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Outline

1. Microscopic description of crystal vibrations,
    phonon band structure, experimental probes

2. Phonon kinetics in insulators

3. Electron-phonon coupling and phonon kinetics in metals

4. Relaxation cascade in a detector
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Born-Oppenheimer approximation
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Solid  =  nuclei  +  electrons
or
Solid  =  atomic cores  +  valence electrons

(valid up to several MeV)

(valid up to several tens eV)

HEAVY light



  

Born-Oppenheimer approximation
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Step 1: Find the electron ground state at fixed positions of the nuclei
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Step 1: Find the electron ground state at fixed positions of the nuclei

Step 2: Use the obtained electron ground state energy
             as an additional potential energy of the nuclei:



  

Born-Oppenheimer approximation
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Step 1: Find the electron ground state at fixed positions of the nuclei

Step 2: Use the obtained electron ground state energy
             as an additional potential energy of the nuclei:

minimize with respect to

equilibrium atomic positions



  

Small vibrations: harmonic modes
Crystal:                unit cells,     atoms per unit cell

Equilibrium atomic positions:                                       

Indices:                     ,  atoms in unit cell

Cartesian components
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Small vibrations: harmonic modes
Crystal:                unit cells,     atoms per unit cell

Equilibrium atomic positions:                                       

Indices:                     ,  

pairwise interactions:
equivalent to springs
between atoms

atoms in unit cell

Cartesian components

Potential energy @ small displacements:
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Small vibrations: harmonic modes
Equations of motion: Plane wave solutions:

Eigenvalue problem to find       : Dynamical matrix 
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Small vibrations: harmonic modes
Equations of motion: Plane wave solutions:

Eigenvalue problem to find       : Dynamical matrix 

For each q,        eigenvectors           

                           eigenvalues

Distinct solutions only for q in the 1st Brillouin zone

Estimate:

(1 eV = 11605 K)
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Example: diamond crystal structure

2 atoms in a unit cell
diamond, silicon, 
germanium
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elementary translations
face-centered cubic lattice

1st Brillouin zone

Phonon dispersion of diamond

P. Yu and M. Cardona, “Fundamentals of semiconductors”



  

Optical probe: infrared spectroscopy

Bulk MoS2 from PRB 3, 4286 (1971)

incident
photon

θ
Photon absorption:

momentum conservation

energy conservation

very
small

Polarizability

- measure absorption or reflectivity

ω

phonon
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Optical probe: Raman spectroscopy

incident
photon

θi

scattered
photon

ωsθs
ωi

phonon

ωs < ωi − Stokes (T = 0)
ωs > ωi − anti-Stokes (thermal phonon population)

Energy-momentum conservation for n-phonon Stokes:

Zhang et al, Chem Soc. Rev. 44, 2757 (2015)

Raman spectrum of monolayer MoS2
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Acoustic phonons
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Crystal: continuous translation symmetry
   spontaneously broken

  soft Goldstone modes

invariant under a constant shift

symmetric 4-rank tensor

Sufficiently high crystal symmetry
(tetrahedral, cubic)

Transverse and longitudinal

sound velocity



  

Acoustic phonons
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Crystal: continuous translation symmetry
   spontaneously broken

  soft Goldstone modes

invariant under a constant shift

symmetric 4-rank tensor

Sufficiently high crystal symmetry
(tetrahedral, cubic)

Transverse and longitudinal

sound velocity

aluminium: 6.4, 3.0 km/s
copper: 4.8, 2.3 km/s
silicon: 8.4, 5.8 km/s



  

Phonon imaging
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laser
pulse

superconducting
    bolometer

meaurement
circuit

Northrop & Wolfe
PRB 22, 6196 (1980)

Ballistic phonon propagation is determined
by the caustics in the phonon dispersion

(“geometric acoustics”)

Ge
single
crystal



  

Phonon kinetics in insulators
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Phonon specific heat
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Energy density (per volume) atoms per unit cell

volume

Debye temperature

hundreds of Kelvins

classical harmonic oscillators (3 per atom)

thermal phonon
wavelegth

Debye frequency



  

