

Sterile Neutrino search in DUNE

Camille Sironneau

DUNE France Workshop 16/11/23

Looking for this little guy

Sterile neutrinos

While the 3 neutrino model is a good fit to most measurements, multiple anomalies have been detected by different experiments

> If we add a new neutrino to the model, it has to be sterile i.e. interacting only through gravitational interaction and neutrino oscillation

Camille Sironneau

Sterile neutrinos

RAA: anomalies measured by multiple experiments in the total flux and energy spectrum of reactor anti neutrinos

Also :

- excess of anti (electron neutrinos) in anti (muon neutrinos) beam was shown in LSND
- anomaly confirmed by MiniBooNE
- neutrino rate deficit in calibration runs in the Gallium solar nu experiments
- → Anomalies studied (and confirmed) by multiple experiments but the best fit point for 4nu model is usually ruled out (i.e. STEREO)

Camille Sironneau

Recent sterile studies

- Reactor experiments :
 - \rightarrow **Double Chooz**, explores $\Delta m^2 \sim 0.1 \text{ ev}^2$
 - → PROSPECT and STEREO study the Reactor Antineutrino Anomaly (RAA) and have both excluded the

best fit of RAA sterile nu with $\Delta m^2 \sim 1 \text{ ev}^2$ (papers from 2021 and 2023)

- \rightarrow Future : JUNO with RENO 50 sensitive to "super light sterile neutrino" ($\Delta m^2 \sim 10^{-5} \text{ ev}^2$)
- Accelerator experiments :
 - \rightarrow LSND, low energy beam of anti numu, look for excess in nue events
 - \rightarrow **MiniBooNE**, higher energies but same L/E
 - \rightarrow T2K, no evidence of sterile mixing in "3+1" model (2019 paper)
- Atmospherics / cosmic rays :
 - \rightarrow **IceCube**, sensitive to high energy events
 - \rightarrow KM3NeT, no analysis yet but expected sensitivity
 - \rightarrow SuperK, set limit on sterile mixing to tau and mu (no delta sensitivity)
- Gallium based solar nu experiments :
 - \rightarrow GALLEX, SAGE, BEST : anomalies could be explained with $\Delta m^2 \sim 1 \ ev^2$

Camille Sironneau

Sterile neutrinos in DUNE

- We can use beam neutrinos and higher L/E to constrain more the sterile mixing parameters → ongoing work
- Atmospheric neutrinos can nicely complement the studies with beam neutrinos:
 - \rightarrow wider range of L/E
 - \rightarrow extra probe for sterile neutrinos with a **different source**
 - → easier **comparison** with other ongoing or future experiments detecting atmospherics (KM3NeT, IceCube, Super-K, Hyper-K) \rightarrow explore whether DUNE **energy and angular resolution** can be of advantage

(myself included)

Camille Sironneau

- Focus on atmospheric neutrinos
- The addition of a neutrino in the model changes oscillation probabilities
 → produce appearance or disappearance of neutrino flavours depending on energy/angle
- Compare expected number of events assuming Standard Model and "3+1" model with one sterile neutrino
- Example of calculation done for **numu** (everything is **also done for nue**)
- Focus on CC interactions and NO at first

 $N_{exp,ev} = \left[(\phi_{\nu\mu}P_{\mu\mu} + \phi_{\nue}P_{e\mu})\sigma_{\nu\mu} + (\phi_{\overline{\nu\mu}}P_{\overline{\mu\mu}} + \phi_{\overline{\nue}}P_{\overline{e\mu}})\sigma_{\overline{\nu\mu}}\right] \cdot N_{Ar} \cdot \Delta E \cdot \Delta \theta_z \cdot \Delta t$

 $\begin{array}{l} \mbox{Atmospheric neutrino flux} \\ \mbox{for different flavors} \rightarrow \mbox{Honda flux for} \\ \mbox{Homestake} \end{array}$

