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What are neutrinos?

Very elusive particle, existence first hypothetized in 1930, first detection in the 50s

Neutral leptons, no color charge

3 species: 𝑒, 𝜇, 𝜏

Massless within SM theory

Only interact via weak interaction
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Neutrino oscillations
90s: 𝜈s became very fascinating due to discovery of 𝜈 oscillations

𝜈 change flavour → flavour eigenstates ≠ mass eigenstates:

(
𝜈𝑒
𝜈𝜇
𝜈𝜏
) = 𝑈𝑃𝑀𝑁𝑆 ⋅ (

𝜈1
𝜈2
𝜈3
)

𝑃(𝜈𝛼 → 𝜈𝛽) = ∑
𝑖
∑
𝑗
𝑈𝛼𝑖𝑈 ∗

𝛽𝑖𝑈
∗
𝛼𝑗𝑈𝛽𝑗𝑒

Δ𝑚2𝑖𝑗𝐿
2𝐸

𝑃(𝜈𝛼 → 𝜈𝛽) oscillates depending on the distance from the 𝜈 production
point (𝐿) and on the 𝜈 energy (𝐸)

𝑈𝑃𝑀𝑁𝑆 parametrized by:

3 mixing angles 𝜃𝑖𝑗
Squared missing mass differences: Δ𝑚2

𝑗𝑖 = 𝑚2
𝑗 −𝑚2

𝑖 ; Δ𝑚2
21 = 7.5 ⋅ 10−5 eV2,

Δ𝑚2
31 ∼ Δ𝑚2

32 = 2.46 ⋅ 10−3 eV2

CP-violating phase 𝛿𝐶𝑃
Direct consequence: neutrinos have non-null, different masses

One of the most compelling proof of beyond SM physics
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Unknown parameters, current experiments

Unknown oscillation parameters:

Mass ordering: 𝑚3 > 𝑚2 > 𝑚1 or 𝑚2 > 𝑚1 > 𝑚3 ?

Octant of 𝜃23
CP violating phase 𝛿𝐶𝑃 → key measurement

Measuring 𝛿𝐶𝑃 ≠ 0, 𝜋 means CP violation in lepton sector → one of the three
Sakharov conditions to explain matter-antimatter asymmetry in universe!

𝜈 properties can be studied in many facilities → focus on accelerators
facilities

Produce 𝜈𝜇 beam from 𝜋+ → 𝜇+𝜈𝜇 to study oscillations → Long Baseline
Experiments (LBE): 𝐿 𝒪(100 − 1000)km
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Long Baseline Experiments (LBE)

LBE suited to search for CP violation in the lepton sector and study oscillations

Very intense hadron beams (𝜋± → 𝜇±↪ ↩𝜈 𝜇) produced by impinging protons on target for 𝜈 beams production

𝜈s oscillate over 𝒪(103) km in matter

Near detector: characterize initial 𝜈 flux

Far detector: very large neutrino detectors, characterize 𝜈 flux after oscillation
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LBE limitations

Oscillation studies limited by systematic uncertainties stemming from:

interaction models and x-section measurements

energy scale uncertainties

near-to-far detector extrapolation models

Need a new method to refine our knowledge!
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Neutrino Tagging
Neutrino Tagging: new paradigm for accelerator based neutrino experiments

Instrument a beam line with spectrometers

Kinematically reconstruct each 𝜈 originating from a 𝜋+ → 𝜇+𝜈𝜇 decay → tagged 𝜈

Associate interacting 𝜈 at Far Detector to its tagged 𝜈

Main advantages:

energy resolution < 1% (VS 15% when measured with interaction), no energy scale

improved beam knowledge
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Adapted beamline for Tagging
Main challenge: intense particle flux in neutrino beam line 𝒪(1018) particles/s

Upcoming tracker capabilities: 𝒪(1012) particles/s

Handles to limit particle flux:

slow extraction (few seconds instead of 𝜇s)

narrow band (𝜋 momentum selection)

increase beam transverse size (around 0.1𝑚2)

Limitation: low 𝜈 flux → compensate with large FD e.g. KM3NeT/ORCA (6.8 Mton)

Win-win: tagging compensates for FD granularity, FD compensates for low 𝜈 flux

Case study: Tagged P2O (Protvino to KM3NeT/ORCA), 𝐿 = 2595km, 𝐸𝜈 = 5 GeV
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Physics potential
At a tagged SBE:

precise flux knowledge → measure at 1% level 𝜈𝑒 x-sec and 𝜈𝜇 differential x-sec
tagged 𝜈 energy determined independently of its interaction → refine interaction models

