- \ \mathsf{excess} \ \checkmark$

- \rightarrow Only LEP excess required modifications of h_{125} couplings
- \rightarrow Light spectrum, H and H^{\pm} with masses around m_t
- \rightarrow Tensions with indirect constraints from flavour physics and EDMs

Theory

SM predictions

A word about SM predictions

Plenary talk: D. de Florian

LO can (almost) be done by chatGPT

Can you write a Fortran 77 code that computes the DIS cross section at LO using
LHAPDFs?

• Excesses should be apreciated with caution, if predictions not accurate enough

Inclusive Higgs : an example of precision

Euclid's first light (July 31st)

Plenary talk: J. Liske

• Successfull launch of Euclid \Rightarrow for sure plenty of cosmology results to come

Hubble tension: physics beyond the SM of cosmology?

Plenary talk: J. Liske

- Different ways to measure the expansion of the universe (distance vs. redshift)
 - using Cosmological Microwave Background and Baryonic Acoustic Oscillations
 - using type Ia sypernovae, with local distance ladder measurement
- Apparent inconsistency $\Rightarrow \Lambda CDM$ model broken??
 - o red giants (TRGB) gives intermediate result
 - gravitational waves may help in the future

So, what causes the Hubble Tension? We do not know.

H₀pefully the standard model will break!

Gravitational waves detectors operation

Plenary talk: M. Haney

- Three GW experiments are in operation (4 interferometers)
 - ◊ LIGO (US), VIRGO (Italy), KAGRA (Japan)
- Ongoing 4th campaign of data-taking
- Previous campaigns allowed several detections of mergers
 - o need at least 3 interferometers for a good localisation of the source
 - multi-messenger astronomy with GW is a reality

Gravitational waves: visiting the stellar graveyard

Plenary talk: M. Haney

- Graphical representation of known neutron stars and black holes
 - GWs allows to estimate masses of the two merging objects, and of the resulting object
 - ◊ user-friendly graphical interface to get all informations on the candidates Link

See also plenary talk on multi-messenger astronomy by F. Calore

Evidence of source association by Icecube

Plenary talk: E. Resconi

Multi-messenger astronomy is real!

Icecube

The galactic plane seen in neutrinos by Icecube Plenary talk: E. Resconi

The Galactic plane in neutrinos

The IceCube Coll., Science 380 (2023)

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 AMU

пπ

Higgs e^+e^- factories: the options

Plenary talk (ECFA): J. List

- Usefull talks in ECFA session (European Committee on Future Accelarators)
- Two classes of options have been studied since about a decade
- New candidates have appeared (e.g. Cool Copper Collider, C3)
- Linear vs. circular choice to be driven by physics targets

Higgs factories: timelines

Plenary talk (ECFA): J. List

Timelines As updated for Snowmass

- Technologically-driven
 => start of physics in
 ~late 30ies
- Apart from CERN projects due to coupling to completion of (HL-)LHC programme => ~late 40ies
- ILC and CEPC require political decisions very soon to maintain timelines drawn here
- If Higgs Factory is built elsewhere, CERN could go for FCChh directly (~2060)

FCC

FCC: CERN circular option

Plenary talk (ECFA): M. Benedikt

- Detailed are being refined over time
 - o now 8 points (A-L) instead of 12 point A close to current LHC point 8
- Practical details are being discussed with autorities and operators
 - ◊ road access, electric network connection, etc.

Connections to transport infrastructure

- Road accesses identified and documented for all 8 surface sites
- Four possible highway connections defined (materials transport)
- Total amount of new roads required < 4 km (at departmental road level)

Detailed road access scenarios & highway access creation study carried out by Cerema, including regulatory requirements in France

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 AMU

Highlights of EPS-HEP2023 - CPPM seminar

FCC: options for operational sequence

Plenary talk (ECFA): M. Benedikt

- Baseline option is to start with Z production (super-LEP style) then rise in \sqrt{s} ۲
- Alternative option: starting directly with ZH
 - it could make sense to have the Higgs factory first

LHeC and FCC-eh

DIS: LHeC and FCC-eh

Parallel talks (Higgs, Top&EW): U. Klein, D. Britzger

- Parallel sessions talks about future eh collisions
 - ◊ either LHeC, or FCC-eh, or both
- Allows to probe very diverse topics with low pileup
- Example here: $|V_{tb}|$ measurement with single-top
- ...not to mention W mass, etc.

<u>Concurrent</u> eh and hh operation with same running time!

Genuine Twin Collider idea holds for LHC and FCC-hh.

Direct measurement of |V_{tb}|

Cut-based pseudo-analysis in hadronic channel incl. backgrounds

- → Estimated precision on V_{th} below 1% precision
- → Limits on anomalous Wtb couplings: < 0.01

$$V = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ \hline V_{td} \ V_{ts} \ V_{tb} \end{pmatrix} \ |V_{\text{ts,td}}| < 0.04 \ \text{(@FCC-eh)}$$

34/36

Conclusion

Conclusion

- Very interesting conference, with so many results
- Many things I could not include, such as
 - sustainability for future colliders Link
 - ◊ dark matter experiments Link
 - ◊ can PDFs absorb new physics? ► Link
 - ◊ etc.

Conclusion

EPS-HEP2025

- ⇒ Next edition of the conference organised in Marseille
 - o website: https://www.eps-hep2025.eu/ trailer: https://youtu.be/HcUYKkwvgAY