Camille Sironneau

- Focus on atmospheric neutrinos
- The addition of a neutrino in the model changes oscillation probabilities
 → produce appearance or disappearance of neutrino flavours depending on energy/angle
- Compare expected number of events assuming Standard Model and "3+1" model with one sterile neutrino
- Example of calculation done for **numu** (everything is **also done for nue**)
- Focus on CC interactions and NO at first

 $N_{exp,ev} = \left[\left(\phi_{\nu_{\mu}} P_{\mu\mu} + \phi_{\nu_{e}} P_{e\mu} \right) \sigma_{\nu_{\mu}} + \left(\phi_{\overline{\nu_{\mu}}} P_{\overline{\mu}\mu} + \phi_{\overline{\nu_{e}}} P_{\overline{e}\mu} \right) \sigma_{\overline{\nu_{\mu}}} \right] \cdot N_{Ar} \cdot \Delta E \cdot \Delta \theta_{z} \cdot \Delta t$ **Oscillation probabilities to** numu or numu_bar

- Focus on atmospheric neutrinos
- The addition of a neutrino in the model changes oscillation probabilities
 → produce appearance or disappearance of neutrino flavours depending on energy/angle
- Compare expected number of events assuming Standard Model and "3+1" model with one sterile neutrino
- Example of calculation done for **numu** (everything is **also done for nue**)
- Focus on CC interactions and NO at first

$$N_{exp,ev} = \left[\left(\phi_{\nu_{\mu}} P_{\mu\mu} + \phi_{\nu_{e}} P_{e\mu} \right) \sigma_{\nu_{\mu}} + \left(\phi_{\overline{\nu_{\mu}}} P_{\overline{\mu\mu}} + \phi_{\overline{\nu_{e}}} P_{\overline{e\mu}} \right) \sigma_{\overline{\nu_{\mu}}} \right] \cdot N_{Ar} \cdot \Delta E \cdot \Delta \theta_{z} \cdot \Delta t$$

Interaction cross section with Ar40

Camille Sironneau

- Focus on **atmospheric neutrinos**
- The addition of a neutrino in the model changes oscillation probabilities
 → produce appearance or disappearance of neutrino flavours depending on energy/angle
- Compare expected number of events assuming Standard Model and "3+1" model with one sterile neutrino
- Example of calculation done for **numu** (everything is **also done for nue**)
- Focus on CC interactions and NO at first

$$N_{exp,ev} = \left[(\phi_{\nu_{\mu}} P_{\mu\mu} + \phi_{\nu_{e}} P_{e\mu}) \sigma_{\nu_{\mu}} + (\phi_{\overline{\nu_{\mu}}} P_{\overline{\mu\mu}} + \phi_{\overline{\nu_{e}}} P_{\overline{e\mu}}) \sigma_{\overline{\nu_{\mu}}} \right] \left[N_{Ar} \Delta E \cdot \Delta \theta_{z} \Delta t \right]$$

$$N_{Ar} = \frac{m_{det}}{m_{Ar40}}$$

Camille Sironneau

 Δt : time of data taking in seconds

data ΔI seconds

 ΔE , $\Delta \theta_z$: width of the bins used for the histograms (binning is based on the flux histograms)

Number of target atoms

Probability computation

- The oscillation probabilities are calculated using the OscProb code available on GitHub:
 - https://github.com/joaoabcoelho/OscProb
- Here show survival probability of numu for
 - SM and "3+1" model assuming NO
- Put sterile CP violating phases to 0
- Probability averaged on each energy bin
- Active mixing angles from **nuFit v5.2** with Kamiokande atmospherics data

(http://arxiv.org/abs/2007.14792,

http://www.nu-fit.org)

Camille Sironneau

Use a quick estimator of the sensitivity as a **preliminary probe** to compare with the results from a KM3NeT/ORCA paper (https://arxiv.org/pdf/2107.00344.pdf)

\rightarrow the results seem to be coherent. encouraging

Reminder: detector effects not included yet so we can compare without too many issues

signed chi2

Camille Sironneau

Tarak Thakore: "Sensitivity to Neutrino Mass Ordering and sterile neutrino model parameters with atmospheric neutrinos measurements at DUNE"