These measurements would strongly improve the physics potential of upcoming LBE

At a tagged LBE:

measure 𝛿𝐶𝑃 with unprecedented precision
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Summary: 𝜈 tagging, new paradigm for SBE and LBE

Neutrino tagging can be used at Short and Long baseline experiments

Neutrino tagging has the potential to drastically improve physics analysis of 3-flavor oscillations

Need performing trackers with specs similar to those of HL-LHC

Development ongoing for new technologies for Si trackers

Proof of principle performed with state-of-the-art Si tracker: NA62’s GigaTracKer

Feature NA62 GTK (2014) HL-LHC (2026) Nu Tagging (2030)
Flux [MHz/mm2] 2 𝒪(10 − 100) 𝒪(10 − 100)
Hit Time Reso [ps] 130 <50 <20

Efficiency (%) >99 >99 >99
Thickness (% of 𝑋0) < 0.5 <0.9 <0.5
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The NA62 experiment

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 10 / 36



NA62 features

NA62 is a fixed-target experiment in the North Area of the SPS at CERN

NA62’s main purpose is the measurement of ℬ𝑟(𝐾+ → 𝜋+𝜈𝜈) (SM signal ℬ𝑟 = (8.4 ± 1.0) ⋅ 10−11)

NA62’s high intensity kaon beam at 75 GeV/c delivers a nominal rate of 𝒪(1012)𝐾+ decays per year

Beam composition: 6% 𝐾+, 70% 𝜋+, 23% p, 750MHz over 3s spills

Can be exploited as miniature tagged experiment
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Tagging proof of principle at NA62

𝐾+ main decay channel: 𝐾+ → 𝜇+ + 𝜈𝜇

Goal: search for 𝐾+ → 𝜇+ + 𝜈𝜇 (𝐾𝜇𝜈) with all particles reconstructed:

𝐾+ reconstructed by beam spectrometer

𝜇+ reconstructed by downstream spectrometer

𝜈 interacting in the EM calorimeter (20ton LKr) → 𝐾𝜇𝜈∗

Interaction channel: CC-DIS: 𝜈 → shower + 𝜇−

Exploit 𝜇+, shower and 𝜇− for triggering strategy
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Main subdetectors involved
GigaTracKer (GTK): silicon pixel spectrometer, reconstructs time and 4-momentum of incoming beam particles

130 ps hit time resolution

𝜎𝑝/𝑝 = 0.2%, 𝜎𝜃 = 16 mrad

60.8 × 27 mm silicon sensor
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Main subdetectors involved

STRAW: straw tube spectrometer that reconstructs the properties of charged particles produced in K decays
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Main subdetectors involved

Liquid Krypton calorimeter (LKr): electromagnetic calorimeter filled with about 9000 l of liquid Krypton at 120K
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Main subdetectors involved

MUon Veto (MUV) 1 and 2: 66 ton hadron calorimeter
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Main subdetectors involved

MUon Veto 3 (MUV3): 50 mm thick scintillator tiles, placed behind LKr, MUV1 and 2, and an iron wall, used for
muon identification
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Trigger and Data Acquisition at NA62
NA62 data taking system involves 2 trigger levels

L0 trigger: hardware level trigger, 10x rate reduction factor (10 MHz → 1 MHz)

packets of information regarding pre-defined conditions
masks: predefined set of conditions to accept an event

HLT (High Level Trigger): software level trigger, 100x rate reduction factor (1 MHz → 20 kHz)
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Analysis strategy
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Analysis overview

Analysis unfolded through some challenging steps:

Dedicated trigger line design:

Dedicated MUV3 L0-trigger condition to exploit decay topology

Stay within available bandwidth

Compromise between reducing trigger rate and minimizing signal suppression

Trigger maintenance and improvements during data taking

Offline selection building:

very small 𝜈 interaction probability in LKr ∼ 6 ⋅ 10−11

possible background even from very rare sources

Statistical data analysis:

trigger and offline selection efficiencies to estimate signal yield

estimate background pollution with almost no surviving data events after
offline selection
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Analysis strategy
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Blind analysis

Signal region defined as:

|𝑚2
miss| = |(𝑃𝐾+ − 𝑃𝜇+)2| < 0.006GeV2/c4

|𝑑LKr𝜈| < 60mm

Backgrounds assessed with data driven method on side bands; 2 background sources:

Overlaid 𝐾𝜇𝜈: 𝐾 → 𝜇𝜈 with extra in-time activity → studied in side bands of |𝑑LKr𝜈|
Mis-reconstructed kaon decays → studied in side bands of 𝑚2

miss.
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Analysis strategy

Data sample: 5 ⋅ 1012 effective 𝐾+ decays, collected in 2022

Expected event rate:

𝑁 𝑒𝑥𝑝
signal = 𝑁𝐾+ ⋅ ℬ(𝐾+ → 𝜇+𝜈𝜇) ⋅ 𝑃int,LKr ⋅ 𝜖signal

Use 𝐾+ → 𝜇+𝜈𝜇 (no 𝜈 interaction) decays as normalization sample:

𝑁𝐾+ =
𝑁norm

𝜖norm ⋅ ℬ(𝐾+ → 𝜇+𝜈𝜇)

𝑁 𝑒𝑥𝑝
signal = 𝑁norm ⋅

𝜖signal
𝜖norm

⋅ 𝑃int,LKr

As many common selection and trigger criteria as possible to signal and
normalization

Signal and normalization common efficiency terms cancel in the ratio

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 17 / 36



Triggering signal-like events
Build trigger line to select signal-like events at trigger level

Single 𝜇+ track before LKr

𝜇+ and 𝜇− (from interaction) in opposite quadrants at MUV3

Total energy deposit > 5 GeV in LKr to reduce rate

Normalization trigger selection included in signal trigger

Signal and normalization efficiencies largely cancel out:

𝑁 𝑒𝑥𝑝
signal = 𝑁𝑛𝑜𝑟𝑚 ⋅ 𝜖 𝑖𝑛𝑡𝐾𝜇𝜈∗ ⋅ 𝜖𝐿𝐾𝑟𝐾𝜇𝜈∗ ⋅ 𝜖𝑀𝑈𝑉3

𝐾𝜇𝜈∗ ⋅ 𝜖𝐻𝐿𝑇
𝐾𝜇𝜈∗ ⋅ 𝑃𝑖𝑛𝑡 ,𝐿𝐾𝑟
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MC sample
MC sample used to estimate signal efficiencies

𝐾+ forced to decay in 𝜇+𝜈𝜇

𝜈 forced to interact in the LKr active volume

𝜈 interaction simulated with GENIE using CC-QE, RES, DIS

Average interaction probability: 6 ⋅ 10−11

To account for final state modeling uncertainties, two extra samples are produced
with the 𝜈 energy used to generate the final state biased by ±10%.
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Offline selection
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Common selection - signal and normalization
Single positively charged track matched to LKr, MUV1, MUV2 and MUV3 candidates

𝜇+ particle identification

photon rejection

𝜈 extrapolated position inside LKr acceptance
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𝜈 interaction offline selection
Step 1: 𝜈 interaction associated to activity in LKr, MUV1, MUV2, MUV3 in time and space

Step 2: Extra activity rejection

Step 3: Energy requirements

Step 4: Interaction topology
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Interaction topology
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Interaction topology
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Background yield
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Mis-reconstructed 𝐾+ decays

No data events in 𝑚2
miss SB after full selection

Estimate background with partial selection on full 𝑑LKr𝜈
range

Fit SB of 𝑚2
miss with quadratic

Scale integral from fit by acceptance of 𝑑LKr𝜈 cut and of
missing cuts

Syst obtained by estimating number of bkg events on two
𝑑LKr𝜈 ranges

Nexp
bkg(Mis − reco K+) = 0.0014 ± 0.0007stat ± 0.0002syst.

Entries  869
 / ndf 2χ  61.24 / 51

p0        0.0104± 0.7403 
p1        0.85± 89.03 
p2        21.2±  2517 
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Overlaid 𝐾𝜇𝜈

Only 1 background entry found, outside of control region
[60,300] mm

Use 𝑑LKr𝜈 obtained with partial selection

Each 𝑑LKr𝜈 bin corresponds to a ring of area proportional to
𝑑LKr𝜈

Assuming constant event density, 𝑑LKr𝜈 distribution grows
linearly with 𝑑LKr𝜈 → linear fit

Scale integral by acceptances of missing cuts

Systematics obtained by changing fit range

Nexp
bkg(OVK𝜇𝜈) = 0.04 ± 0.02stat ± 0.01syst.
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Background yield

Background pollution estimated with data-driven method, in side bands of SR

Nexp
bkg(Mis− reco K+) = 0.0014 ± 0.0007stat ± 0.0002syst.