Anharmonicity and phonon decay
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Potential energy expanded in small displacements:
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Potential energy expanded in small displacements:



  

Anharmonicity and phonon decay
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Potential energy expanded in small displacements:

Third-order processes:

phonon
decay

phonon
fusion

reciprocal lattice vector
(umklapp scattering)

energy conservation:

momentum conservation:



  

Anharmonicity and phonon decay
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High-energy phonon
decay rate:

(from J. P. Wolfe, “Imaging Phonons”)
uncertainty
principle ok

lattice
constant

quantum
fluctuations
of the
displacement

classical thermal
fluctuations
of the
displacement

if



  

Anharmonicity and phonon decay
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concave function)

Low energy, low temperature: acoustic phonons, no umklapps

impossible (triangle inequality +

Transverse acoustic phonons do not decay

possible,  but

Yu & Cardona, “Fundamentals of semiconductors”

LA phonon lifetime in silicon:

(from J. P. Wolfe, “Imaging Phonons”)

Goldstone modes are robust



  

Thermal conductivity
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heat current density

Fourier’s law (the current must vanish @ T = const)

Linearize the equation around T0:

diffusion equation
for temperature

specific heat thermal conductivity

phonon diffusion coefficient

mean free path



  

Thermal conductivity
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High temperatures                : (Debye, 1929)

Low temperatures                : 1. TA phonons 

2. LA phonons                ,  but

no umklapps
momentum is conserved
energy current does not relax

(Peierls, 1929)A high-energy phonon needed to provide umklapp

Phonon scattering on isotopic defects:

fraction of defective atoms

All phonon scattering mechanisms become very inefficient at low temperatures

(Pomeranchuk,
1942)



  

Ballistic phonons
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scattering time 

escape to the substrate

rough surface → diffuse scattering (Casimir, 1938)

Kapitza resistance

Heat current density across the interface:

area

Acoustic mismatch model:     wave refraction at a flat interface
Diffuse mismatch model:       random scattering at a rough interface



  

Isotope and boundary effects

P. D. Thacher,
Phys. Rev. 159,
975 (1967)
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Isotope and boundary effects

Klitsner & Pohl
Phys. Rev. B 36, 6551 (1987)
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Phonon kinetics in metals
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Acoustic phonons in metals
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Atoms give away their valence electrons

Ions in electron jellium
instead of atoms with springs

+

+

+ +

+

charge +Ze
mass M

density ni

Deformed system with ion displacements:

Uniform system is electroneutral

change in the ionic density

from ions & electrons

Coulomb potential

ionic plasma frequency,
not acoustic phonon



  

Screening by the Fermi sea
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Fermi level

Fermi
sea

depletion
Electron density
responds to the potential:

electronic density of states
at the Fermi level

Fermi energy

Fermi momentum

Fermi velocity

Self-consistent potential from ions and electrons: screened Coulomb

inverse Debye
(Thomas-Fermi)
screening length



  

Acoustic phonons in metals
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Atoms give away their valence electrons

Ions in electron jellium
instead of atoms with springs

+

+

+ +

+

charge +Ze
mass M

density ni

Deformed system with ion displacements:

Uniform system is electroneutral

change in the ionic density

from ions & electrons

Screeneed Coulomb potential



  

Electron-phonon interaction
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               from electronic ground state energy at fixed 

basic assumption:
electrons follow adiabatically the nuclear motion

Validity: ω << E1 − E0  electronic energy gap

Breaks down in any metal, semimetal, doped semiconductor

Born-Oppenheimer:

deformation potential ~ 10‒20 eV

Electrons feel
the potential

oscillating field



  

Phonon absorption by electrons
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Electronic density response
to an oscillating potential
from the Kubo formula:

Phonon decay rate:

Decay rate due to anharmonicity:
The main mechanism

of acoustic phonon decay in metals:
phonon absorption by electrons

much
weaker

or escape to the substrate (Kapitza)



