Experimental proof of principle of the Neutrino Tagging technique at NA62

Bianca De Martino

PhD thesis defense

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

November 10, 2023

Jury Members:

Andrea Contu Sandrine Emery Anselmo Meregaglia Marie-Hélène Schune

Thesis Supevisors:

Jürgen Brunner Mathieu Perrin-Terrin

Outline

Neutrino physics

- 2 Neutrino Tagging
- The NA62 experiment
- Proof of principle of Neutrino Tagging
 - Analysis strategy
 - Offline selection
 - Background yield
 - Signal yield
 - Revealing signal region content

Towards a full scale tagged experiment: conclusions and perspectives

Outline

Neutrino physics

- 2 Neutrino Tagging
- 3 The NA62 experiment
- Proof of principle of Neutrino Tagging
 - Analysis strategy
 - Offline selection
 - Background yield
 - Signal yield
 - Revealing signal region content

Towards a full scale tagged experiment: conclusions and perspectives

What are neutrinos?

Very elusive particle, existence first hypothetized in 1930, first detection in the 50s

- Neutral leptons, no color charge
- 3 species: *e*, μ, τ
- Massless within SM theory
- Only interact via weak interaction

Neutrino oscillations

- 90s: *vs* became very fascinating due to discovery of *v* oscillations
- v change flavour \rightarrow flavour eigenstates \neq mass eigenstates:

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U_{PMNS} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i} \sum_{j} U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j} e^{\frac{\Delta m_{ij}^{*} L}{2E}}$$

- *P*(ν_α → ν_β) oscillates depending on the distance from the ν production point (*L*) and on the ν energy (*E*)
- *U*_{PMNS} parametrized by:
 - 3 mixing angles θ_{ij}
 - Squared missing mass differences: $\Delta m_{ji}^2 = m_j^2 m_i^2$; $\Delta m_{21}^2 = 7.5 \cdot 10^{-5} \text{ eV}^2$, $\Delta m_{31}^2 \sim \Delta m_{32}^2 = 2.46 \cdot 10^{-3} \text{ eV}^2$
 - CP-violating phase δ_{CP}
- Direct consequence: neutrinos have non-null, different masses

• One of the most compelling proof of beyond SM physics

Unknown parameters, current experiments

- Unknown oscillation parameters:
 - Mass ordering: $m_3 > m_2 > m_1$ or $m_2 > m_1 > m_3$?
 - Octant of θ_{23}
 - CP violating phase $\delta_{CP} \rightarrow \mathrm{key}$ measurement
- Measuring $\delta_{CP} \neq 0, \pi$ means CP violation in lepton sector \rightarrow one of the three Sakharov conditions to explain matter-antimatter asymmetry in universe!
- *v* properties can be studied in many facilities → focus on accelerators facilities
- Produce v_μ beam from π⁺ → μ⁺v_μ to study oscillations → Long Baseline Experiments (LBE): L Ø(100 1000)km

Long Baseline Experiments (LBE)

- LBE suited to search for CP violation in the lepton sector and study oscillations
- Very intense hadron beams $(\pi^{\pm} \rightarrow \mu^{\pm} \stackrel{\leftrightarrow}{v}_{\mu})$ produced by impinging protons on target for *v* beams production
- *v*s oscillate over $\mathcal{O}(10^3)$ km in matter
- Near detector: characterize initial *v* flux
- Far detector: very large neutrino detectors, characterize v flux after oscillation

- Oscillation studies limited by systematic uncertainties stemming from:
 - interaction models and x-section measurements
 - energy scale uncertainties
 - near-to-far detector extrapolation models
- Need a new method to refine our knowledge!

Outline

Neutrino physics

2 Neutrino Tagging

- 3) The NA62 experiment
- Proof of principle of Neutrino Tagging
 - Analysis strategy
 - Offline selection
 - Background yield
 - Signal yield
 - Revealing signal region content

5 Towards a full scale tagged experiment: conclusions and perspectives

Neutrino Tagging

- Neutrino Tagging: new paradigm for accelerator based neutrino experiments
- Instrument a beam line with spectrometers
- **Kinematically reconstruct each** *v* originating from a $\pi^+ \rightarrow \mu^+ v_\mu$ decay \rightarrow *tagged v*
- Associate *interacting* v at Far Detector to its tagged v
- Main advantages:
 - energy resolution < 1% (VS 15% when measured with interaction), no energy scale
 - improved beam knowledge

