Cryogenic Detectors - Application to rare events searches -

DRTBT 2024 Aussois 24-29 Mars 2024 https://drtbt.neel.cnrs.fr/

Alex Juillard IP2I

contributions from Julien Billard, Denys Poda, A. Armatol & others

Outline

- Brief recap of bolometer vs calorimeter
- Science application w/ massive detector for rare event searches
 - Dark Matter
 - CEvNS
 - 0νββ
- + Conclusion

Cryogenic Detector ??

« massive » detector:

- + ~ g → ~ kg
- ◆ Some of the fabrication step done *«by hand»*
- Particle detection « one by one »
- ✦ Main application :

Rare event detection

- Dark Matter
- 0νββ
- $CE_{\nu}NS$

Matrix of detector :

- + 1 → 100k « pixels »
- ◆ Some \of the fabrication step done *collectively*»
- ◆ Particle detection « one by one » or by flux
- Main application : Astr
 - Sub-mm (50-600 Ghz)

- Resistive
 - superconductor
 - Metal InsulatorTransition
- ✦ Magnetic
- ♦ w/ out of equilibrium mediator
 - Copper pairs in SC material:
 - Kinetic Inductance vs dN_{qp}
 - Out of equilibrium phonon can brake Cooper Pairs

Link with Quantum sensor

see M. Gonzales for Astro application

Cryogenic Detector ??

Low Temperature → Sensitivity × & Noise × T_{bath} ~10 mK - 300 mK

R&D = absorber + thermometer + electronics (Z adaptation, gain, readout) + cryo environment

Cryogenic Detector ??

EDELWEISS-III ; 2017 JINST 12 P08010

CUPID; Eur. Phys. J. C (**2022**) 82:810

Double readout cryogenic detectors allows for an *evt-by-evt background rejection* :

200

180

160

140

120

100

80

60

40

20

0

- Heat and Ionization on Ge detector :
 - Elec. Recoil / Nuclear Recoil discrimination
 - Heat only event rejection
 - ➡ surface event rejection
- Heat and Light on different crystal
 - Elec. Recoil / Nuclear Recoil discrimination
 - α background rejection 5

Dark Matter : evidence

From precision cosmology (CMB, BAO, SN, ...):

 ~26% of the matter/energy content of the universe is made of non baryonic Dark Matter

Large scale structure:

- bullet cluster
- lensing

From rotation velocity measurement of galaxies:

- Spiral galaxies are embedded in Dark Matter halo that outweights the luminous part by a factor ~10
- Milky Way local Dark Matter density:

0.3±0.1 GeV/cm³ (note that average dark Matter density in the universe ~ 1.2 GeV/m³ !!)

100

50

0

Dark Matter

5

Issues:

- Density is « known » *but the mass of the dark matter candidate(s) remains unknown as well as its cross section with matter...*
- Not easy to design the experiment !!!

20

15

10

R kpc

Dark Matter : WIMP candidate

 10^{3}

Maximum recoil energy [keV] 10⁻¹ 10⁻¹ 10⁻²

10^{-`)}

10⁻³

10-4

10

10

WIMP

from galactic halo

v~220 km/s

Target Nucleus

in laboratory

v~0 km/s

 $E_r = E$

Helium

Fluorine

- Germanium

Argon

Xenon

 10^{-2}

10⁻¹

Elastic collision

 $4m_{\chi}m_N$

 $\frac{1}{(m_{\chi}+m_N)^2}\cos^2\theta_{\eta}$

WIMP Candidate: Weakly Interacting Massive Particle

- Stable
- Neutral from charge and color
- Massive GeV TeV (« standard » WIMP)
- Weak interaction
- $\Omega_{wimp} \sim 1$ (Wimp Miracle) for some model

Differential event rate as a function of the recoil energy:

WIMP

 E_R

10

Dark Matter mass [GeV]

0R

Dark Matter : WIMP candidate

WIMP Candidate: Weakly Interacting Massive Particle

- Stable
- Neutral from charge and color
- Massive GeV TeV (« standard » WIMP)
- Weak interaction
- Ω_{wimp} ~1 (Wimp Miracle) for some model

High WIMP flux !

