Phonons

at low temperatures

D. M. Basko

Laboratoire de Physique et Modélisation des Milieux Condensés Université Grenoble Alpes and CNRS

Phonons

D. M. Basko

Laboratoire de Physique et Modélisation des Milieux Condensés Université Grenoble Alpes and CNRS

Outline

- 1. Microscopic description of crystal vibrations, phonon band structure, experimental probes
- 2. Phonon kinetics in insulators
- 3. Electron-phonon coupling and phonon kinetics in metals
- 4. Relaxation cascade in a detector

Step 1: Find the electron ground state at fixed positions of the nuclei $\{R_n\}$

$$
\hat{H}_{\text{el}}(\{\mathbf{R}_n\}) = -\sum_i \frac{\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}_i^2} + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,n} \frac{Z_n e^2}{|\mathbf{r}_i - \mathbf{R}_n|}
$$
\n
$$
\hat{H}_{\text{el}}(\{\mathbf{R}_n\}) \Psi(\{\mathbf{r}_i\}|\{\mathbf{R}_n\}) = E_0(\{\mathbf{R}_n\}) \Psi(\{\mathbf{r}_i\}|\{\mathbf{R}_n\})
$$

Step 1: Find the electron ground state at fixed positions of the nuclei $\{R_n\}$

$$
\hat{H}_{\text{el}}(\{\mathbf{R}_n\}) = -\sum_i \frac{\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}_i^2} + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,n} \frac{Z_n e^2}{|\mathbf{r}_i - \mathbf{R}_n|}
$$
\n
$$
\hat{H}_{\text{el}}(\{\mathbf{R}_n\}) \Psi(\{\mathbf{r}_i\}|\{\mathbf{R}_n\}) = E_0(\{\mathbf{R}_n\}) \Psi(\{\mathbf{r}_i\}|\{\mathbf{R}_n\})
$$

Step 2: Use the obtained electron ground state energy $E_0(\{\mathbf{R}_n\})$ as an additional potential energy of the nuclei:

$$
\hat{H}_{\mathrm{N}} = -\sum_{n} \frac{\hbar^2}{2M_n} \frac{\partial^2}{\partial \mathbf{R}_n^2} + \sum_{n < n'} \frac{Z_n Z_{n'} e^2}{|\mathbf{R}_n - \mathbf{R}_{n'}|} + E_0(\{\mathbf{R}_n\})
$$

Step 1: Find the electron ground state at fixed positions of the nuclei $\{R_n\}$

$$
\hat{H}_{\text{el}}(\{\mathbf{R}_n\}) = -\sum_i \frac{\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}_i^2} + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,n} \frac{Z_n e^2}{|\mathbf{r}_i - \mathbf{R}_n|}
$$
\n
$$
\hat{H}_{\text{el}}(\{\mathbf{R}_n\}) \Psi(\{\mathbf{r}_i\}|\{\mathbf{R}_n\}) = E_0(\{\mathbf{R}_n\}) \Psi(\{\mathbf{r}_i\}|\{\mathbf{R}_n\})
$$

Step 2: Use the obtained electron ground state energy $E_0(\{\mathbf{R}_n\})$ as an additional potential energy of the nuclei:

$$
\hat{H}_{\rm N} = -\sum \frac{\hbar^2}{2M_n} \frac{\partial^2}{\partial \mathbf{R}_n^2} + \sum_{n < n'} \frac{Z_n Z_{n'} e^2}{|\mathbf{R}_n - \mathbf{R}_{n'}|} + E_0(\{\mathbf{R}_n\})
$$
\nW(\{\mathbf{R}_n\})

\nminimize with respect to $\{\mathbf{R}_n\}$

Crystal: $N \to \infty$ unit cells, ν atoms per unit cell Equilibrium atomic positions: $\mathbf{R}_{n_1,n_2,n_3,j}^{\text{eq}} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3 + \tilde{\mathbf{R}}_j$ Indices: $j = 1, ..., \nu$ atoms in unit cell $\alpha, \beta = x, y, z$ Cartesian components $(n_1, n_2, n_3) \equiv \mathbf{n}$

Crystal: $N \to \infty$ unit cells, ν atoms per unit cell Equilibrium atomic positions: $\mathbf{R}_{n_1,n_2,n_3,j}^{\mathrm{eq}}=n_1\mathbf{a}_1+n_2\mathbf{a}_2+n_3\mathbf{a}_3+\tilde{\mathbf{R}}_j$ Indices: $j = 1, \ldots, \nu$ atoms in unit cell $\alpha, \beta = x, y, z$ Cartesian components $(n_1, n_2, n_3) \equiv n$