  

Phonon absorption by electrons
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Electronic density response
to an oscillating potential
from the Kubo formula:

Phonon decay rate:

Decay rate due to anharmonicity:
The main mechanism

of acoustic phonon decay in metals:
phonon absorption by electrons

much
weaker

or escape to the substrate (Kapitza)

Inverse process: phonon emission by electrons (detailed balance)

Electron temperature Tel

Phonon temperature Tph

Heat flow from electrons to phonons:

power per unit volume = 

experimentally measurable coefficient



  

Phonon absorption by electrons
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Electron temperature Tel

Phonon temperature Tph

Heat flow from electrons to phonons:

power per unit volume = 

experimentally measurable coefficient

Wellstood, Urbina & Clarke,
PRB 49, 5942 (1994)



  

Specific heat and thermal conductivity
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Phonons:

Electrons:

dominate below a few Kelvins

Superconductor:



  

Specific heat and thermal conductivity
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Phonons:

Electrons: dominate below a few Kelvins

Electronic thermal conductivity:

much larger than sound velocity

dominates over phonons

Electric conductivity:

Wiedemann-Franz law:



  

Electron energy relaxation
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Fermi level

Fermi
sea

Electron-electron collision:
kick another electron from the Fermi sea
(emit an e-h pair)

(Landau &
Pomeranchuk)

Superconductors: quasiparticle gap Δ

breaking a Cooper pair: cost 2Δ

Δ

ground state

2Δ

gap



  

Electron energy relaxation
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Fermi level

Fermi
sea

Phonon emission

Δ

ground state

gap

if Tph >> hωD, then
random walk in energy



  

Electron energy relaxation
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M. Sidorova et al., PRB 102, 054501 (2020)

slopes between 3 and 4

clean electrons:

electrons scattering on impurities:

Disordered NbN



  

Relaxation cascade in a detector
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Overall picture
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Kozorezov et al.,

> 100 eV - cascade of atomic collisions

fraction of energy given to electrons
by a fast Ge atom in a Ge crystal

P. Sorensen, PRD 91, 083509 (2015)

electronic plasmons (10‒20 eV)

electron-hole pairs

Landau damping

within (a few) femtoseconds



  

Formation of the phonon bubble
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Fermi level

Fermi
sea

Electron-hole pair
emission rate

Phonon
emission rate

~ 1 eV

Phonon bubble

Cascade emission
of phonons with 

~ 1 picosecond

size ~ 10 nm

Most of the deposited energy
is stored in the phonons               



  

Phonon down-conversion

D. M. Basko, “Phonons” @ DRTBT 2024

phonon escape to the substrate

produce electron-hole pair

electron and hole emit phonons

Fermi sea



  

Phonon down-conversion
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phonon escape to the substrate

produce electron-hole pair

electron and hole emit phonons

total
energy
conserved

Fermi sea



  

Phonon down-conversion
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phonon escape to the substrate

produce electron-hole pair

electron and hole emit phonons

total
energy
conserved

Down to ω ~ 2Δ
~ 1 nanosecond

Fermi sea

pair-breaking threshold
in a superconductor

Kozorezov et al.,
PRB 61, 11807 (2000)



  

Quasiparticle cloud
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ground state

gap

escape to the substrate

escape to the substrate (> 10 ps)

break a Cooper pair (~ 1 ns)

To recombine,
two quasiparticles

must meet

Cloud expansion:
quasiparticle diffusion

Detect quasiparticle population:

1. Increase in the kinetic inductance

2. Increase in the dissipative conductivity



  

Useful textbooks
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Ashcroft and Mermin, Solid State Physics

Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids

Lifshitz & Pitaevskii, Physical Kinetics

Abrikosov, Fundamentals of the Theory of Metals

Yu & Cardona, Fundamentals of Semiconductors

Wolfe, Imaging Phonons: Acoustic Wave Propagation in Solids
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