- ~ 100 000 particles/cm²/s !! for 100 GeV WIMP
- **But very low event rate** (for standard Wimps) :
 - R < O(10) *evts/ton/year*

Mean recoil energy:

~ O(1) keV (for standard Wimps)

Dark Matter : WIMP candidate

WIMP Candidate: Weakly Interacting Massive Particle

- Stable
- Neutral from charge and color
- Massive GeV TeV (« standard » WIMP)
- Weak interaction
- Ω_{wimp} ~1 (Wimp Miracle) for some model

High WIMP flux !

 ~ 100,000 particles/cm²/s !! for 100 GeV WIMP

But very low event rate (for standard Wimps):

• R < O(10) *evts/ton/year*

Mean recoil energy:

~ O(1) keV (for standard Wimps)

Example of a 90% C.L. sensitivity limit (background free) from a 1 ton-year Ge experiment with a 1 keV energy threshold

Dark Matter : Much more candidates !!

Dark Matter candidate :

- Many candidates over 50 order of magnitude in mass !
- WIMP still motivated
- ...but we should enlarge the focus with new R&Ds (US P5 report & Dark Matter Small Projects New Initiatives)

Dark Matter : Direct Wimp search status

Xenon 1T sensitivity:

~2 bkg evts in about 1ton.year of exposure !!

Dark Matter search: detectors

+ CCD, Haloscope, ...

APPEC committee report

Direct detection of dark matter-

The « wish list » for a direct detection experiment :

- Low energy threshold if low mass search
- Large exposure (few events per ton-year) if standard wimp search
- Low and controlled backgrounds (underground labs and passive shielding)
- Discrimination between signal and backgroundS

Dark Matter search: detectors

0.30.5

0.1

10

WIMP mass [GeV/c²]

threshold

1000

Dark Matter search: LXe detector

Xenon1T @ Gran Sasso

https://xenonexperiment.org/

Dark Matter search : Cryogenic Detector

Double readout cryogenic detectors allows for an **evt-by-evt background rejection** :

- + Heat and Ionization on Ge/Si detector :
 - Elec. Recoil / Nuclear Recoil discrimination
 - → Heat only event rejection
 - surface event rejection

800g Ge EDW-III Ge detector

Dark Matter search : Cryogenic Detector

Double readout cryogenic detectors allows for an **evt-by-evt background rejection** :

- + Heat and Light on different crystal
 - α background rejection

Developed initially for standard WIMPs search :

- head of the competition early 2000's
- Far behind noble gas detector since
- New development to go to low mass Dark Matter since 2010

Fig. 2 Schematic drawing of a CRESST detector module, consisting of the target crystal and an independent light detector. Both are read out by transition edge sensors (TES) and are enclosed in a common reflective and scintillating housing

G. Angloher, et al, Astroparticle Physics, 31, 270, 2009

300g CRESST-II CaWO₄ detector

Dark Matter search : CRESST

- Iocated in LNG
- started in 1996
- CRESST-II (2006-2015)
 - 33 * 300 g CaWO4
- CRESST-III (2017-)
- up to 33 * module of different target & size
- Major upgrade ongoing (600 readout channels)

Dg detect

le !

300 g CaWO4 $\sigma \sim$ 80eV (best)

m 1 2

730 kg.day published 2012

24g CaWO4 σ ~10 eV (best)

2019 World leading result with only 5.7 kg.day !

CRESST : Low Energy Excess evts

Low Energy Excess also seen by ALL cryogenic detectors !!

- Radiogenic bkg more expected to be flat and at the 1-100 dru level :
- LEE orders of magnitude higher !