Potential energy @ small displacements: $\mathbf{R}_{\mathbf{n},j} = \mathbf{R}_{\mathbf{n},j}^{\text{eq}} + \mathbf{u}_{\mathbf{n},j}$

$$
W(\lbrace \mathbf{R} \rbrace) = W(\lbrace \mathbf{R}^{\text{eq}} \rbrace) + \frac{1}{2} \sum_{\mathbf{n}, \mathbf{n'} \, j, j', \alpha, \beta} K_{\alpha\beta}^{jj'}(\mathbf{n} - \mathbf{n'}) u_{\mathbf{n}j\alpha} u_{\mathbf{n'}j'\beta} + O(u^3)
$$

 $K = \frac{\partial^2 W}{\partial \mathbf{R} \partial \mathbf{R}}$ pairwise interactions: equivalent to springs between atoms

$$
M_j \frac{d^2 u_{\mathbf{n} j \alpha}}{dt^2} = \sum_{\mathbf{n'} j'} K_{\alpha \beta}^{j j'} (\mathbf{n} - \mathbf{n'}) u_{\mathbf{n'} j' \beta}
$$

Eigenvalue problem to find \mathbf{Q}_j : Dynamical matrix $(3\nu \times 3\nu)$

$$
\omega^2 Q_{j\alpha} = \sum_{j'\beta} D_{\alpha\beta}^{jj'}(\mathbf{q}) Q_{j'\beta}
$$

Equations of motion: Plane wave solutions:

$$
\mathbf{u_{n}}_{j} = \frac{\mathbf{Q}_{j}}{\sqrt{M}_{j}} e^{i\mathbf{q}\mathbf{R}_{nj} - i\omega t}
$$

 $D_{\alpha\beta}^{jj'}({\bf q})\equiv\sum_{\bf n}\frac{K_{\alpha\beta}^{jj'}({\bf n})}{\sqrt{M_jM_{j'}}}\,e^{-i{\bf qR_{nj}}}$

$$
M_j \frac{d^2 u_{\mathbf{n} j \alpha}}{dt^2} = \sum_{\mathbf{n'} j'} K_{\alpha \beta}^{j j'} (\mathbf{n} - \mathbf{n'}) u_{\mathbf{n'} j' \beta}
$$

Equations of motion: Plane wave solutions:

$$
\mathbf{u_{n}}_{j}=\frac{\mathbf{Q}_{j}}{\sqrt{M}_{j}}\,e^{i\mathbf{q}\mathbf{R_{n}}_{j}-i\omega t}
$$

Eigenvalue problem to find \mathbf{Q}_i : Dynamical matrix $(3\nu \times 3\nu)$

 $\omega^2 Q_{j\alpha} = \sum_{i\prime\beta} D_{\alpha\beta}^{jj'}(\mathbf{q}) Q_{j'\beta}$

 $D_{\alpha\beta}^{jj'}({\bf q})\equiv\sum\frac{K_{\alpha\beta}^{jj'}({\bf n})}{\sqrt{M_iM_{i'}}}\,e^{-i{\bf q}{\bf R}_{{\bf n}j}}$

For each q , 3ν eigenvectors 3ν eigenvalues $\omega_{\lambda,\alpha}^2$ $\lambda = 1,\ldots,3\nu$ Distinct solutions only for **q** in the 1st Brillouin zone

Estimate:
$$
\hbar \omega_{\text{ph}} \sim \hbar \sqrt{\frac{K}{M}}
$$
, $K \sim \frac{E_{\text{el}}}{a^2}$, $E_{\text{el}} \sim \frac{\hbar^2}{ma^2} \sim 10 \text{ eV}$

 $\hbar\omega_{\rm ph}\sim \sqrt{\frac{m}{M}}\,E_{\rm el}\sim 30\,{\rm meV}=350\,{\rm K}\,\,\,\,\,$

(1 eV = 11605 K)

Example: diamond crystal structure

P. Yu and M. Cardona, "Fundamentals of semiconductors"

 $\mathbf K$

W

X

Optical probe: infrared spectroscopy

Photon absorption:

momentum conservation $q =$ energy conservation ω

$$
= \frac{\omega}{c} \sin \theta \quad \frac{\text{very}}{\text{small}} \\ = \omega_{q,\lambda}
$$