Adapted beamline for Tagging

- Main challenge: intense particle flux in neutrino beam line $O(10^{18})$ particles/s
- Upcoming tracker capabilities: O(10¹²) particles/s
- Handles to **limit particle flux**:
 - slow extraction (few seconds instead of μ s)
 - narrow band (π momentum selection)
 - increase beam transverse size (around $0.1m^2$)
- Limitation: low v flux \rightarrow compensate with large FD e.g. KM3NeT/ORCA (6.8 Mton)
- Win-win: tagging compensates for FD granularity, FD compensates for low v flux
- Case study: Tagged P2O (Protvino to KM3NeT/ORCA), L = 2595km, $E_v = 5$ GeV

Physics potential

- At a tagged SBE:
 - precise flux knowledge \rightarrow measure at 1% level v_e x-sec and v_μ differential x-sec
 - tagged v energy determined independently of its interaction \rightarrow refine interaction models
- These measurements would strongly improve the physics potential of upcoming LBE
- At a tagged LBE:
 - measure δ_{CP} with unprecedented precision

Summary: v tagging, new paradigm for SBE and LBE

- Neutrino tagging can be used at Short and Long baseline experiments
- Neutrino tagging has the potential to drastically improve physics analysis of 3-flavor oscillations
- Need performing trackers with specs similar to those of HL-LHC
- Development ongoing for new technologies for Si trackers
- Proof of principle performed with state-of-the-art Si tracker: NA62's GigaTracKer

Feature	NA62 GTK (2014)	HL-LHC (2026)	Nu Tagging (2030)
Flux [MHz/mm ²]	2	$\mathcal{O}(10-100)$	$\mathcal{O}(10-100)$
Hit Time Reso [ps]	130	<50	<20
Efficiency (%)	>99	>99	>99
Thickness (% of X_0)	< 0.5	<0.9	<0.5

Outline

Neutrino physics

2 Neutrino Tagging

3 The NA62 experiment

- Proof of principle of Neutrino Tagging
 - Analysis strategy
 - Offline selection
 - Background yield
 - Signal yield
 - Revealing signal region content

5 Towards a full scale tagged experiment: conclusions and perspectives

The NA62 experiment

NA62 features

- NA62 is a fixed-target experiment in the North Area of the SPS at CERN
- NA62's main purpose is the measurement of $\Re r(K^+ \to \pi^+ v \bar{v})$ (SM signal $\Re r = (8.4 \pm 1.0) \cdot 10^{-11}$)
- NA62's high intensity kaon beam at 75 GeV/c delivers a nominal rate of $\mathcal{O}(10^{12})K^+$ decays per year
- Beam composition: 6% $K^+,$ 70% $\pi^+,$ 23% p, 750MHz over 3s spills
- Can be exploited as miniature tagged experiment

Tagging proof of principle at NA62

• K^+ main decay channel: $K^+ \rightarrow \mu^+ + \nu_{\mu}$

• Goal: search for $K^+ \rightarrow \mu^+ + \nu_{\mu} (K \mu \nu)$ with all particles reconstructed:

- K^+ reconstructed by beam spectrometer
- μ^+ reconstructed by downstream spectrometer
- v interacting in the EM calorimeter (20ton LKr) $\rightarrow K \mu v *$
- Interaction channel: CC-DIS: $\nu \rightarrow$ shower + μ^-
- Exploit μ⁺, shower and μ⁻ for triggering strategy

- GigaTracKer (GTK): silicon pixel spectrometer, reconstructs time and 4-momentum of incoming beam particles
- 130 ps hit time resolution
- $\sigma_p/p = 0.2\%$, $\sigma_{\theta} = 16$ mrad
- 60.8 × 27 mm silicon sensor

• STRAW: straw tube spectrometer that reconstructs the properties of charged particles produced in K decays

• Liquid Krypton calorimeter (LKr): electromagnetic calorimeter filled with about 9000 l of liquid Krypton at 120K

• MUon Veto (MUV) 1 and 2: 66 ton hadron calorimeter

• MUon Veto 3 (MUV3): 50 mm thick scintillator tiles, placed behind LKr, MUV1 and 2, and an iron wall, used for muon identification

Trigger and Data Acquisition at NA62

- NA62 data taking system involves 2 trigger levels
- L0 trigger: hardware level trigger, 10x rate reduction factor (10 MHz \rightarrow 1 MHz)
 - packets of information regarding pre-defined conditions
 - masks: predefined set of conditions to accept an event
- HLT (High Level Trigger): software level trigger, 100x rate reduction factor (1 MHz → 20 kHz)