Origins under investigation:

- Sensor related events
- Relaxation of holding-induced stress
- Intrinsic crystal effects

Major issue today. Will limit most of the science cases if not solved/mitigated

Multiple design modifications were applied in the current data-taking campaign to test ideas about the LEE origin.

CRESST

Commercially grown CaWO

Current measurement campaign started in November 2020 and is now at the last stage.

- Various target materials: CaWO₄, Al₂O₃, LiAlO₂, Si
- Different holding structures (sticks, clamps)
- Remove scintillating parts (foil, sticks, scintillating crystals)

LEE is observed in all detectors

Dark Matter search : EDELWEISS -II / -III setup

- Iocated in LSM in France
- started in 1994 (w/ Al2O3, Ge in 1996)
- EDW-II (2002-2011)
 - 10 * 400 g Ge
- EDW-III (2012-2022)
 - 36 * 800 g Ge
 - R&D on 200g and 33g detector for low mass DM
 - 3000 coax. cables (6 km)
 - 350 Si-JFET transistors@ 120K
 - 36*2 « Bolometers Boxes » @ 300K

- 35 tons PE + 40 tons Pb shielding
- 100 m² active muon veto
- Low radioactivity material in the detector vicinity

EDW Cryogenic Ge : Simultaneous Heat & Ionization

Etotal = Erecoil + Eluke

 $= E_{recoil} + E_{recoil}/\varepsilon \cdot V$

- (X, gamma, beta, ...)
- ε = 10-**30eV** Nuclear Recoil (neutron, Wimp, Cevns)

@ 3V : Heat from Recoil = Heat from charge drift* 2 (for ER)
@ > 100V : Heat = E_{Luke} : signal boost, no ID

21

EDELWEISS: 2 modes of operation

EDELWEISS : DM search objectives

EDELWEISS-SubGeV: aiming for a kg-scale payload of few-g to 30g Ge detectors running in two modes:

- **High Voltage:** single-e/h sensitivity by operating in a NTL mode
- Low Voltage: Particle ID ER/NR/'unknown backgrounds' and fiducialization

Both operating modes require sub-100 eV heat energy thresholds

EDELWEISS : Dark Matter search in HV mode @ LSM

33 g Ge @ 78V

$\sigma \sim 1.5 \text{ eV}_{ee}$ (0.53 eh pair)

2020 World leading results

(DM scattering on e, DM absorption) with only 58 hours of DM search at LSM!

Spectra <25eV_{ee} =680 eV phonon) *dominated by Low Energy Excess* (heat only event)

- HV mode is not sufficient by itself to probe low mass DM, must be combined w/ heat only event identification
- Similar results on a 200g detector with NbSi thermometer

200 g Ge @ 66V

 $\sigma \sim$ 4.45 eV_{ee} (1.5 eh pair)

2022 World leading results

(DM scattering on e, DM absorption) with only 28 days of DM search at LSM!

EDELWEISS: Identification of Low Energy Excess (« heat only »)

EDELWEISS : Identification of Low Energy Excess (« heat only »)

- Tricks = use the Luke effect
 - Concentrate it
 - trigger a « LEE » veto thermometer
 - single e-h sensitivity possible

Proof of concept in 2023 !

SSED is working...but threshold still high as of today

h+

EDELWEISS : Future

- EDELWEISS-III setup dismantled in 2023
- EDELWEISS collaboration is not existing anymore
-But french Ge detector technology still alive !
- *RICOCHET* 38g Ge detector started from EDW legacy
- ANR *CryoSEL* ongoing (all EDW partner)
- Participation of most of the previous EDW members to the **TESSERACT** *Project under discussion*

Empty EDW space @ LSM (feb 2024)

TESSERACT : Proposal experiment @ LSM

<u>Transition Edge Sensors with Sub-Ev Resolution And Cryogenic Targets</u>

IESSENAUT

- DOE Funding for R&D and project development began in June 2020 (Dark Matter New Initiative)
- One experimental design, and different target materials with complementary DM sensitivity, all using TES
- Includes SPICE (Al₂O₃ and GaAs) and HeRALD (LHe)
- ~40 people from 8 institutions
- Actively searching for an underground lab