Bulk MoS2 from PRB **3**, 4286 (1971)

Polarizability $\frac{1}{\omega - \omega_{\lambda} + i\Gamma_{\lambda}/2}$ $\alpha(\omega) = \text{const} +$

- measure absorption or reflectivity

$$
2\pi\hbar c \times 400 \,\mathrm{cm}^{-1} = 50 \,\mathrm{meV}
$$

Optical probe: Raman spectroscopy

incident photon θ _i scattered photon ω _i θ _s ω _s ω phonon

 $ω_s < ω_i - Stokes (T = 0)$

 ω_s > ω_i – anti-Stokes (thermal phonon population)

Energy-momentum conservation for *n***-phonon Stokes:** ${\bf q}_1 + \ldots + {\bf q}_n = "0"$

$$
\omega_{\mathbf{q}_1\lambda_1} + \ldots + \omega_{\mathbf{q}_n\lambda_n} = \omega_{\rm i} - \omega_{\rm s}
$$

Zhang *et al*, Chem Soc. Rev. **44**, 2757 (2015) Raman spectrum of monolayer MoS₂

Acoustic phonons

Crystal: continuous translation symmetry **spontaneously broken**

 $W({\bf R})$ invariant under a constant shift

$$
\mathbf{R}_{\mathbf{n}j} \mapsto \mathbf{R}_{\mathbf{n}j} + \mathbf{u} \quad \square \qquad \sum_{j,j'} D_{\alpha\beta}^{jj'} (\mathbf{q} \to 0) = \mathcal{D}_{\alpha\beta\alpha'\beta'} q_{\alpha'} q_{\beta'} + O(q^4) \quad \text{symmetric 4-rank tensor}
$$

Sufficiently high crystal symmetry (tetrahedral, cubic)

$$
\quad \ \ \, \Longrightarrow \ \ \, \mathcal{D}_{\alpha\beta\alpha'\beta'}=\mathcal{A}\,\delta_{\alpha\beta}\delta_{\alpha'\beta'}+\mathcal{B}\left(\delta_{\alpha\alpha'}\delta_{\beta\beta'}+\delta_{\alpha\beta'}\delta_{\alpha'\beta}\right)
$$

$$
\sum_{j,j'} D_{\alpha\beta}^{JJ}(\mathbf{q}) = A \, \delta_{\alpha\beta} q^2 + 2B \, q_{\alpha} q_{\beta}
$$
\nTransverse and longitudinal

\n
$$
= A \left(\delta_{\alpha\beta} q^2 - q_{\alpha} q_{\beta} \right) + (A + 2B) \, q_{\alpha} q_{\beta}
$$
\nsound velocity

\n
$$
v_{\rm L} > v_{\rm T} \sqrt{2}
$$
\n
$$
\equiv v_{\rm T}^2 \left(\delta_{\alpha\beta} q^2 - q_{\alpha} q_{\beta} \right) + v_{\rm L}^2 \, q_{\alpha} q_{\beta}
$$

 $\cdot \cdot \cdot$

Acoustic phonons

Crystal: continuous translation symmetry **spontaneously broken**

soft Goldstone modes

 $W({\bf R})$ invariant under a constant shift

$$
\mathbf{R}_{\mathbf{n}j} \mapsto \mathbf{R}_{\mathbf{n}j} + \mathbf{u} \quad \square \quad \sum_{j,j'} D_{\alpha\beta}^{jj'} (\mathbf{q} \to 0) = \mathcal{D}_{\alpha\beta\alpha'\beta'} q_{\alpha'} q_{\beta'} + O(q^4) \quad \text{symmetric 4-rank tensor}
$$

Sufficiently high crystal symmetry (tetrahedral, cubic)

Transverse and longitudinal sound velocity $v_L > v_T\sqrt{2}$ $30 \text{ meV} \times 1 \text{ Å}/\hbar \sim 5 \text{ km/s}$

aluminium: 6.4, 3.0 km/s copper: 4.8, 2.3 km/s silicon: 8.4, 5.8 km/s

Phonon imaging

FIG. 11. (a) Ballistic phonon image with laser beam obliquely incident on three sample faces. The bolometer is in the center of the back left (001) face. (b) Calculated $J=0$ singularities projected onto an equivalent cube.