Outline

- Neutrino physics
- 2 Neutrino Tagging
- 3) The NA62 experiment
- Proof of principle of Neutrino Tagging
 - Analysis strategy
 - Offline selection
 - Background yield
 - Signal yield
 - Revealing signal region content

Towards a full scale tagged experiment: conclusions and perspectives

Analysis strategy

Analysis overview

Analysis unfolded through some challenging steps:

- Dedicated trigger line design:
 - Dedicated MUV3 L0-trigger condition to exploit decay topology
 - Stay within available bandwidth
 - Compromise between reducing trigger rate and minimizing signal suppression
- Trigger maintenance and improvements during data taking
- Offline selection building:
 - very small ν interaction probability in LKr ~ $6 \cdot 10^{-11}$
 - possible background even from very rare sources
- Statistical data analysis:
 - trigger and offline selection efficiencies to estimate signal yield
 - estimate background pollution with almost no surviving data events after offline selection

Bianca De Martino

Analysis strategy

- Backgrounds assessed with data driven method on side bands; 2 background sources:
 - Overlaid $K\mu\nu$: $K \to \mu\nu$ with extra in-time activity \to studied in side bands of $|d_{LKr\nu}|$
 - Mis-reconstructed kaon decays \rightarrow studied in side bands of m_{miss}^2 .

Bianca De Martino

Analysis strategy

- Data sample: $5 \cdot 10^{12}$ effective K^+ decays, collected in 2022
- Expected event rate:

$$N_{\text{signal}}^{exp} = N_{K^+} \cdot \mathscr{B}(K^+ \to \mu^+ \nu_{\mu}) \cdot P_{\text{int,LKr}} \cdot \epsilon_{\text{signal}}$$

• Use $K^+ \rightarrow \mu^+ v_{\mu}$ (no *v* interaction) decays as normalization sample:

$$N_{K^+} = \frac{N_{\text{norm}}}{\epsilon_{\text{norm}} \cdot \mathscr{B}(K^+ \to \mu^+ \nu_{\mu})}$$
$$N_{\text{signal}}^{exp} = N_{\text{norm}} \cdot \frac{\epsilon_{\text{signal}}}{\epsilon_{\text{norm}}} \cdot P_{\text{int,LKr}}$$

 ϵ_{norm}

- As many common selection and trigger criteria as possible to signal and normalization
- Signal and normalization common efficiency terms cancel in the ratio

Triggering signal-like events

- Build trigger line to select signal-like events at trigger level
- Single μ^+ track before LKr

X [m]

0

-1 -2

- μ^+ and μ^- (from interaction) in opposite quadrants at MUV3
- Total energy deposit > 5 GeV in LKr to reduce rate
- Normalization trigger selection included in signal trigger

100

Signal and normalization efficiencies largely cancel out:

ò

 $N_{\text{signal}}^{exp} = N_{norm} \cdot \epsilon_{K\mu\nu*}^{int} \cdot \epsilon_{K\mu\nu*}^{LKr} \cdot \epsilon_{K\mu\nu*}^{MUV3} \cdot \epsilon_{K\mu\nu*}^{HLT} \cdot P_{int,LKr}$

LKr

STRAW

12

200

150

Experimental proof of principle of the Neutrino Tagging technique at NA62

250

Z [m]

MUV3

-

MC sample

- MC sample used to estimate signal efficiencies
- K^+ forced to decay in $\mu^+ v_{\mu}$
- *v* forced to interact in the LKr active volume
- v interaction simulated with GENIE using CC-QE, RES, DIS
- Average interaction probability: $6 \cdot 10^{-11}$
- To account for final state modeling uncertainties, two extra samples are produced with the ν energy used to generate the final state biased by ±10%.

Offline selection

Common selection - signal and normalization

- Single positively charged track matched to LKr, MUV1, MUV2 and MUV3 candidates
- μ^+ particle identification
- photon rejection
- *v* extrapolated position inside LKr acceptance

v interaction offline selection

- Step 1: *v* interaction associated to activity in LKr, MUV1, MUV2, MUV3 in time and space
- Step 2: Extra activity rejection
- Step 3: Energy requirements
- Step 4: Interaction topology