Nexp
bkg(OVK𝜇𝜈) = 0.04 ± 0.02stat ± 0.01syst.
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Signal yield

𝑁 𝑒𝑥𝑝
𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑁𝑛𝑜𝑟𝑚 ⋅ 𝜖 𝑖𝑛𝑡𝐾𝜇𝜈∗ ⋅ 𝜖

𝐿𝐾𝑟
𝐾𝜇𝜈∗ ⋅ 𝜖

𝑀𝑈𝑉3
𝐾𝜇𝜈∗ ⋅ 𝜖𝐻𝐿𝑇

𝐾𝜇𝜈∗ ⋅ 𝑃𝑖𝑛𝑡 ,𝐿𝐾𝑟
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𝜈 interaction selection efficiency

𝜖 𝑖𝑛𝑡𝐾𝜇𝜈∗ = 𝐴𝑖𝑛𝑡
𝐾𝜇𝜈∗ ⋅ 𝜖𝑅𝑉

𝐴𝑖𝑛𝑡
𝐾𝜇𝜈∗ =

∑𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑖
∑𝐶𝑆 𝑝𝑖

= (4.21 ± 0.25𝑠𝑡𝑎𝑡 ± 0.15𝑠𝑦𝑠𝑡)%

Systematic obtained from the two biased MC samples

Have to account for Random Veto:

signal event rejection due to pile-up activity

𝜖𝑅𝑉 = (81.6 ± 1.4𝑠𝑦𝑠𝑡)% estimated on standard 𝐾𝜇𝜈
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Trigger efficiencies
𝑁 𝑒𝑥𝑝

signal = 𝑁𝑛𝑜𝑟𝑚 ⋅ 𝜖 𝑖𝑛𝑡𝐾𝜇𝜈∗ ⋅ 𝜖𝐿𝐾𝑟𝐾𝜇𝜈∗ ⋅ 𝜖𝑀𝑈𝑉3
𝐾𝜇𝜈∗ ⋅ 𝜖𝐻𝐿𝑇

𝐾𝜇𝜈∗ ⋅ 𝑃𝑖𝑛𝑡 ,𝐿𝐾𝑟

Need to estimate trigger efficiencies that do not cancel out

Trigger efficiencies estimated on data

Example: LKr trigger condition efficiency

Trigger condition: energy deposit ≥ 5 GeV

Use samples of 𝐾+ → 𝜋+𝜋0

Build signal-like LKr selection

Plot efficiency VS total in-time energy

Weight distribution by 𝐸𝐿𝐾𝑟 distribution from MC

Systematics from the two biased MC samples

Detector Condition Efficiency (%)
MUV3 𝜇± in opposite quadrants 97.6 ± 0.7𝑠𝑡𝑎𝑡 ± 0.1𝑠𝑦𝑠𝑡
LKr Energy deposit ≥ 5 GeV 82 ± 1𝑠𝑡𝑎𝑡 ± 2𝑠𝑦𝑠𝑡
HLT single 𝜇+ track from 𝐾+ 93.2 ± 0.2𝑠𝑡𝑎𝑡
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Expected signal yield

𝑁 𝑒𝑥𝑝
signal = 𝑁𝑛𝑜𝑟𝑚 ⋅ 𝜖 𝑖𝑛𝑡𝐾𝜇𝜈∗ ⋅ 𝜖

𝑠𝑒𝑙
𝐿𝐾𝑟 ⋅ 𝜖

𝑠𝑒𝑙
𝑀𝑈𝑉 3 ⋅ 𝜖

𝑠𝑒𝑙
𝐻𝐿𝑇 ⋅ 𝑃𝑖𝑛𝑡 ,𝐿𝐾𝑟

= 𝑁𝑛𝑜𝑟𝑚 ⋅
𝜖𝑠𝑖𝑔𝑛𝑎𝑙
𝜖𝑛𝑜𝑟𝑚

⋅ 𝑃𝑖𝑛𝑡 ,𝐿𝐾𝑟

Now we have all items to compute 𝑁 𝑒𝑥𝑝
𝐾𝜇𝜈∗

𝑃𝑖𝑛𝑡 ,𝐿𝐾𝑟 = (6.0 ± 0.1𝑠𝑦𝑠𝑡) ⋅ 10−11

𝑁𝑛𝑜𝑟𝑚 = (1.49 ± 0.02𝑠𝑦𝑠𝑡) ⋅ 1011 from 𝐾𝜇𝜈 event yield

𝜖𝑠𝑖𝑔𝑛𝑎𝑙
𝜖𝑛𝑜𝑟𝑚

= (2.55 ± 0.15𝑠𝑡𝑎𝑡 ± 0.04𝑠𝑦𝑠𝑡)%

Nexp
signal = 0.228± 0.014stat ± 0.011syst
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Summary
In 2022 data sample (5 ⋅ 1012 𝐾+ decays):

𝑁 𝑒𝑥𝑝
signal = 0.228 ± 0.014𝑠𝑡𝑎𝑡 ± 0.011𝑠𝑦𝑠𝑡,

𝑁 𝑒𝑥𝑝
𝑏𝑘𝑔 (𝑀𝑖𝑠 − 𝑟𝑒𝑐𝑜𝐾+) = 0.0014 ± 0.0007𝑠𝑡𝑎𝑡 ± 0.0002𝑠𝑦𝑠𝑡,

𝑁 𝑒𝑥𝑝
𝑏𝑘𝑔 (𝑂𝑉 𝐾𝜇𝜈) = 0.04 ± 0.02𝑠𝑡𝑎𝑡 ± 0.01𝑠𝑦𝑠𝑡.