TESSERACT @ LSM proposal:

- Benefit from EDW+Ricochet+CUPID Ge bolometer expertise and low-background cryogenic experience to:
 - 1. Add the French semiconductor Ge bolometer technology (both LV and HV mode) to the TESSERACT science program
 - 2. **Deploy** the future TESSERACT experiment at LSM
- Achieve leading light DM sensitivities on short time scales
- Benefit from exchange of technologies with US partners

TESSERACT @ LSM: summary

All detector technologies will be using:

- 1. athermal phonon TES with sub-eV energy thresholds,
- 2. drastically mitigated LEE (under intense investigation),
- 3. and payloads between 10g to 100g

	Target	Search type	Mass range	LEE rejection	Particle ID
SPICE Polar crystals	Al ₂ O ₃ , SiO ₂	ERDM	100 meV - MeV	Dual TES channel	None
SPICE Scintillator	GaAs	NRDM/ ERDM	eV - MeV MeV - GeV	Phonon/ photon coïncidence	Dual Phonon- photon readout
HERALD	He	NRDM	MeV - GeV	Multiple He4/ photon detector	Pulse shape discrimination
	Ge, Si	ERDM	eV - MeV	SSED	None
	Ge, Si, C	NRDM	MeV - GeV	Phonon/ Ionization coincidence	Dual phonon- ionisation readout

SPICE

- on Si and Ge crystals
- LV : iZIP detector towers 10 Ge+2 Si
- *HV* towers 8 Ge + 4Si
- Tower can be tested in CUTE facility

31

Radon filter plant

- As EDW 2 possible mode of operation but both on Si and Ge crystals
- LV : iZIP detector towers 10 Ge+2 Si
- HV towers 8 Ge + 4Si
- Tower can be tested in CUTE facility

- HV : 6 phonon channels on each side
- iZIP : 6 phonons channel + 2 ionization on each side !
- Φ100mm, h 33.3mm : 1.4kg Ge, 0.6 kg Si
- 20-30 eV phonon, 180 eV ionisation
 - → Ionisation will limit a lot the mass range due to Low Energy Excess (Heat-Only) 33

SuperCDMS is already using small 0 V and single eh-sensitive HV detectors

HVeV (Si or Ge, 1 cm² x 4 mm). Like a small HV detector with single e-h resolution. $V_{\text{bias}} = 160 \text{ V}$

ER events are in the peaks, NR fills in gaps A mosaic of these on 2 SuperCDMS towers can get to the v-fog in 0.5 – 5 GeV range

0V (aka CPD). A thin, phonon-only device with SuperCDMS TES readout

Improving *"environmental"* phonon-only backgrounds Phonon resolution in the $\sigma_{pt} \sim 1$ eV range now. New prototype with hanging support (M. Pyle-Berkeley) is approaching $\sigma_{pt} \sim 50 - 100$ meV

A mosaic of sub-eV $\sigma_{\text{pt}}\,$ CPDs on 2 towers can get to masses of 50 MeV

Dark Matter search : Conclusion

Key of success :

- Low Threshold detector
- Control and identification of the Low Energy Excess (Heat Only Event)
- Ultra low background
- Limit dark count on HV detector (IR induced leakage, shallow site impurities etc)

The CEvNS connexion

Main cryogenic det. DM search experiments have a CEvNS side project:

- Coherent elastic neutrino nucleus scattering
- If you are *sensitive to low mass DM you are sensitive to CEvNS*
- You know precisely what you want to measure and you want to measure it precisely
- Depending on the site you can design your experiment accordingly

The CE_vNS connexion

SuperCDMS → MIvER

CRESST NUCLEUS

Two 3x3 arrays of $6g CaWO_4 + 4g Al_2O_3$ read out by W TES

EDELWEISS → Ricochet

Array of 27x32g detectors: - 8x8x8 cm3 - 50% Ge semiconductors - 50% Zn superconductors