Bianca De Martino

Interaction topology

Interaction topology

Normalized count

0.08

0.06

0.04

0.02

0

Background yield

- No data events in m_{miss}^2 SB after full selection
- Estimate background with partial selection on full $d_{\rm LKr\nu}$ range
 - Fit SB of m_{miss}^2 with quadratic
- Scale integral from fit by acceptance of *d*_{LKrv} cut and of missing cuts
- Syst obtained by estimating number of bkg events on two d_{LKrv} ranges

 $N_{bkg}^{exp}(Mis-reco\,K^+) = 0.0014 \pm 0.0007_{stat} \pm 0.0002_{syst}.$

Data m²_{miss} side bands Quadratic fit on side bands 15 -Entries 869 $-\chi^2$ / ndf 61.24/51 0.7403 ± 0.0104 89.03 ± 0.85 2517 + 21.2 10 5 -0.050.05 -0.10 0.1 m²_{miss} [GeV²/c⁴]

NA62 preliminary

Bianca De Martino

- Only 1 background entry found, outside of control region [60,300] mm
- Use d_{LKrv} obtained with partial selection
- Each $d_{\rm LKr\nu}$ bin corresponds to a ring of area proportional to $d_{\rm LKr\nu}$
- Assuming constant event density, $d_{LKr\nu}$ distribution grows linearly with $d_{LKr\nu}$ → linear fit
- Scale integral by acceptances of missing cuts
- Systematics obtained by changing fit range

 $\mathbf{N_{bkg}^{exp}(OV\,K}\mu\nu) = \mathbf{0.04} \pm \mathbf{0.02}_{stat} \pm \mathbf{0.01}_{syst}.$

Signal yield

$$N_{signal}^{exp} = N_{norm} \cdot \epsilon_{K\mu\nu*}^{int} \cdot \epsilon_{K\mu\nu*}^{LKr} \cdot \epsilon_{K\mu\nu*}^{MUV3} \cdot \epsilon_{K\mu\nu*}^{HLT} \cdot P_{int,LKr}$$

v interaction selection efficiency

$$\epsilon_{K\mu\nu*}^{int} = A_{K\mu\nu*}^{int} \cdot \epsilon^{RV}$$

•
$$A_{K\mu\nu*}^{int} = \frac{\sum^{selected} p_i}{\sum^{CS} p_i} = (4.21 \pm 0.25_{stat} \pm 0.15_{syst})\%$$

- Systematic obtained from the two biased MC samples
- Have to account for Random Veto:
 - signal event rejection due to pile-up activity
- $\epsilon^{RV} = (81.6 \pm 1.4_{syst})\%$ estimated on standard $K\mu\nu$

Trigger efficiencies

 $N_{\text{signal}}^{exp} = N_{norm} \cdot \epsilon_{K\mu\nu*}^{int} \cdot \epsilon_{K\mu\nu*}^{LKr} \cdot \epsilon_{K\mu\nu*}^{MUV3} \cdot \epsilon_{K\mu\nu*}^{HLT} \cdot P_{int,LKr}$

- Need to estimate trigger efficiencies that do not cancel out
- Trigger efficiencies estimated on data
- Example: LKr trigger condition efficiency
 - Trigger condition: energy deposit \geq 5 GeV
 - Use samples of $K^+ \to \pi^+ \pi^0$
 - Build signal-like LKr selection
 - Plot efficiency VS total in-time energy
 - Weight distribution by E_{LKr} distribution from MC
 - Systematics from the two biased MC samples

Detector	Condition	Efficiency (%)
MUV3	μ^\pm in opposite quadrants	$97.6 \pm 0.7_{stat} \pm 0.1_{syst}$
LKr	Energy deposit \geq 5 GeV	$82 \pm 1_{stat} \pm 2_{syst}$
HLT	single μ^+ track from K^+	$93.2 \pm 0.2_{stat}$

Expected signal yield

$$\begin{split} N_{\text{signal}}^{exp} &= N_{norm} \cdot \epsilon_{K\mu\nu\ast}^{int} \cdot \epsilon_{LKr}^{sel} \cdot \epsilon_{MUV3}^{sel} \cdot \epsilon_{HLT}^{sel} \cdot P_{int,LKr} \\ &= N_{norm} \cdot \frac{\epsilon_{signal}}{\epsilon_{norm}} \cdot P_{int,LKr} \end{split}$$

- Now we have all items to compute $N_{K\mu\nu*}^{exp}$
- $P_{int,LKr} = (6.0 \pm 0.1_{syst}) \cdot 10^{-11}$
- $N_{norm} = (1.49 \pm 0.02_{syst}) \cdot 10^{11}$ from $K \mu v$ event yield
- $\frac{\epsilon_{signal}}{\epsilon_{norm}} = (2.55 \pm 0.15_{stat} \pm 0.04_{syst})\%$

$$N^{exp}_{\text{signal}} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$$

Summary

• In 2022 data sample $(5 \cdot 10^{12} K^+ \text{ decays})$:

 $N_{\text{signal}}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst},$

 $N_{bkg}^{exp}(Mis - recoK^+) = 0.0014 \pm 0.0007_{stat} \pm 0.0002_{syst},$ $N_{hk\sigma}^{exp}(OVK\mu\nu) = 0.04 \pm 0.02_{stat} \pm 0.01_{svst}.$

Signal-to-noise: 5.5

Probability for total expected event yield $N_{events}^{exp} = 0.2694$

- for 0 data events p = 0.7638
- for 1 data event p = 0.2058
- for 2 data events p = 0.0277.

Results approved for unblinding by the NA62 collaboration

Bianca De Martino

Revealing signal region content

Two events are found in signal region!

Corresponds to probability p = 0.0277 for total expected event yield $N_{events}^{exp} = 0.2694$

Event Display - Event A

• $p_{\mu^+} = 25.25 \text{ GeV/c}$

Event Display - Event B

- $p_{\mu^+} = 18.74 \text{ GeV/c}$
- $E_{\nu} = 57.5 \text{ GeV}$
- $p_{K^+} = 76.2 \text{ GeV/c}$

Summary: proof of principle with miniature tagged experiment

- NA62 experiment has been exploited as a miniature tagged experiment to demonstrate feasibility of the neutrino tagging technique
- Reconstruct $K^+ \rightarrow \mu^+ \nu_\mu$ decay with all particles detected
- Blind analysis performed, expected $N_{signal}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$ signal events
- Signal-to-noise ratio 5.5
- 2 events found in signal region upon opening the box
- First tagged neutrino candidates in history!

Outline

Neutrino physics

- 2 Neutrino Tagging
- 3 The NA62 experiment
- Proof of principle of Neutrino Tagging
 - Analysis strategy
 - Offline selection
 - Background yield
 - Signal yield
 - Revealing signal region content

Towards a full scale tagged experiment: conclusions and perspectives

Perspectives overview

- A lot is left to do before implementing the Tagging at a tagged experiment
 - Beamline simulation and design (narrow-band, slowly extracted beam)
 - Development in field of silicon trackers ongoing
- Building a full scale tagged experiment involves operating Silicon trackers in neutrino beamline
- Very harsh environment, particle rate $\sim 10^{12}$ particles/s
- Need performing detectors, specs similar to HL-LHC
- Time resolution is a crucial element: need to be able to separate the beam particles
- \rightarrow study the timing performances of Silicon detectors and understand the elements that affect their time resolution.

Feature	NA62 GTK	HL-LHC	Nu Tagging
Flux [MHz/mm ²]	2	O(10 - 100)	$\mathcal{O}(10-100)$
Hit Time Reso [ps]	130	<50	<20
Efficiency (%)	>99	>99	>99
Thickness (% of X_0)	< 0.5	< 0.9	< 0.5

Time resolution of state-of-the-art devices

- An attempt has been made to investigate the limits of sensors of state-of-the-art device
- $\bullet~$ Data analysis of beam test taken at CERN SPS with π^+ at 180 GeV/c
- Device Under Test: 3 stations of single chips of NA62 GigaTracKer
- Difference in performance of n-on-p and of p-on-n sensor types demonstrated
- σ_t contributions remain to be quantified (e.g. Weighting Field effect)
- Results call for further testing of state-of-the-art devices and devices exploiting new technologies (such as TimeSpot)

Conclusions and outlook

- Neutrino tagging: new paradigm for accelerator based neutrinos experiments
- Proof of principle with NA62, existing experiment exploitable as miniature tagged experiment
- Two tagged neutrino candidates found in signal region
- There is much left to do before implementing the tagging at a LBE
- Achieved crucial first step towards establishment of tagging as effective paradigm

Thank you for your attention!

