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What is “a signal” ?

“everything can be a signal”

Signal and noise distinction is arbitrary, the
signal is the information we care about, the
noise is the sum of all other perturbations.

“asignal is what is not a noise”



A little bit of context

RICOCHET preliminary
Planar 40g + HEMT

- AmBe neutron
71Ge
—— Lindhard
——- Q=1

i
$
>
]
>
<
S
u
=
o
2
[
[ =4
w
j
o
2
©
N
f=
S

1
Recoil Energy, Eg [keV]

detector in a fridge electronics / DAQ discoveries (at best)
fun stuff (at least)



Signal processing extracting information

science/experiment interplay general methods
the science determines the detection process same algorithms
the experiment adds noises different experiments
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Outlook of this lecture

Basics (15 min) Case study (25 min)
basic knowledge betemeter calorimeter experiment processing pipeline
useful definitions (RICOCHET like)

tips



Basics of spectral analysis

Fourier transform
Windowing
Convolution and correlation

Power Spectral Density estimation



Fourier transform

frequency index
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frequency signal time signal size of signal

Note: we will restrict the discussion to the discrete Fourier transform and x_ can be complex or real valued.



Fourier transform

Parseval’s theorem

N-1 1 N-1
n=0 k=0
Plancherel’s theorem
N-1 1 N-1
2 2
E | = N E | Xk
n=>0 k=0

signal energy is conserved through FT

Convolution theorem
{fuxul(z) = F’*I{U- V}

Dirac & is the neutral element of convolution

Correlation
F{frg}=F{rt -Flg}

measure of similarity betweenfand g



Fourier transform

windowing forces the signal to be null at the borders of
observation window - reduce frequency leakage

there is a lot of windowing functions
but there is no universal rule to choose one
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Structural Dynamics Fundamentals and Advanced Applications, 2020
https://www.sciencedirect.com/topics/engineering/hanning-window
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https://www.sciencedirect.com/science/article/pii/B9780128216156000058

Spectral estimation

Wiener-Khinchin
Autocorrelation

Sw)=o- > ree(®e™ | ryy (1) =E[a(t)* -2t —7)]

direct link between statistical description and system evolution
one can define the cross power spectral density as the FT of the cross-correlation of two signal x, y

Sa(f) = 3 Rey(ra)e /" Ar - . |
n=—00 in signal processing we often use the cross-covariance

Rxy (7’) =E [Xt—T?tj| KXY(T) =E [(Xt—r - P'X) (Yt - NY)}
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https://en.wikipedia.org/wiki/Cross-correlation#cite_note-SAB1-14

Spectral estimation

Coherency definition Power Spectral Density between x and y

2
| G:I:y (f) | Coherency estimate is valid only for linear systems
TY (f) — results can be inaccurate in case of a non-linear dynamic

\/

Power Spectral Densities of xand y
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https://en.wikipedia.org/wiki/Cross-correlation#cite_note-SAB1-14

Spectral estimation

e  Non-parametric methods for which the signal samples can be unevenly spaced in time
° Least-squares spectral analysis, Lomb—Scargle periodogram, Non-uniform discrete Fourier transform

e  Non-parametric methods for which the signal samples must be evenly spaced in time
Periodogram, Bartlett's method, Welch's method a windowed version of Bartlett's method that uses overlapping segments
Multitaper is a periodogram-based method that uses multiple tapers
Singular spectrum analysis
Short-time Fourier transform
Critical filter is a nonparametric method based on information field theory that can deal with noise, incomplete data, and
instrumental response functions
e  Parametric techniques
o  Autoregressive model (AR) estimation, Moving-average model (MA) estimation, Autoregressive moving-average (ARMA)
o  MuUltiple Slgnal Classification (MUSIC) is a popular superresolution method.
o  Maximum entropy spectral estimation is an all-poles method useful for SDE when singular spectral features are expected.
e  Semi-parametric techniques
o  SParse Iterative Covariance-based Estimation (SPICE) estimation, and the more generalized (r, q ) -SPICE.
o lterative Adaptive Approach (IAA) estimation
o  Lasso, similar to least-squares spectral analysis but with a sparsity enforcing penalty.

o O O O O
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Spectral estimation

The Bartlett/Welch methods Median /[ mean

T — median is less sensitive to outliers than mean

M

more robust than standard Welch method

FFT FFT FFT

N N B need to correct the median bias o= )

Welch's Method (Hann window)
i M

median can be used to estimate o (RMS)
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In Python:
IEEE Access. PP, 1-1. 10.1109/ACCESS.2021.3058744. scipy.signal.welch(..., average="median”),

scipy.stats.median_abs_deviation(..., scale="normal”)



Case study » multi-channel calorimeter
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Goal 1: electronic noise estimation ( including correlations )
Goal 2: automatic pulse detection and amplitude estimation

Constraints lowest energy possible + “noisy” environment

Colas, J., Billard, J., Ferriol, S. et al.