Main cryogenic det. DM search er

_ measure and you want to measure it precisely

The CE_vNS process

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

at the detector level same as a neutron or WIMP interaction

For a recent and detailed review: M. Abdhulla et al., « Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications », arXiv:<u>2203.07361</u> 38

The CE_vNS process

D. Z. Freedman, PRD 9 (5) 1974

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

- CENNS cross-section : 1000 times larger than IBD crosssection
- No energy threshold Elastic Scattering
- From ton-scale to kg-scale neutrino detector payloads

A gateway to new physics:

- Non-Standard Interaction
- Existence of new massive bosons
- Neutrino Magnetic Moment

39

The CE_vNS signal

Recoil energy distribution

v-flux: 1012 cm-2.s-1

- For v-flux: 10¹² cm⁻²·s⁻¹, we expect a *few tens of events per day* and per kg of detector material (→ rare event search !)
- Calls for small total detector mass to reach high-precision: kg-scale with sub-100 eV threshold

CEVNS : gateway to new physics

New physics signatures will arise at the lowest energies :

→ Calls for very low-energy thresholds: O(10) eV

State of the art of CEvNS measurment

State of the art of CEvNS measurement

 $\bar{\nu}_e$ from β -decays of fissile isotopes

 u_{μ} , $ar{
u}_{\mu}$ and u_e from π -decay at rest

The COHERENT experiment at SNS : The first (two) detections !

Spallation Neutron Source, Oak Ridge National Laboratory

COHERENT at the spallation Neutron Source first observation ! Csl (2017) [1], Ar (2020) [2]

- Combine different targets and technology
 - Measure the N² dependence
- Sensitive to nuclear physics (form factor)
- Some BSM physics sensitivity: NSI, light mediators, ...

Ongoing proposals for CENNS @ ESS [3]

[1] D.Akimov et al., Science (2017), arXiv:1708.01294

[2] D.Akimov et al., PRL (2021), arXiv:2003.10630 43

[3] D. Baxter et al., JHEP (2020), arXiv:1911.00762

State of the art of CEvNS measurement

 $\bar{\nu}_e$ from $\beta\text{-decays}$ of fissile isotopes

 u_{μ} , $ar{
u}_{\mu}$ and u_{e} from π -decay at rest

Reactor neutrino experiments

Running: CONUS, TEXONO, CONNIE, Nu-GEN, ... Future: Ricochet, NuCLEUS, MINER, ...

- Higher neutrino flux for high-precision
 measurement
- Fully coherent regime
- Optimized sensitivity to neutrino magnetic properties and BSM physics: new light mediator, NSI, NMM, ...
- Reactor spectrum investigations (and monitoring)
 No CENNS detection at reactor up to now⁴⁴

MANOIR - CS IP2I (2022)

CEVNS : Nucleus @ Chooz

- @ Chooz nuclear power plant
- 2 * 4.25 GWth
- NUCLEUS will be installed at the VNS (very near site) @ 72 & 102 m from the reactors
- precise planning not defined
- 1.7*10¹² cm⁻²·s⁻¹ v-flux expected @ the VNS (* 2 wrt Ricochet@ILL)

CEVNS : Nucleus @ Chooz

with TESs) : Inner Veto

CEVNS : Nucleus @ Chooz

Silicon inner veto mock-up

- Detector design focus on low threshold (~10eV) with very small individual detector
 - 3×3 array of CaWO₄ (6 g total)
 - 3×3 array of AI_2O_3 (4 g total)
 - 10 g in total only !
- 2 target will help to distinguish neutron vs CEvNS...but *less than 0.1 evt/day expected in the whole detector array*
- Upgrade to 1kg planned in the future
- RISK : No Low Energy Excess (heat only) Identification