Signal-to-noise: 5.5

Probability for total expected event yield Nexp
events = 0.2694

for 0 data events p = 0.7638

for 1 data event p = 0.2058

for 2 data events p = 0.0277.

Results approved for unblinding by the NA62 collaboration
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Revealing signal region content
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Opening the box of signal region

Two events are found in signal region‼
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Corresponds to probability p = 0.0277 for total expected event yield Nexp
events = 0.2694
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Event Display - Event A
𝑝𝜇+ = 25.25 GeV/c

𝐸𝜈 = 52.1 GeV

𝑝𝐾+ = 77.3 GeV/c
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Event Display - Event B

𝑝𝜇+ = 18.74 GeV/c

𝐸𝜈 = 57.5 GeV

𝑝𝐾+ = 76.2 GeV/c
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Summary: proof of principle with miniature tagged experiment
NA62 experiment has been exploited as a miniature tagged experiment to demonstrate feasibility of the neutrino tagging
technique

Reconstruct 𝐾+ → 𝜇+𝜈𝜇 decay with all particles detected

Blind analysis performed, expected 𝑁 𝑒𝑥𝑝
𝑠𝑖𝑔𝑛𝑎𝑙 = 0.228 ± 0.014𝑠𝑡𝑎𝑡 ± 0.011𝑠𝑦𝑠𝑡 signal events

Signal-to-noise ratio 5.5

2 events found in signal region upon opening the box

First tagged neutrino candidates in history!
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Outline

1 Neutrino physics

2 Neutrino Tagging

3 The NA62 experiment

4 Proof of principle of Neutrino Tagging
Analysis strategy
Offline selection
Background yield
Signal yield
Revealing signal region content

5 Towards a full scale tagged experiment: conclusions and perspectives
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Perspectives overview
A lot is left to do before implementing the Tagging at a tagged experiment

Beamline simulation and design (narrow-band, slowly extracted beam)

Development in field of silicon trackers ongoing

Building a full scale tagged experiment involves operating Silicon trackers in neutrino beamline

Very harsh environment, particle rate ∼ 1012 particles/s

Need performing detectors, specs similar to HL-LHC

Time resolution is a crucial element: need to be able to separate the beam particles

→ study the timing performances of Silicon detectors and understand the elements that affect their time resolution.

Feature NA62 GTK HL-LHC Nu Tagging
Flux [MHz/mm2] 2 𝒪(10 − 100) 𝒪(10 − 100)
Hit Time Reso [ps] 130 <50 <20

Efficiency (%) >99 >99 >99
Thickness (% of 𝑋0) < 0.5 <0.9 <0.5
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Time resolution of state-of-the-art devices

An attempt has been made to investigate the limits of sensors of state-of-the-art device

Data analysis of beam test taken at CERN SPS with 𝜋+ at 180 GeV/c

Device Under Test: 3 stations of single chips of NA62 GigaTracKer

Difference in performance of n-on-p and of p-on-n sensor types demonstrated

𝜎𝑡 contributions remain to be quantified (e.g. Weighting Field effect)

Results call for further testing of state-of-the-art devices and devices exploiting new technologies (such as TimeSpot)
n-on-p p-on-n
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Conclusions and outlook
Neutrino tagging: new paradigm for accelerator based neutrinos experiments

Proof of principle with NA62, existing experiment exploitable as miniature tagged experiment

Two tagged neutrino candidates found in signal region

There is much left to do before implementing the tagging at a LBE

Achieved crucial first step towards establishment of tagging as effective paradigm
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Thank you for your attention!