D. M. Basko, "Phonons" @ DRTBT 2024

Phonon kinetics in insulators

Phonon specific heat

Potential energy expanded in small displacements:

$$
W(\lbrace \mathbf{R} \rbrace) = W(\lbrace \mathbf{R}^{\text{eq}} \rbrace) + \frac{1}{2} \sum_{\mathbf{n}, \mathbf{n'} \, j, j', \alpha, \beta} K_{\alpha\beta}^{jj'}(\mathbf{n} - \mathbf{n'}) u_{\mathbf{n}j\alpha} u_{\mathbf{n'}j'\beta} + O(u^3)
$$

Potential energy expanded in small displacements:

$$
W(\{\mathbf{R}\}) = W(\{\mathbf{R}^{\text{eq}}\}) + \frac{1}{2} \sum_{\mathbf{n}, \mathbf{n'} \, j, j', \alpha, \beta} K_{\alpha\beta}^{jj'}(\mathbf{n} - \mathbf{n'}) u_{\mathbf{n}j\alpha} u_{\mathbf{n'}j'\beta} + + \frac{1}{6} \sum \Lambda_{\alpha_1 \alpha_2 \alpha_3}^{j_1 j_2 j_3}(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) u_{\mathbf{n}_1 j_1 \alpha_1} u_{\mathbf{n}_2 j_2 \alpha_2} u_{\mathbf{n}_3 j_3 \alpha_3} + O(u^4)
$$

$$
\Lambda \sim \frac{E_{\rm el}}{a^3} \sim 10 \, {\rm eV/A}^3
$$

Potential energy expanded in small displacements:

$$
W(\{\mathbf{R}\}) = W(\{\mathbf{R}^{\text{eq}}\}) + \frac{1}{2} \sum_{\mathbf{n}, \mathbf{n'} \, j, j', \alpha, \beta} K_{\alpha\beta}^{jj'}(\mathbf{n} - \mathbf{n'}) u_{\mathbf{n}j\alpha} u_{\mathbf{n'}j'\beta} + + \frac{1}{6} \sum \Lambda_{\alpha_1 \alpha_2 \alpha_3}^{j_1 j_2 j_3}(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) u_{\mathbf{n}_1 j_1 \alpha_1} u_{\mathbf{n}_2 j_2 \alpha_2} u_{\mathbf{n}_3 j_3 \alpha_3} + O(u^4)
$$

$$
\Lambda \sim \frac{E_{\rm el}}{a^3} \sim 10 \, {\rm eV}/{\rm \AA}^3
$$

Third-order processes:

reciprocal lattice vector (umklapp scattering) momentum conservation: $\mathbf{q} = \mathbf{q}_1 + \mathbf{q}_2 + \mathbf{b}$

Figure 1 The splitting of an LO phonon into two acoustic phonons and subsequent decay into lower-frequency phonons. The dispersion curves are for GaAs. (from J. P. Wolfe, "Imaging Phonons")

uncertainty principle **ok**

Low energy, low temperature: acoustic phonons, no umklapps

 $|v_T|\mathbf{q}_1+\mathbf{q}_2|=v_T|\mathbf{q}_1|+v_T|\mathbf{q}_2|$ impossible (triangle inequality + $\omega_{q,T}$ concave function) q_1 q_2

Transverse acoustic phonons do not decay

$$
v_{\rm L}|\mathbf{q}_1+\mathbf{q}_2|=v_{\rm T}|\mathbf{q}_1|+v_{\rm T}|\mathbf{q}_2|\quad\text{possible, but }\frac{1}{\tau}\sim\omega_D\,\frac{\hbar\omega_D}{Ka^2}\bigg(\frac{\omega}{\omega_D}\bigg)^5
$$

Yu & Cardona, "Fundamentals of semiconductors"

 $\overline{\mathbf{q}}$

LA phonon lifetime in silicon: Frequency Lifetime ν (THz) τ_a (ns) 7.5 0.0006 3.75 0.018 1.88 0.58 0.94 19

(from J. P. Wolfe, "Imaging Phonons")

Goldstone modes are robust

Thermal conductivity

$$
\frac{\partial \mathcal{E}(T)}{\partial t} = -\nabla \cdot \mathbf{J}
$$
 heat current density

 $J = -\kappa(T) \nabla T$ Fourier's law (the current must vanish @ T = const)

