Jules COLAS CNRS, IP2I

signal processing in cryogenic experiments

What is "a signal"?

"everything can be a signal"

Signal and noise distinction is arbitrary, the signal is the information we care about, the noise is the sum of all other perturbations.

"a signal is what is not a noise"

A little bit of context

discoveries (at best) fun stuff (at least)

electronics / DAQ

detector in a fridge

Signal processing extracting information

science/experiment interplay

the science determines the detection process the experiment adds noises

general methods

same algorithms different experiments

CEvNS

Ligo, GW

RICOCHET, CEvNS

Outlook of this lecture

Basics (15 min)

Case study (25 min)

basic knowledge useful definitions tips bolometer calorimeter experiment processing pipeline (RICOCHET like)

Basics of spectral analysis

Fourier transform

Windowing

Convolution and correlation

Power Spectral Density estimation

Fourier transform definition

Fourier transform cheat sheet

Parseval's theorem

$$\sum_{n=0}^{N-1} x_n y_n^* = rac{1}{N} \sum_{k=0}^{N-1} X_k Y_k^*$$

Convolution theorem

$$\{us v\}(x)=\mathcal{F}^{-1}\{U\cdot V\}$$

Dirac δ is the **neutral element** of convolution

Plancherel's theorem

$$\sum_{n=0}^{N-1} |x_n|^2 = rac{1}{N} \sum_{k=0}^{N-1} |X_k|^2$$

signal energy is **conserved** through FT

Correlation
$$\mathcal{F}\left\{f\star g
ight\}=\overline{\mathcal{F}\left\{f
ight\}}\cdot\mathcal{F}\left\{g
ight\}$$

measure of similarity between f and g

Fourier transform windowing

windowing forces the signal to be null at the borders of observation window → reduce frequency leakage

> there is a lot of windowing functions but there is **no universal rule** to choose one

<u>Structural Dynamics Fundamentals and Advanced Applications, 2020</u> https://www.sciencedirect.com/topics/engineering/hanning-window

Spectral estimation definition

Wiener-Khinchin

Autocorrelation

$$S(\omega) = rac{1}{2\pi}\sum_{k=-\infty}^{\infty} r_{xx}(k) e^{-i\omega k}$$

$$r_{xx}(au) = \mathbb{E}ig[x(t)^* \cdot x(t- au)ig]$$

direct link between statistical description and system evolution one can define the **cross power spectral density** as the FT of the **cross-correlation** of two signal x, y

$$S_{xy}(f) = \sum_{n=-\infty}^\infty R_{xy}(au_n) e^{-i2\pi f au_n} \; \Delta au$$

 $\mathrm{R}_{XY}(au) = \mathrm{E} \Big[X_{t- au} \overline{Y_t} \Big]$

in signal processing we often use the cross-covariance

$$\mathrm{K}_{XY}(au) = \mathrm{E}\Big[(X_{t- au}-\mu_X)\,\overline{(Y_t-\mu_Y)}\Big]$$

Spectral estimation coherency

Power Spectral Density between x and y

Coherency estimate is **valid only for linear systems** results can be inaccurate in case of a non-linear dynamic

Power Spectral Densities of x and y

Spectral estimation a lot of methods...

- Non-parametric methods for which the signal samples can be unevenly spaced in time
- Least-squares spectral analysis, Lomb-Scargle periodogram, Non-uniform discrete Fourier transform
- Non-parametric methods for which the signal samples must be evenly spaced in time
 - <u>Periodogram</u>, <u>Bartlett's method</u>, <u>Welch's method</u> a windowed version of Bartlett's method that uses overlapping segments
 - <u>Multitaper</u> is a periodogram-based method that uses multiple tapers
 - <u>Singular spectrum analysis</u>
 - Short-time Fourier transform
 - <u>Critical filter</u> is a nonparametric method based on <u>information field theory</u> that can deal with noise, incomplete data, and instrumental response functions
- Parametric techniques
 - <u>Autoregressive model</u> (AR) estimation, <u>Moving-average model</u> (MA) estimation, <u>Autoregressive moving-average</u> (ARMA)
 - <u>MUltiple SIgnal Classification</u> (MUSIC) is a popular <u>superresolution</u> method.
 - <u>Maximum entropy spectral estimation</u> is an *all-poles* method useful for SDE when singular spectral features are expected.
- Semi-parametric techniques
 - SParse Iterative Covariance-based Estimation (SPICE) estimation, and the more generalized (r, q)-SPICE.
 - Iterative Adaptive Approach (IAA) estimation
 - Lasso, similar to least-squares spectral analysis but with a sparsity enforcing penalty.

Source: wikipedia

Spectral estimation tips

The Bartlett/Welch methods

IEEE Access. PP. 1-1. 10.1109/ACCESS.2021.3058744.

Median / mean

median is less sensitive to outliers than mean

more robust than standard Welch method

need to correct the median bias

$$\alpha = \sum_{\ell=1}^n \frac{(-1)^{\ell+1}}{\ell}$$

median can be used to estimate σ (RMS)

 $\sigma = k . MAD$ MAD = median absolute deviation $k \sim 1.4826$

In Python:

scipy.signal.welch(..., average="median"), scipy.stats.median_abs_deviation(..., scale="normal")

Case study > multi-channel calorimeter

Goal 1: electronic noise estimation (including correlations)

Goal 2: automatic pulse detection and amplitude estimation

Constraints lowest energy possible + "noisy" environment

Colas, J., Billard, J., Ferriol, S. *et al.* **Development of Data Processing and Analysis Pipeline for the Ricochet Experiment.** *J Low Temp Phys* 211, 310–319 (2023). <u>https://doi.org/10.1007/s10909-022-02907-5</u>

Degradation model

Processing pipeline

continuous data stream

reduced quantities

Pre-processing

Goal : prepare data for more reliable or faster analysis

continuous data stream

Pre-processing combine channels

Sometime, signal processing can be trivial

 $e^{-}h^{+}$ collection \rightarrow differential signal \rightarrow summing them will improve SNR by sqrt(2)

Pre-processing downsampling

Time

Frequency

Downsampling reduces the data size, thus improves the processing speed and (**may**) degrade performances reducing the number of sample will induces **aliasing** → **you need to filter these aliases before decimation**

Pre-processing high-pass filtering

It's necessary to define an observation window of size **tw**, so it's not possible to (**accurately**) observe frequencies below **2/tw** → **remove them** !