Signal yield

$$N_{\text{signal}}^{exp} = N_{K\mu\nu} \cdot A_{K\mu\nu\star}^{int} \cdot \epsilon^{RV} \cdot \epsilon_{E5}^{sel} \cdot \epsilon_{MOQX}^{sel} \cdot \epsilon_{HLT}^{sel} \cdot P_{int,LKr}$$
$$= 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$$

Contribution	Value and uncertainty
P _{int,LKr}	$(6.0 \pm 0.1_{syst}) \cdot 10^{-11}$
$N_{K\mu u}$	$(1.49 \pm 0.02_{syst}) \cdot 10^{11}$
$A_{K\mu\nust}^{int}$	$0.0421 \pm 0.0025_{stat} \pm 0.0015_{syst}$
ϵ^{RV}	$0.816 \pm 0.014_{syst}$
$\epsilon^{MOQX}_{K\mu u*}$	$0.976 \pm 0.007_{stat} \pm 0.001_{syst}$
$\epsilon^{E5}_{K\mu u*}$	$0.82 \pm 0.01_{stat} \pm 0.01_{syst}$
$\epsilon_{K\mu ust}^{HLT/sel}$	$0.932 \pm 0.002_{stat}$

(1)

Signal candidates properties

Variable	Event A	Event B
d_{LKrv}	31.9 mm	27.0 mm
m_{miss}^2	$-0.00088{ m GeV}^2/{ m c}^4$	$-0.0015{ m GeV}^2/{ m c}^4$
$d\phi_{LKr-MUV3}$	3.29 rad	3.24 rad
E_{ν}	52.1 GeV	57.5 GeV
p_{μ^+}	25.25 GeV/c	18.74 GeV/c
p_{K^+}	77.3 GeV/c	76.2107 GeV/c
$E_{LKrintime}$	13.36 GeV	7.67 GeV
$E_{MUV1 in time}$	9.85 GeV	10.90 GeV
$E_{MUV2 in time}$	2.48 GeV	2.80 GeV
$E_{\mu^-}/E_{ u}$	0.68	0.78
n _{KTAG}	28	17
z_{vtx}	161.2 m	157.7 m
x, y at MUV3 μ^-	(550, 770) mm	(330, 770) mm
x, y at MUV3 μ^+	(-330, -770) mm	(-550, -990) mm

Table: Features of the two signal candidates found in the signal region.

Bianca De Martino

Experimental proof of principle of the Neutrino Tagging technique at NA62

Signal candidates properties

MUV3 efficiency

- Use sample of $K^+ \to \pi^+ \pi^+ (\mu^+ \nu) \pi^- (\mu^- \nu)$
- $\epsilon^{MUV3} = 0.976 \pm 0.007_{stat} \pm 0.001_{syst}$
- Systematics obtained by weighting with the two biased MC samples

- HLT trigger involves KTAG and STRAW information, with a Photon Veto condition
- HLT trigger efficiency computed with data
- $\epsilon_{mask10}^{HLT} = \epsilon^{KTAG} \cdot \epsilon^{nLAV} \cdot \epsilon^{STRAW_{1}TRK} = 0.932 \pm 0.002_{stat}$.

HLT algo	Efficiency
KTAG ($K\mu\nu$ sel)	0.998 ± 0.001
$nLAV \mid (K\mu v \text{ sel})$ & KTAG	0.996 ± 0.001
STRAW_1TRK ($K\mu v \text{ sel}$) & nLAV & KTAG	0.938 ± 0.001

TDCPix and previous test campaigns

- TDCPix: time resolved readout chip of Silicon tracker of NA62 experiment (GigaTracker)
- 200 μ m thick planar sensors, p-in-n or n-in-p, 40 × 45 pixels of 300 × 300 μ m²
- From previous test campaign have been experimentally measured
 - electronics contribution from laser test with TDCPix demonstrator: $\sim 80~{\rm ps}$
 - WF contribution with laser tests with TDCPix: $\sim 85 \mbox{ ps}$
- Simulation of charge straggling contribution $\rightarrow \sim 100 \text{ ps}$
- Missing:
 - experimental measures of charge straggling
 - experimental confirmation of WF effect with MIPs
 - systematic study on performances of n-on-p and p-on-n sensors

$$\sigma_t = \sqrt{\sigma_{electronics+TDC}^2 + \sigma_{weighting field}^2 + \sigma_{straggling}^2} = \sqrt{80^2 + 85^2 + 100^2} = 150 \, ps.$$

Time Walk Correction

- Procedure to be done on plane couples in absence of time reference
- Both planes are to be corrected \rightarrow iterative procedure
- Use Time over Threshold ($ToT = t_{fall} t_{rise}$) as a proxy to the signal amplitude
- Derive delay of detection at threshold as function of ToT thanks to $\Delta t = t_2 t_1$ VS ToT distributions
- Effect of correction: flatten and shrink Δt VS ToT distribution

A.u.