 $\frac{\kappa}{C_n} \sim D \sim \frac{l^2}{\tau} = v^2 \tau$ phonon diffusion coefficient $l = v\tau$ mean free path

$$
\kappa(T) \sim C_v(T) v^2 \tau(T)
$$

Thermal conductivity

High temperatures $T \gg \Theta_D$: $\kappa \sim \frac{1}{a^3} \frac{v^2}{\omega_D} \frac{Ka^2}{T} \sim \frac{Ka}{\hbar} \frac{\Theta_D}{T}$ (Debye, 1929)

Low temperatures $T \ll \Theta_D$: 1. TA phonons $\tau = \infty$ 2. LA phonons $\tau \propto 1/\omega^5$, but no umklapps momentum is conserved energy current does not relax

A high-energy phonon needed to provide umklapp $\Rightarrow \kappa \propto e^{\Theta_D/T}$ (Peierls, 1929)

Phonon scattering on isotopic defects:

\n
$$
\frac{1}{\tau} \sim \omega_D \frac{n_d}{n_0} \left(\frac{\Delta M}{M} \right)^2 \left(\frac{\omega}{\omega_D} \right)^4
$$
\n(Pomeranchuk, 1942)

\nfraction of defective atoms

All phonon scattering mechanisms become very inefficient at low temperatures

Ballistic phonons

Acoustic mismatch model: wave refraction at a flat interface Diffuse mismatch model: random scattering at a rough interface

Isotope and boundary effects

Fro. 4. Thermal conductivity of LiF showing the effect of isotopes. $\%$ ⁷Li in LiF: (A) 99.99, (B) 97.2, (C) 92.6 (natural LiF), (D) 50.8. Mean crystal widths: (A) 7.25 mm, (B) 5.33 mm, (C) 5.44 mm, (D) 5.03 mm. Crysta

P. D. Thacher, Phys. Rev. **159**, 975 (1967)

FIG. 1. Thermal conductivity of isotopically pure LiF showing the effect of boundaries for sandblasted crystals. Mean crystal widths: (A) 7.25 mm, (B) 4.00 mm, (C) 2.14 mm, (D) 1.06 mm.

Isotope and boundary effects

FIG. 5. Thermal conductivity of a pure silicon single crystal with different surface treatments. Top curve: Syton polished and cleaned; bottom: sandblasted. The intermediate curves were measured after metal films were deposited (ex situ) onto the polished and cleaned surfaces.

Klitsner & Pohl Phys. Rev. B **36**, 6551 (1987) D. M. Basko, "Phonons" @ DRTBT 2024

Phonon kinetics in metals

Acoustic phonons in metals Atoms give away their valence electrons **Ions in electron jellium** instead of atoms with springs $\rightarrow \Theta$ \bigoplus \oplus \oplus \bigoplus charge *+Ze* mass *M* density *nⁱ* $M \frac{d^2 \mathbf{u}_n}{dt^2} = -\frac{\partial W}{\partial \mathbf{u}_n}$ from ions & electrons

Uniform system is electroneutral

Deformed system with ion displacements: $\mathbf{u}_n = \mathbf{u}(\mathbf{R}_n) = \mathbf{u}_\alpha e^{i\mathbf{q}\mathbf{R}_n - i\omega t}$ change in the ionic density $\frac{\delta n_i(\mathbf{R})}{\delta n_i(\mathbf{R})} = -\nabla \cdot \mathbf{u}(\mathbf{R}) = -i \mathbf{q} \mathbf{u_q} e^{i \mathbf{q} \mathbf{R} - i \omega t}$ Coulomb potential $\varphi(\mathbf{R}) = \int \frac{d^3 \mathbf{R}'}{|\mathbf{R}-\mathbf{R'}|} Z e \, \delta n_i(\mathbf{R'}) = -\frac{4\pi Z e n_i}{a^2} i \mathbf{q} \mathbf{u_q} e^{i \mathbf{q} \mathbf{R} - i \omega t}$

$$
\boxed{\qquad \qquad \omega^2 = \frac{4\pi n_{\rm i} (Ze)^2}{M} \sim \omega_D^2}
$$

ionic plasma frequency, not acoustic phonon

Screening by the Fermi sea

Self-consistent potential from ions and electrons: screened Coulomb

$$
-\nabla^2 \varphi(\mathbf{r}) = 4\pi Z e \, \delta n_i(\mathbf{r}) - 4\pi e \, \delta n_e(\mathbf{r}) \quad \Rightarrow \quad \varphi(\mathbf{R}) = \int \frac{d^3 \mathbf{R}' e^{-\kappa_D |\mathbf{R} - \mathbf{R}'|}}{|\mathbf{R} - \mathbf{R}'|} \, Z e \, \delta n_i(\mathbf{R}')
$$

$$
\kappa_D \equiv \sqrt{4\pi e^2 \nu} \sim 1 \text{ \AA}^{-1} \quad \text{(Thomas-Fermi)} \\ \text{screening length}
$$