CEVNS: RICOCHET @ ILL

60 MW reactor @ ILL / Grenoble
♦ Ricochet installation started in 2022
♦ 5-10 years program

- ◆ US-France-Russia collab.
 - → 2 detectors technology
- Specifications goals for french techno.
 - ~0.75 kg Ge (18*40g)
 - · 20 eV ioni + 10eV chal (10* better than EDWIII)
- Low Energy Excess (heat only) Identification above the ionization threshold
- RISK : huge pressure on the ionization. decreased sensitivity if 20 eV not reach (35eV already reached @ IP2I)

CEVNS: RICOCHET @ ILL

- 58 MW nominal thermal power
 - 8.8 m away from the core
 - ~7 evts/day w/ 50 eV threshold (much less if 20 eV not reached on ionization)
- 3 to 4 cycles per year: ON/OFF modulation to subtract uncorrelated backgrounds
- Significant overburden (~15 m.w.e) to reduce cosmics
- Ricochet integration finalized !
 - First reactor data early-2024 !

Outer shielding: Inner shielding:

- PE: 35 cm
- Pb: 20 cm
- Muon veto
- Soft iron

- PE/Cu: 30 cm
- Pb/Cu: 15 cm
- Cryogenic Muon Veto
- Mu-Metal

CEVNS : RICOCHET - detector optimization

Salagnac & al: arXiv:2111.12438

Threshold defined for all experiments as 5σ

- \cdot Individual detector size optimisation :
 - · Balance between :
 - heat threshold
 - ionization (capacitance)
 - event rate

• 30-50 g is a good compromise for Ge

Fig. 6 Electrostatic simulation of a Full Inter-Digitized electrodes scheme on a 38 g germanium crystal $(\Phi = 30 \text{ g}, h = 10 \text{ mm})$. The crystal is surrounded at 2 mm distance by a chassis connected to the ground (not shown). The capacitance of the 4 electrodes with respect to the ground is about 20 pF (Color figure online.)

CEVNS: RICOCHET - detector optimization

Low-Voltage approach for optimal particle identification

- Fiducial volume: 62 %
- Surface event rejection: YES
- Total capacitance: 18 pF

14

2V

12

2V

14

10

10

Heat energy [keVee]

12

CEVNS: RICOCHET - MiniCryoCube

 HEMT (High electron Mobility Transistor) @
 1K to replace the standard Si-JFET working at 100K

 Bias and feedback resistor placed at 10mK to minimize the thermal noise

 ◆ 35 µm contantan tracks on 100 µm kapton foil for the 10mK-1K path

✦ Intense work on the 1K HEMT based cold elec and 1K-10mK interface :

- Mitigate stray capacitance (ionization reso)
- Mitigate heat load on 10mK stage
 - → low HEMT bias dissipation (~15uW/HEMT)
 - ➡ Use of special material for the 1K-10mK mechanics
- Mitigate Johnson noise of FB and and bias resistor

Ricochet R&D: MiniCryoCube demonstrator @ IP2I

- ER/NR discrimination threshold has been improved by about one order of magnitude w.r.t EDW and SuperCDMS
- Ricochet can now probe reactor neutrinos (CEvNS) (and equiv. 3 GeV WIMP with highly efficient LEE and ER rejection)
 - ➡ Ricochet resolution goals: 10 eV (heat) + 20 eVee (ionisation)
 - ➡ factor of ~2 still missing

Nobel Symposium 2023 (NS-182 « Dark Matter »)

Presented at: TAUP2023, IDM2023,

CEVNS : RICOCHET @ ILL

- *Reaching 8.7 mK on the 6th of February 2024* on the first cryogenic (Run12)
- 1 miniCryoCube installed and Run 13 started mid-Feb
 - Commissioning ongoing (Reactor OFF first, then ON)

Ονββ ??

 $Q_{\beta\beta}$ at few MeV !

$0\nu\beta\beta$??