LBNE limitations: systematic uncertainties

• Oscillation parameters inferred from event spectra as a function of reconstructed neutrino energy:

$$N_{\nu_{\beta}}^{FD}(E_{\nu}^{reco}) = \Phi_{\nu_{\beta}}^{FD}(E_{\nu}^{true}) \times \epsilon^{FD}(E_{\nu}^{true}) \times \sigma_{\nu_{\beta}}^{FD}(E_{\nu}^{true}) \times S(E_{\nu}^{reco}, E_{\nu}^{true}) \times P(\nu_{\alpha} \to \nu_{\beta})(E_{\nu}^{true})$$

- Constrain systematic with ND that measures initial flux
- Heavily relay on models to predict near-to-far detector extrapolation: they see different fluxes due to
 - Oscillations
 - Acceptance
 - Solid angle coverage
- Heavily rely on $\sigma(E_v^{true})$ models and measurements
- Near and far detectors have energy scale uncertainty

- Baryon number violation:
 - B is a quantum number: for baryons it is +1, for antibaryons it is -1, for mesons and leptons it is 0.
 - it is conserved in all known interactions
 - $B \neq 0$ means $\#q \#\bar{q} \neq 0$; if the baryon number is not conserved, then $\#q \#\bar{q} \neq \text{const}$
- CP violation:
 - Baryon number violation means that properties of particles and antiparticles must be different.
 - This is equivalent to both CP and C-symmetry violation.
 - CP symmetry means that a process in which all particles are exchanged with their antiparticles is equivalent to the mirror image of the original process.
- Departure from thermal equilibrium:
 - the processes that produce an excess of particles over antiparticles must be out of thermal equilibrium: the reverse process must have been suppressed.

Unambiguous matching of *v*-tag to *v*-int

- Time coincidence:
 - Next generation Si trackers will have $\sigma_t \sim 10 \text{ ps}$
 - Typically *v* detectors have $\sigma_t \sim 10$ ns
- \rightarrow 1000 v_{tag} per v_{int}
 - Angular coincidence:
 - Dominant contribution: resolution on v_{tag} is $\mathcal{O}(0.1)$ mrad for thickness of 0.5% X_0
 - ν beam divergence $\sim \frac{1}{\nu} \rightarrow \sim 10$ mrad for 15 GeV π^{\pm}
 - \rightarrow accidental matches reduced by a factor 10⁴

 $\rightarrow 0.1 \; v_{tag} \; \text{per} \; v_{int} \rightarrow$ unambiguous pairing possible in 90% of cases!

- Silicon pixel detector functioning principle is based on p-n junction
- e^- near p-n interface drift in p region, holes drift towards n region \rightarrow depletion region
- Reverse V_{bias} applied \rightarrow depletion region grows: $w_{depl} \propto \sqrt{V_{bias}}$
- Different sensor types depending on the doping of bulk and strips: n-on-p and p-on-n

Signal formation and detection

- Signal induced by motion of e^- and holes produced by crossing ionizing particle
- V_b affects the drift velocity of the charge carriers:

$$\begin{split} \nu_n &= -\mu_n E = -\mu_n \frac{V_b}{d} \\ \nu_p &= \mu_p E = \mu_p \frac{V_b}{d}. \end{split}$$

• Current induced on an electrode by a moving charge described by the Ramo-Shockley theorem:

$$i(t) = -q\vec{v}(t) \cdot \vec{E_W}$$

- Weighting field $\vec{E_W}$ describes coupling between the charge and the electrodes
- In parallel plate geometry:

$$i_c = e\vec{E_W} \cdot \vec{v_c} = \mu_c e\vec{E_W} \cdot \vec{E} = e\mu_c \frac{V_b}{d^2}$$

$$\sigma_{\rm t}^2 = \sigma_{\rm jitter}^2 + \sigma_{\rm straggling}^2 + \sigma_{\rm distortion}^2 + \sigma_{\rm Time \ Walk}^2$$

- σ_{jitter}: induced by the early or late firing of the comparator, due to the presence of noise (σ_{noise} ∝ 1/dV/dt)
- $\sigma_{\text{straggling}}$: variation of charge deposit in the sensor
- $\sigma_{\text{distortion}}$: due to non-uniformity of the weighting potential
- $\sigma_{\text{Time Walk}}$: delay of detection that depends on the signal amplitude

$$\sigma_{\rm t}^2 = \sigma_{\rm jitter}^2 + \sigma_{\rm straggling}^2 + \sigma_{\rm distortion}^2 + \sigma_{\rm Time \ Walk}^2$$