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 36 / 36



Outline

6 Backup
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Signal yield

𝑁 𝑒𝑥𝑝
signal = 𝑁𝐾𝜇𝜈 ⋅ 𝐴𝑖𝑛𝑡

𝐾𝜇𝜈∗ ⋅ 𝜖𝑅𝑉 ⋅ 𝜖
𝑠𝑒𝑙
𝐸5 ⋅ 𝜖

𝑠𝑒𝑙
𝑀𝑂𝑄𝑋 ⋅ 𝜖𝑠𝑒𝑙𝐻𝐿𝑇 ⋅ 𝑃𝑖𝑛𝑡 ,𝐿𝐾𝑟

= 0.228± 0.014stat ± 0.011syst
(1)

Contribution Value and uncertainty
𝑃𝑖𝑛𝑡 ,𝐿𝐾𝑟 (6.0 ± 0.1𝑠𝑦𝑠𝑡) ⋅ 10−11

𝑁𝐾𝜇𝜈 (1.49 ± 0.02𝑠𝑦𝑠𝑡) ⋅ 1011

𝐴𝑖𝑛𝑡
𝐾𝜇𝜈∗ 0.0421 ± 0.0025𝑠𝑡𝑎𝑡 ± 0.0015𝑠𝑦𝑠𝑡

𝜖𝑅𝑉 0.816 ± 0.014𝑠𝑦𝑠𝑡
𝜖𝑀𝑂𝑄𝑋
𝐾𝜇𝜈∗ 0.976 ± 0.007𝑠𝑡𝑎𝑡 ± 0.001𝑠𝑦𝑠𝑡
𝜖𝐸5𝐾𝜇𝜈∗ 0.82 ± 0.01𝑠𝑡𝑎𝑡 ± 0.01𝑠𝑦𝑠𝑡
𝜖𝐻𝐿𝑇/𝑠𝑒𝑙
𝐾𝜇𝜈∗ 0.932 ± 0.002𝑠𝑡𝑎𝑡
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Signal candidates properties

Variable Event A Event B
𝑑𝐿𝐾𝑟𝜈 31.9mm 27.0mm
𝑚2
𝑚𝑖𝑠𝑠 −0.000 88GeV2/c4 −0.0015GeV2/c4

𝑑𝜙𝐿𝐾𝑟−𝑀𝑈𝑉3 3.29 rad 3.24 rad
𝐸𝜈 52.1 GeV 57.5 GeV
𝑝𝜇+ 25.25 GeV/c 18.74 GeV/c
𝑝𝐾+ 77.3 GeV/c 76.2107 GeV/c
𝐸𝐿𝐾𝑟 𝑖𝑛 𝑡𝑖𝑚𝑒 13.36 GeV 7.67 GeV
𝐸𝑀𝑈𝑉1 𝑖𝑛 𝑡𝑖𝑚𝑒 9.85 GeV 10.90 GeV
𝐸𝑀𝑈𝑉2 𝑖𝑛 𝑡𝑖𝑚𝑒 2.48 GeV 2.80 GeV
𝐸𝜇−/𝐸𝜈 0.68 0.78
𝑛𝐾𝑇𝐴𝐺 28 17
𝑧𝑣 𝑡𝑥 161.2 m 157.7 m
x, y at MUV3 𝜇− (550, 770) mm (330, 770) mm
x, y at MUV3 𝜇+ (-330, -770) mm (-550, -990) mm

Table: Features of the two signal candidates found in the signal region.
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Signal candidates properties
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MUV3 efficiency
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Use sample of 𝐾+ → 𝜋+𝜋+(𝜇+𝜈)𝜋−(𝜇−𝜈)

𝜖𝑀𝑈𝑉3 = 0.976 ± 0.007𝑠𝑡𝑎𝑡 ± 0.001𝑠𝑦𝑠𝑡

Systematics obtained by weighting with the two biased MC samples
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HLT efficiency mask10

HLT trigger involves KTAG and STRAW information, with a Photon Veto condition

HLT trigger efficiency computed with data

𝜖𝐻𝐿𝑇
𝑚𝑎𝑠𝑘10 = 𝜖𝐾𝑇𝐴𝐺 ⋅ 𝜖𝑛𝐿𝐴𝑉 ⋅ 𝜖𝑆𝑇𝑅𝐴𝑊_1𝑇𝑅𝐾 = 0.932 ± 0.002𝑠𝑡𝑎𝑡.

HLT algo Efficiency
KTAG | (𝐾𝜇𝜈 sel) 0.998 ± 0.001
nLAV | (𝐾𝜇𝜈 sel) & KTAG 0.996 ± 0.001
STRAW_1TRK | (𝐾𝜇𝜈 sel) & nLAV & KTAG 0.938 ± 0.001
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TDCPix and previous test campaigns

TDCPix: time resolved readout chip of Silicon tracker of NA62 experiment (GigaTracker)