0νββ **??**

Some contrains similar to Dark Matter (Wimps) search

- ...but signal expected at HE (few MeV)
- No Low Energy Excess issue !!
- main issue : large mass, low background, alpha bkg rejection
 - → double readout cryo detector can fit (if ton scale)

$\mathbf{0}_{\mathcal{V}}\mathbf{\beta}\mathbf{\beta}$: state of the art & future goals

m_{ββ} (eV)

10⁻¹

10⁻²

10⁻³

10-4

.CUPID

.KamLAND-Zen 800

.136Xe - 970 kg.yr Liquid scintillator $T_{1/2}^{0v} > 2.3 \times 10^{26} \, \text{yr}$ •m_{ββ}<36-156 meV .Phys. Rev. Lett., 130:051801, Jan 2023

.CUORE (ongoing)

.130Te - 561.6 kg.yr Bolometers •T_{1/2}^{0v} > 3.3x10²⁵ yr •m_{вв}<75-255 meV «Latest results from the CUORE experiment», TAUP 2023

.GERDA (finished)

.76Ge - 127.2 kg.yr Semiconductor detectors J_{1/2}^{0v} > 1.8x10²⁶ yr -m₈₈<79-180 meV Phys. Rev. Lett., 125:252502, Dec 2020

.nEXO

.136Xe – 5000 kg

.TPC

•m_{ββ}<4.7-20.3 meV

.100 Mo - 253 kg Bolometers .m_{ββ}<10-17 meV .The CUPID Interest Group. Cupid pre-cdr, 2019. Journal of Physics G: Nuclear and Particle Physics, 49(1):015104, dec 2021.

A.Armatol Thesis defense.

$0\nu\beta\beta$: towards CUPID

CUPID

CUORE Upgrade with Particle Identification

- ♦ 30 institut., 100s of people
- Long process of R&D selection
 - https://arxiv.org/abs/1504.03612
- French R&D (CUPID-Mo, IJCLab-IP2I + CEA) selected as the CUPID baseline
 - <u>https://arxiv.org/abs/1907.09376</u>
 - Luke Neganov Ge Light detectors will be produced by IJCLab
- dedicated « small » underground R&D project : CROSS, BINGO ERC project

+ lots to be done over the next 3 decades

Parameter	CUPID	CUPID-reach	CUPID-1T
Crystal	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$Li_2^{100}MoO_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$
Detector mass (kg)	472	472	1871
¹⁰⁰ Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index (counts/(keV kg y))	10^{-4}	2×10^{-5}	5×10^{-6}
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \text{ y}$	$2.3 \times 10^{27} \text{ y}$	$9.2 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	1.1×10^{27} y	$2 \times 10^{27} \text{ y}$	$8 \times 10^{27} \text{ y}$
exclusion sensitivity (90% C.L.)	10-17 meV	8.2 - 14 meV	4.1-6.8 meV
discovery sensitivity (3σ)	$1220~\mathrm{meV}$	8.8-15 meV	$4.47.3~\mathrm{meV}$

CUPID-Mo @ LSM [EPJC 83, 675 (2023), PRL162501 (2023)]

✦ IJCLab, IP2I + CEA

- Pilot ββ experiment based on scintillating bolometers with NTD readout
 - 20x Li₂MoO₄ crystals coupled to Ge light detectors
 - Data taking at LSM in EDELWEISS cryostat (2018-20)
 - Best worldwide results on $\beta\beta$ decay of ¹⁰⁰Mo
 - Demonstrator of the CUPID technology (see next slide)

Teflon: weak thermal link

Li₂Mo₄ crystal enriched in ¹⁰⁰Mo (99%) 210 g – cylinders ø44 mm x 45mm 2.1 kg of ¹⁰⁰Mo

CUPID (CUORE Upgrade with Particle Identification)

[EPJC 82, 810 (2022), JINST 18, P06033 (2023)]