- σ_{jitter}: induced by the early or late firing of the comparator, due to the presence of noise (σ_{noise} ∝ 1/(dV/dt))
- $\sigma_{\text{straggling}}$: variation of charge deposit in the sensor
- $\sigma_{\text{distortion}}$: due to non-uniformity of the weighting potential
- $\sigma_{\text{Time Walk}}$: delay of detection that depends on the signal amplitude

$$\sigma_{\rm t}^2 = \sigma_{\rm jitter}^2 + \sigma_{\rm straggling}^2 + \sigma_{\rm distortion}^2 + \sigma_{\rm Time\ Walk}^2$$

- σ_{jitter}: induced by the early or late firing of the comparator, due to the presence of noise (σ_{noise} ∝ 1/dV/dt)
- $\sigma_{\text{straggling}}$: variation of charge deposit in the sensor
- $\sigma_{\text{distortion}}$: due to non-uniformity of the weighting potential
- $\sigma_{\text{Time Walk}}$: delay of detection that depends on the signal amplitude

$$\sigma_{\rm t}^2 = \sigma_{\rm jitter}^2 + \sigma_{\rm straggling}^2 + \sigma_{\rm distortion}^2 + \sigma_{\rm Time\ Walk}^2$$

- σ_{jitter}: induced by the early or late firing of the comparator, due to the presence of noise (σ_{noise} ∝ 1/dV/dt)
- σ_{straggling}: variation of charge deposit in the sensor
- $\sigma_{\text{distortion}}$: due to non-uniformity of the weighting potential
- $\sigma_{\text{Time Walk}}$: delay of detection that depends on the signal amplitude

Beam Test Setup

- Beam test data analysed aiming to study of time resolution contributions with MIPs crossing the sensor.
- Beam test taken at CERN SPS in 2017 with π^+ at 180 GeV/c
- Device Under Test (DUT): TDCPix, readout ASIC of the NA62 GigaTracKer
- 3 planes of TDCPix + 8 planes of TimePix3
- No external time reference
- TPX telescope has very small pixels $(55\mu m) \rightarrow$ can resolve the position inside the TDCPix pixel $(300\mu m)$

Time Resolution for the two sensor types

- Use Time over Threshold $(ToT = t_{fall} t_{rise})$ as a proxy to the signal amplitude
- Perform Time Walk correction on hits from plane pairs
- Access resolution thanks to corrected Δt distributions
- Resolution of a plane: $\sigma_i = \sqrt{\frac{1}{2}(\sigma_{i-j}^2 + \sigma_{i-k}^2 \sigma_{j-k}^2)}$

● Time resolution worse than expected → dominated by noise, maybe additional jitter contribution?

Observations

- Faster and more intense signal correspond to a better time resolution:
 - Signal composed by *h*-induced and *e*-induced part
 - Ramo theorem: $i_c = e\vec{E_W} \cdot \vec{v_c} = \mu_c e\vec{E_W} \cdot \vec{E} = e\mu_c \frac{V_b}{d^2}$
 - i_c larger for large $E_W \rightarrow$ larger for charges collected by the pixel electrode, where E_W is larger

•
$$\sigma_{\text{noise}} \propto \frac{1}{dV/dt}$$

- \rightarrow Time resolution in n-on-p sensors better than in p-on-n:
 - $\mu_h < \mu_e \rightarrow \nu_e \sim 3\nu_h$
 - h induce a slower signal \rightarrow more affected by noise
 - *h* collected in pixel electrode in p-on-n and in backplane electrode in n-on-p

Time resolution and position inside the pixel

- Goal: see how the time resolution changes in different regions of the pixels
- Use tracks from TPX telescope to resolve position inside the TDCPix pixel
- Associate in space and time the track intercept and the hits of the TDCPix
- Time resolution studied in central and lateral pixel portions
- No significant variation in the time resolution is measured
- Calls for new testing campaigns to measure the WF contribution

Unambiguous matching of *v*-tag to *v*-int

- ۲ Tagging relies on unambiguous matching between v_{tag} and v_{int}
- 3 key elements: ۲
 - state-of-the-art silicon trackers
 - adapted beamline
 - large Far Detector
- Case study: Tagged P2O (Protvino to KM3NeT/ORCA), L = 2595km, $E_{\nu} = 5$ GeV ۲

Energy requirement plots

DR plots