Ex: If tw = 1 s, fc = 2/tw = 2 Hz

Noise estimation

Goal : estimate electronic noise floor PSD/CSD

Constraints : lot of pulses (wrt. det. dynamic), stationary noises (ergodicity), ...

Noise estimation

Principle

we know the signal we are looking for: **pulses**

we can use a **similarity** measurement to identify the sections of data which are **"as different as possible of a signal"**

Note: for a more precise description of this algorithm see my Phd thesis

Exercise 1: noise decorrelation

We can use many approaches to clean our data, let's talk about noise decorrelation

Question 1: find the coupling transfer function that minimize the energy of decorrelated signal

Question 2: determine the relation between the PSD of U_{R} and V_{R}

Exercise 1: noise decorrelation (results)

Question 1

$$H_{DB}(f) = \frac{\Re(V_B^*(f)V_D(f))}{|V_D(f)|^2}$$

Question 2

 $PSD(U_B) = (1-C_{BD}).PSD(V_B)$

Automatic pulse detection

Goal 1 : detect pulses at the lowest energy possible Goal 2 : estimate the amplitude of each individual pulse

Automatic pulse detection

the matched filter optimizes the SNR

it implies a **lower detection threshold** → useful for low energy physics

Automatic pulse detection

- sort by amp.
- 2. take first sample
 - exclude in time
- 4. take next
- 5. go back to 3

Exercise 2: amplitude estimation

We identified the approximate position of pulses \rightarrow what are their amplitudes ? we want an objective function to minimize \rightarrow chi²

Question 1: how to estimate the amplitude "a" from chi² expression ?

$$\chi^2 = \sum_f rac{|D-a.\,M|^2}{J}$$

This expression suppose a gaussian variance likelihood

in short, minimizing chi² is equivalent to maximizing the likelihood

Exercise 2: amplitude estimation

Frequential pulse fitting illustration

Energy resolution

What is the energy resolution ?

Formula

$$\sigma^2 = \left(rac{1}{2}rac{\partial^2\chi^2}{\partial \hat{a}^2}
ight)^{-1}$$

The timing resolution can also be derived from χ^2

What we get at the end ...

amplitude

Conclusion

- Signal processing (SP) **can be simple** (ex: addition of two signals)
- There is a bunch of unused and interesting methods
 o interact with SP experts ! (it's a very wide field)
- A cryogenic detector is a complex system which combine hardware and software
 SP is a crucial step in the detection pipeline
- SP method to use depends on the **sensor conditioning**
 - \circ detector design
 - amplifiers type

" Information is the resolution of uncertainty. " Claude Shannon

Literature

Non-linear methods:

"Improving the Performance of Cryogenic Calorimeters with Nonlinear Multivariate Noise Cancellation Algorithms" arXiv:2311.01131v2 [physics.ins-det] 6 Feb 2024

Decorrelation methods:

"Automatic cross-talk removal from multi-channel data" arXiv:gr-qc/9909083v1 27 Sep 1999 "Noise correlation and decorrelation in arrays of bolometric detectors" arXiv:1203.1782v1 [physics.data-an] 8 Mar 2012

Threshold reduction:

"Lowering the energy threshold of large-mass bolometric detectors" arXiv:1012.1263v1 [astro-ph.IM] 6 Dec 2010
"Processing the signals from solid-state detectors in elementary-particle physics." *Riv. Nuovo Cim.* 9, 1–146 (1986) https://doi.org/10.1007/BF02822156

Parameter/resolution estimation:

"Optimum filter-based analysis for the characterization of a high-resolution magnetic microcalorimeter towards the DELight experiment" arXiv:2310.08512v1 [hep-ex] 12 Oct 2023 "When "Optimal Filtering" Isn't" <u>arXiv:1611.07856v1 [physi</u>cs.data-an] 23 Nov 2016

+ variational minimization, adaptative filtering (active denoising), wavelets, non-gaussian noise hypothesis, machine learning, ...

Likelihood vs. chi²

N pulses fitted simultaneously with beta_n the "local" parameters (t0, a, ...) and theta the "global" shape parameter

$$\mathcal{L}(\vec{\theta}|D_0,\ldots,D_N) = \prod_f \prod_{n=1}^N e^{-\frac{1}{2}\frac{|D_n(f)-\overline{D}_n(f)|^2}{J(f)}}$$

$$-\log \mathcal{L}(\vec{\theta}) = \frac{1}{2} \sum_{n=1}^{N} \chi^2(\vec{\theta}; \vec{\beta_n})$$

$$\frac{\partial \log \left(\mathcal{L}(\vec{\theta} | D_0, \dots, D_N) \right)}{\partial \vec{\theta}} \bigg|_{\vec{\theta} = \hat{\vec{\theta}}} = 0$$
$$\equiv \sum_{n=1}^N \frac{\partial \chi^2(\vec{\theta}; \vec{\beta_n})}{\partial \vec{\theta}} \bigg|_{\vec{\theta} = \hat{\vec{\theta}}} = 0$$

minimizing the chi² = **maximizing** the likelihood

Generalization