200𝜇m thick planar sensors, p-in-n or n-in-p, 40 × 45 pixels of 300 × 300𝜇𝑚2

From previous test campaign have been experimentally measured

electronics contribution from laser test with TDCPix demonstrator: ∼ 80 ps

WF contribution with laser tests with TDCPix: ∼ 85 ps

Simulation of charge straggling contribution → ∼ 100 ps

Missing:

experimental measures of charge straggling

experimental confirmation of WF effect with MIPs

systematic study on performances of n-on-p and p-on-n sensors

𝜎𝑡 = √𝜎
2
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠+𝑇𝐷𝐶 + 𝜎2𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑓 𝑖𝑒𝑙𝑑 + 𝜎2𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑖𝑛𝑔 = √802 + 852 + 1002 = 150𝑝𝑠.
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Time Walk Correction
Procedure to be done on plane couples in absence of time reference

Both planes are to be corrected → iterative procedure

Use Time over Threshold (𝑇 𝑜𝑇 = 𝑡𝑓 𝑎𝑙𝑙 − 𝑡𝑟 𝑖𝑠𝑒) as a proxy to the signal amplitude

Derive delay of detection at threshold as function of ToT thanks to Δ𝑡 = 𝑡2 − 𝑡1 VS ToT
distributions

Effect of correction: flatten and shrink Δ𝑡 VS ToT distribution
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LBNE limitations: systematic uncertainties

Oscillation parameters inferred from event spectra as a function of reconstructed neutrino energy:

𝑁 𝐹𝐷
𝜈𝛽 (𝐸𝑟𝑒𝑐𝑜𝜈 ) = Φ𝐹𝐷

𝜈𝛽 (𝐸𝑡𝑟𝑢𝑒𝜈 ) × 𝜖𝐹𝐷(𝐸𝑡𝑟𝑢𝑒𝜈 ) × 𝜎𝐹𝐷𝜈𝛽 (𝐸𝑡𝑟𝑢𝑒𝜈 ) × 𝑆(𝐸𝑟𝑒𝑐𝑜𝜈 , 𝐸𝑡𝑟𝑢𝑒𝜈 ) × 𝑃(𝜈𝛼 → 𝜈𝛽)(𝐸𝑡𝑟𝑢𝑒𝜈 )

Constrain systematic with ND that measures initial flux

Heavily relay on models to predict near-to-far detector extrapolation:
they see different fluxes due to

Oscillations

Acceptance

Solid angle coverage

Heavily rely on 𝜎(𝐸𝑡𝑟𝑢𝑒𝜈 ) models and measurements

Near and far detectors have energy scale uncertainty
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Sakharov’s conditions for baryogenesis

Baryon number violation:

B is a quantum number: for baryons it is +1, for antibaryons it is -1, for mesons and leptons it is 0.

it is conserved in all known interactions

𝐵 ≠ 0 means #𝑞 − #𝑞 ≠ 0; if the baryon number is not conserved, then #𝑞 − #𝑞 ≠ const

CP violation:

Baryon number violation means that properties of particles and antiparticles must be different.

This is equivalent to both CP and C-symmetry violation.

CP symmetry means that a process in which all particles are exchanged with their antiparticles is
equivalent to the mirror image of the original process.

Departure from thermal equilibrium:

the processes that produce an excess of particles over antiparticles must be out of thermal equilibrium:
the reverse process must have been suppressed.
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Unambiguous matching of 𝜈-tag to 𝜈−int
Time coincidence:

Next generation Si trackers will have 𝜎𝑡 ∼ 10 ps
Typically 𝜈 detectors have 𝜎𝑡 ∼ 10 ns

→ 1000 𝜈𝑡𝑎𝑔 per 𝜈𝑖𝑛𝑡
Angular coincidence:

Dominant contribution: resolution on 𝜈𝑡𝑎𝑔 is 𝒪(0.1) mrad for thickness of 0.5% 𝑋0

𝜈 beam divergence ∼ 1
𝛾 → ∼ 10 mrad for 15 GeV 𝜋±

→ accidental matches reduced by a factor 104

→ 0.1 𝜈𝑡𝑎𝑔 per 𝜈𝑖𝑛𝑡 → unambiguous pairing possible in 90% of cases!
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Time Resolved Silicon Detectors

Silicon pixel detector functioning principle is based on p-n junction

𝑒− near p-n interface drift in p region, holes drift towards n region →
depletion region

Reverse 𝑉𝑏𝑖𝑎𝑠 applied → depletion region grows: 𝑤𝑑𝑒𝑝𝑙 ∝ √𝑉𝑏𝑖𝑎𝑠

Different sensor types depending on the doping of bulk and strips:
n-on-p and p-on-n
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Signal formation and detection

Signal induced by motion of 𝑒− and holes produced by crossing ionizing
particle

𝑉𝑏 affects the drift velocity of the charge carriers:

𝑣𝑛 = −𝜇𝑛𝐸 = −𝜇𝑛
𝑉𝑏
𝑑

𝑣𝑝 = 𝜇𝑝𝐸 = 𝜇𝑝
𝑉𝑏
𝑑
.