Acoustic phonons in metals Atoms give away their valence electrons **Ions in electron jellium** instead of atoms with springs $\rightarrow \Theta$ \bigoplus \oplus \oplus \bigoplus charge *+Ze* mass *M* density *nⁱ* $M \frac{d^2 \mathbf{u}_n}{dt^2} = -\frac{\partial W}{\partial \mathbf{u}_n}$ from ions & electrons

Uniform system is electroneutral

Deformed system with ion displacements: $\mathbf{u}_n = \mathbf{u}(\mathbf{R}_n) = \mathbf{u}_\alpha e^{i\mathbf{q}\mathbf{R}_n - i\omega t}$ change in the ionic density $\frac{\delta n_i(\mathbf{R})}{\delta n_i} = -\nabla \cdot \mathbf{u}(\mathbf{R}) = -i \mathbf{q} \mathbf{u_q} e^{i \mathbf{q} \mathbf{R} - i \omega t}$ Screeneed Coulomb potential $\varphi(\mathbf{R}) = -\frac{4\pi Z e n_i}{a^2 + \kappa^2} i \mathbf{q} \mathbf{u_q} e^{i \mathbf{q} \mathbf{R} - i \omega t}$ $\omega^2 = \frac{4\pi n_i (Ze)^2}{M} \frac{q^2}{\mathcal{R} + \kappa_D^2} \approx v_L^2 q^2 \qquad v_L = \sqrt{\frac{Z^2 \rho}{M^2 \nu}} \sim \text{(a few)} \frac{\text{km}}{\text{s}}$

Electron-phonon interaction

Born-Oppenheimer:

 $W(\lbrace u_n \rbrace)$ from electronic ground state energy at fixed $\lbrace u_n \rbrace$

$$
M\,\frac{d^2{\bf u}_n}{dt^2}=-\frac{\partial W}{\partial {\bf u}_n}\quad\text{basic assumption:}\quad
$$

Validity: ω << *E¹ − E0* electronic energy gap

Breaks down in any metal, semimetal, doped semiconductor

Phonon absorption by electrons

Electronic density response to an oscillating potential from the Kubo formula: $\Pi(\mathbf{q},\omega)$ Phonon decay rate:

$$
\frac{1}{\tau}=-\omega\,{\rm Im}\,\Pi({\bf q},\omega)\,\frac{n_{\rm i} Z^4/\nu^2}{2Mv_L^2}\sim\omega\sqrt{\frac{m}{M}}
$$

of acoustic phonon decay in metals: **phonon absorption by electrons**

or escape to the substrate (Kapitza)

The main mechanism

The main mechanism

The main mechanism

$$
\frac{1}{\tau} \sim \omega_D \, \sqrt{\frac{m}{M}} \bigg(\frac{\omega}{\omega_D}\bigg)^5 \qquad \blacksquare
$$

much weaker

Phonon absorption by electrons

Electronic density response to an oscillating potential from the Kubo formula: $\Pi(\mathbf{q},\omega)$ Phonon decay rate:

$$
\frac{1}{\tau}=-\omega\,{\rm Im}\,\Pi({\bf q},\omega)\,\frac{n_{\rm i} Z^4/\nu^2}{2M v_L^2}\sim\omega\sqrt{\frac{m}{M}}
$$

of acoustic phonon decay in metals: **phonon absorption by electrons**

or escape to the substrate (Kapitza)

The main mechanism

The main mechanism

The main mechanism

$$
\frac{1}{\tau} \sim \omega_D \, \sqrt{\frac{m}{M}} \bigg(\frac{\omega}{\omega_D}\bigg)^5 \qquad \text{mu}
$$

ıch aker

Inverse process: phonon emission by electrons (detailed balance)

Electron temperature *Tel* Phonon temperature *Tph* $(T_{\rm el}, T_{\rm ph} \ll \Theta_D)$

Heat flow from electrons to phonons: power per unit volume = $\Sigma (T_{\rm el}^5 - T_{\rm ph}^5)$ experimentally measurable coefficient $\int_0^\infty q^2\,dq\,\frac{\hbar v q}{e^{\hbar v q/T}-1}\,\frac{1}{\tau}\propto T^5$

Phonon absorption by electrons

Wellstood, Urbina & Clarke, PRB **49,** 5942 (1994)

FIG. 8. Measured electron temperature T_e vs dissipated power for resistor 1 at two bath temperatures. The solid line is the fit of Eq. (4.1) to 25-mK data with $n = 4.87$. The dashed line is the "simple heating model."