Development of Data Processing and Analysis Pipeline for the Ricochet Experiment.
J Low Temp Phys 211, 310-319 (2023).

https://doi.org/10.1007/s10909-022-02907-5
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https://doi.org/10.1007/s10909-022-02907-5

Degradation

describes how the detector measurement line impacts the signal of interest
we are looking for “u”, but we measure “x”

today, we’ll go with this one

additive noise X=U+B
cross-talk X=U+HY
linear transformation X=A.(U+B)+C (example)

15
Note: the degradation model will define which method is best suited for your problem (need additional hypothesis)



Processing

P>  processing

raw data file processed file

extract reduced quantities A
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Pre-processing

Goal : prepare data for more reliable or faster analysis

combiner
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Pre-processing

amplitude [ADU]
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Sometime, signal processing can be trivial

e-h" collection - differential signal > summing them will improve SNR by sqrt(2)
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Pre-processing
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Downsampling reduces the data size, thus improves the processing speed and (may) degrade performances
reducing the number of sample will induces aliasing - you need to filter these aliases before decimation
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Source: https://www.eetimes.com/multirate-dsp-part-1-upsampling-and-downsampling/



Pre-processing
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It’s necessary to define an observation window of size tw, so it’s not possible to (accurately) observe
frequencies below 2/tw » remove them !

Ex:Iftw=1s,fc=2/tw=2Hz
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Noise estimation

Goal : estimate electronic noise floor PSD/CSD

Constraints : lot of pulses (wrt. det. dynamic), stationary noises (ergodicity), ...

clean data noise estimator trigger minimizer
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Noise estimation

Principle
150007 we know the signal we are looking for: pulses
12500
_ 10000 1 we can use a similarity measurement to identify
g ] the sections of data which are “as different as
E possible of a signal”
= 5000 A
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— raw PSD
0 — fil PSD
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Note: for a more precise description of this algorithm see my Phd thesis ]



Exercise 1: noise

We can use many approaches to clean our data, let’s talk about noise decorrelation

Up AN ' Vi
signal of interest : hm I > signal measured
: I
| |
| |
: Hpp | |
| |
_ Vb : T ! Vb _
“a noise” . i > “a noise”

Question 1: find the coupling transfer function that minimize the energy of decorrelated signal

Question 2: determine the relation between the PSD of U, and V, 23



Exercise 1: noise

Question 1

R(V(H)V(f))
Vb (f)I?

Hpp(f) =

ooooo
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Question 2

PSD(U,) = (1-C,).PSD(V,)
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Automatic pulse detection

Goal 1 : detect pulses at the lowest energy possible
Goal 2 : estimate the amplitude of each individual pulse

clean data noise estimator trigger minimizer
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Automatic pulse detection

amplitude

P* <— pulse template

300 streamiof data matched filter | /1 = C7<— electronic noise psd

normalization factor
200 A 1

100 the matched filter optimizes the SNR

—100{ — Rawdata Threshold O Trigger output
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. Epp— ; e m— e— , > useful for low energy physics
0 2 4 6 8 10 12 14
time [s]
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Automatic pulse detection

amplitude
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200 A

100 A

-100

stream of data

sorted data
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2 4 6 8 10 12 14 0 100000 200000 300000
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sort by amp.
take first sample
excludein time
take next

go backto 3
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Exercise 2: amplitude

We identified the approximate position of pulses > what are their amplitudes ?
we want an objective function to minimize » chi?

Question 1: how to estimate the amplitude “a” from chi? expression ?

D — a. M|?
P
f

This expression suppose a gaussian variance likelihood

in short, minimizing chi? is equivalent to maximizing the likelihood
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Exercise 2: amplitude

Frequential pulse fitting illustration

300 _ e e S 1t
S 200 1440
S ‘
2 -42004
5 100/ = iy
E | - 400
3 % - 1380
< |
—1001 - 360

to [ms]

X2 can be seen as a measure of goodness of fit

min x? <> maxa
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Energy resolution

What is the energy resolution ? Formula
300+ ] 1 8242 -1
- 2 _ X
‘2 " g = o A
S 2001 A : 2 9a?
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The timing resolution can also be derived from x?
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What we get at the end ...

goodness of fit
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Conclusion

e Signal processing (SP) can be simple (ex: addition of two signals)

e Thereis abunch of unused and interesting methods
o interact with SP experts ! (it’s a very wide field)

e Acryogenic detector is a complex system which combine hardware and software
o SPisacrucial step in the detection pipeline

e SP method to use depends on the sensor conditioning

o detector design
o amplifiers type

“ Information is the resolution of uncertainty. > Claude Shannon
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Likelihood vs. chi?

N pulses fitted simultaneously with beta_n the “local” parameters (t0, a, ...) and theta the “global” shape parameter

_ 1 |Dn(£)=Dn(f)I?
T

0=0

minimizing the chi’ = maximizing the likelihood
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Generalization

mono-channel

2
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