Current induced on an electrode by a moving charge described by the
Ramo-Shockley theorem:

𝑖(𝑡) = −𝑞𝑣(𝑡) ⋅ 𝐸𝑊

Weighting field 𝐸𝑊 describes coupling between the charge and the electrodes

In parallel plate geometry:

𝑖𝑐 = 𝑒𝐸𝑊 ⋅ 𝑣𝑐 = 𝜇𝑐𝑒𝐸𝑊 ⋅ 𝐸 = 𝑒𝜇𝑐
𝑉𝑏
𝑑2
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Time resolution budget in Silicon Pixel Detectors

𝜎2t = 𝜎2jitter + 𝜎2straggling + 𝜎2distortion + 𝜎2Time Walk

𝜎jitter: induced by the early or late firing of the comparator,
due to the presence of noise (𝜎noise ∝

1
𝑑𝑉/𝑑𝑡 )

𝜎straggling: variation of charge deposit in the sensor

𝜎distortion: due to non-uniformity of the weighting potential

𝜎Time Walk: delay of detection that depends on the signal
amplitude
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Time resolution budget in Silicon Pixel Detectors
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1
𝑑𝑉/𝑑𝑡 )

𝜎straggling: variation of charge deposit in the sensor

𝜎distortion: due to non-uniformity of the weighting potential

𝜎Time Walk: delay of detection that depends on the signal
amplitude
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Beam Test Setup
Beam test data analysed aiming to study of time resolution contributions with MIPs crossing the sensor.

Beam test taken at CERN SPS in 2017 with 𝜋+ at 180 GeV/c

Device Under Test (DUT): TDCPix, readout ASIC of the NA62 GigaTracKer

3 planes of TDCPix + 8 planes of TimePix3

No external time reference

TPX telescope has very small pixels (55𝜇m) → can resolve the position inside the TDCPix pixel (300𝜇m)
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Time Resolution for the two sensor types
Use Time over Threshold (𝑇 𝑜𝑇 = 𝑡𝑓 𝑎𝑙𝑙 − 𝑡𝑟 𝑖𝑠𝑒) as a proxy to the signal amplitude

Perform Time Walk correction on hits from plane pairs

Access resolution thanks to corrected Δ𝑡 distributions

Resolution of a plane: 𝜎𝑖 = √
1
2 (𝜎

2
𝑖−𝑗 + 𝜎2𝑖−𝑘 − 𝜎2𝑗−𝑘)

n-on-p p-on-n

Time resolution worse than expected → dominated by noise, maybe additional jitter
contribution?
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Observations
Faster and more intense signal correspond to a better time resolution:

Signal composed by ℎ−induced and 𝑒−induced part

Ramo theorem: 𝑖𝑐 = 𝑒𝐸𝑊 ⋅ 𝑣𝑐 = 𝜇𝑐𝑒𝐸𝑊 ⋅ 𝐸 = 𝑒𝜇𝑐
𝑉𝑏
𝑑2

𝑖𝑐 larger for large 𝐸𝑊 → larger for charges collected by the pixel electrode, where 𝐸𝑊 is larger

𝜎noise ∝
1

𝑑𝑉/𝑑𝑡

→ Time resolution in n-on-p sensors better than in p-on-n:

𝜇ℎ < 𝜇𝑒 → 𝑣𝑒 ∼ 3𝑣ℎ
ℎ induce a slower signal → more affected by noise

ℎ collected in pixel electrode in p-on-n and in backplane electrode in n-on-p
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Time resolution and position inside the pixel

Goal: see how the time resolution changes in different regions of the
pixels

Use tracks from TPX telescope to resolve position inside the TDCPix
pixel

Associate in space and time the track intercept and the hits of the
TDCPix

Time resolution studied in central and lateral pixel portions

No significant variation in the time resolution is measured

Calls for new testing campaigns to measure the WF contribution
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Unambiguous matching of 𝜈-tag to 𝜈-int
Tagging relies on unambiguous matching between 𝜈𝑡𝑎𝑔 and 𝜈𝑖𝑛𝑡
3 key elements:

state-of-the-art silicon trackers
adapted beamline
large Far Detector

Case study: Tagged P2O (Protvino to KM3NeT/ORCA), 𝐿 = 2595km, 𝐸𝜈 = 5 GeV

ORCA: 6.8 Mton water Cherenkov detector
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Energy requirement plots
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DR plots
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hit maps at LKr
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