Electron temperature *Tel* Phonon temperature *Tph*

Heat flow from electrons to phonons:

power per unit volume = $\Sigma (T_{\rm el}^5 - T_{\rm ph}^5)$ experimentally measurable coefficient $\int_0^\infty q^2\,dq\,\frac{\hbar v q}{e^{\hbar v q/T}-1}\frac{1}{\tau}\propto T^5$

Specific heat and thermal conductivity

$$
\begin{aligned}\n\text{Phonons:} \quad &C_{\rm ph}(T \ll \Theta_D) \sim \frac{(T/\Theta_D)^3}{a^3} \qquad C_{\rm ph}(T \gg \Theta_D) \sim \frac{1}{a^3} \\
\text{Electrons:} \quad &C_{\rm el}(T) = \frac{\partial}{\partial T} \, 2 \int \frac{d^3 \mathbf{p}}{(2\pi\hbar)^3} \, \frac{\epsilon_{\mathbf{p}}}{e^{(\epsilon_{\mathbf{p}} - \epsilon_F)/T} + 1} \\
&C_{\rm el}(T \ll \epsilon_F) = \frac{\pi^2}{3} \, \nu \, T \sim \frac{T/\epsilon_F}{a^3} \quad \text{dominate below a few Kelvins}\n\end{aligned}
$$

Superconductor:
$$
C_{\text{el}}(T \ll T_c) = \sqrt{2\pi} \nu \Delta \left(\frac{\Delta}{T}\right)^{3/2} e^{-\Delta/T}
$$

Specific heat and thermal conductivity

$$
\begin{aligned}\n\text{Phonons:} \quad C_{\rm ph}(T \ll \Theta_D) &= \frac{2\pi^2}{15} \left(\frac{T^3}{(\hbar v_L)^3} + \frac{2T^3}{(\hbar v_T)^3} \right) \\
\text{Electrons:} \quad C_{\rm el}(T \ll \epsilon_F) &= \frac{\pi^2}{3} \nu T \quad \text{dominate below a few Kelvins}\n\end{aligned}
$$

Electronic thermal conductivity: $\kappa_{\rm el} \sim C_{\rm el} v_F^2 \tau_{\rm el}$ dominates over phonons much larger than sound velocity 2 $\overline{2}$ Electric conductivity:

Wiedemann-Franz law:
$$
\frac{\kappa}{\sigma} = \frac{\pi^2}{3} \frac{T}{e^2}
$$

Electron energy relaxation

Superconductors: quasiparticle gap Δ breaking a Cooper pair: cost 2Δ

Electron energy relaxation

Electron energy relaxation

slopes between 3 and 4 clean electrons: $1/\tau_{\rm el} \propto T^3$ electrons scattering on impurities: $\frac{1}{1-\alpha} \propto T^4$ $\tau_{\rm el}$

M. Sidorova *et al.*, PRB **102**, 054501 (2020)

Disordered NbN

D. M. Basko, "Phonons" @ DRTBT 2024

Relaxation cascade in a detector

Overall picture

FIG. 1. Schematic picture of photoelectron energy downconversion in a superconductor.

Formation of the phonon bubble

Phonon down-conversion

Quasiparticle cloud

Detect quasiparticle population:

- 1. Increase in the kinetic inductance
- 2. Increase in the dissipative conductivity

Cloud expansion: quasiparticle diffusion

Useful textbooks

Ashcroft and Mermin, *Solid State Physics*

Ziman, *Electrons and Phonons: The Theory of Transport Phenomena in Solids*

Lifshitz & Pitaevskii, *Physical Kinetics*

Abrikosov, *Fundamentals of the Theory of Metals*

Yu & Cardona, *Fundamentals of Semiconductors*

Wolfe, *Imaging Phonons: Acoustic Wave Propagation in Solids*