✦ IJCLab, IP2I + CEA

- One of the 3 next-generation ββ experiments selected by the US and EU funding agencies (CUPID, LEGEND, nEXO)
 - 170 people & 33 institutions
 - Exploit CUORE infrastructure (Gran Sasso) with CUPID-Mo technology
 - Single module: Li₂¹⁰⁰MoO₄ 45×45×45 mm ~ 280 g
 - 57 towers of 14 floors with 2 crystals each 1596 crystals
 - ~240 kg of ¹⁰⁰Mo with >95% enrichment ~1.6×10^{27 100}Mo nuclei
 - Bolometric Ge light detectors as in CUPID-Mo
- ✦ Data taking > 2030

= 1596

57

Χ

R&D: **CUPID** (CUORE Upgrade with Particle Identification)

CUPID Prototype Tower : ANR CUPID1 2022-25 + R&T IN2P3

✦ Assembly in IJCLab and Gran Sasso

To be tested Mid-2024 in Cuoricino Cryostat @ Gran Sasso

Light Detector

Tower Construction

CUPID related R&D : CROSS

[Appl. Phys. Lett. 118, 184105 (2021), Appl. Phys. Lett. 118, 184105 (2021)]

Reject surface events by PSD assisted by metal film coating

- Proof of concept achieved with small prototypes
- Both surface α's and β's are separated from bulk events

Technology demonstrator

- ~ 5 kg of ¹⁰⁰Mo shared in ~36 x Li₂MoO₄ crystals (+ 6x ¹³⁰TeO₂ crystals)
- Dedicated cryostat @ Canfranc underground laboratory

Redundancy

- surface sensitivity
- scintillation light detection
- Improved Light detectors
 - enhanced by Neganov-Trofimov-Luke technology : demonstrated
 - ➡ Now CUPID baseline

erc (2018-24)

CUPID related R&D : BINGO

Less passive materials

Compact assembly

[arXiv.2301.06946, arxiv.2204.14161]

- Three innovations to reject background in ββ decay experiments based on Li₂MoO₄ and TeO₂
 - Revolutionary assembly to reject surface background
 - The light detector shields the passive materials
 - Enhanced-sensitivity light detectors (Neganov-Trofimov-Luke) (see next slide)
 - Internal veto (ultrapure BGO/ZnWO₄ scintillators)
 - \Rightarrow mitigate γ background in TeO₂
- ♦ BINGO demonstrator at LSM
 - Dedicated cryostat : instant of the EDELWEISS space LSM

CUPID related R&D : BINGO

[arXiv.2301.06946, arxiv.2204.14161]

BINGO - Technology demonstration NTL

Optimisations for CUPID/BINGO: Square and trapezoidal geometries, two-sided LDs, optimised voltage & operation, minimize loss from charge trapping η

Medex'23, 07 September 2023

Concentric1 - 0V

erc (2020-26)

Bly

6000 Energy (keV)

α

NIM A 940 (2019) 320

CUPID related R&D : TINY

- Development of bolometric detectors containing the most promising ββ isotopes
 ⁹⁶Zr and ¹⁵⁰Nd
 - Main challenge in Nd-based compounds: high specific heat from magnetism
 - detect phonons before thermalization
- TINY objective: develop a demonstrator with a 2 kg mass detector distributed in a few elements for each isotope
 - New dedicated cryostat @ Saclay (installation in 2025) for R&D
 - demonstrator tested in CROSS or BINGO Cryostat

(2023-29)

R&D : Rare events search CONCLUSION

- Standard WIMPs dead ?
 - Still motivated but ALPs more and more in the game
- Low Energy Excess (heat only) is the main issue for DM & CEVNS
 - LEE Identification or excellent ionization needed
- Proposal for a *new DM experiment at LSM (TESSERACT)*
- Radiopurity & alpha rejection is the main issue for 0νββ + scaling to very large mass
 - Ton scale experiment already exist (CUORE)
 - French technology selected for CUPID

→ Enough work for the 2 next decades !