- Taking S_{σ}as an intermediate step towards a sensitivity estimation
- Goal: compare with previous simple DUNE study
 - → <u>https://indico.kps.or.kr/event/30/contributions/503/</u>
- Need to fix values of other mixing parameters: $\sin^2\theta_{14}$ and $\sin^2\theta_{34}$ -> chose minimum value for simplicity
 - \rightarrow 10⁻³ for both sin² θ_{14} and sin² θ_{34}
- Effect of variations under study
- See if we get something somewhat close to this

distribution with our S_{a} estimator summed over all the bins

Also change exposure to $400kt \cdot year \rightarrow more realistic value$

Camille Sironneau

See semblance of the same shape so it's encouraging \rightarrow contour plots in the future to confirm, as this is a rough estimator

Camille Sironneau

EarthProbe

- Code co-written by Joao : EarthProbe (<u>https://gitlab.in2p3.fr/apc-tomography/earthprobe</u>)
- Initially designed to use atmospheric neutrino oscillations to study Earth's composition
- (My) current work: extend the code to do neutrino oscillation studies and sterile neutrino search
- EarthProbe includes **OscProb** and manages :
 - flux and xsec histograms
 - detector specificities
 - number of events computation
 - reconstruction efficiency
 - oscillation probabilities
 - analysis → likelihood computations and parameter fitting using Minuit2

Camille Sironneau

Camille Sironneau

DUNE France Workshop

16

Produce the same preliminary results as before as sanity check

Finalize code adaptations of EarthProbe in order to obtain **sensitivity plots**

• Understand parameter fitting with EarthProbe

 \rightarrow will need to adapt the code

• Produce sensitivity plots

Next steps

- Add detector **reconstruction effects** and DUNE **systematics**
- After this, move on to the study with **atmospherics simulation and compatibility with Mach3**

Thanks a lot for your attention !

Camille Sironneau

Standard mixing parameters

NuFIT 5.2 (2022)

		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 2.3$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
without SK atmospheric data	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$
	$\theta_{12}/^{\circ}$	$33.41\substack{+0.75\\-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$
	$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.406 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$
	$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$
	$\sin^2 \theta_{13}$	$0.02203^{+0.00056}_{-0.00059}$	$0.02029 \to 0.02391$	$0.02219^{+0.00060}_{-0.00057}$	0.02047 o 0.02396
	$\theta_{13}/^{\circ}$	$8.54_{-0.12}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57\substack{+0.12\\-0.11}$	$8.23 \rightarrow 8.90$
	$\delta_{ m CP}/^{\circ}$	197^{+42}_{-25}	$108 \to 404$	286^{+27}_{-32}	$192 \to 360$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.511^{+0.028}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498^{+0.032}_{-0.025}$	$-2.581 \rightarrow -2.408$
with SK atmospheric data		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.4)$	
	0	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.012}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$
	$\theta_{12}/^{\circ}$	$33.41\substack{+0.75 \\ -0.72}$	$31.31 \rightarrow 35.74$	$33.41\substack{+0.75 \\ -0.72}$	$31.31 \rightarrow 35.74$
	$\sin^2 \theta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.569^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.613$
	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$
	$\sin^2 \theta_{13}$	$0.02225^{+0.00056}_{-0.00059}$	$0.02052 \to 0.02398$	$0.02223^{+0.00058}_{-0.00058}$	0.02048 ightarrow 0.02416
	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$
	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \to 350$	276^{+22}_{-29}	$194 \to 344$
	. 2		6 90 1 9 09	$7.41^{+0.21}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.41^{+0.21}_{-0.20}$	$0.02 \rightarrow 0.03$	-0.20	0101

Camille Sironneau

- We obtain a similar behaviour → excess around 20 GeV and deficit above and below but unclear due to low statistics
- Possibility to explore lower energy ranges
- The S parameter is intended for higher statistics \rightarrow will be updated to log-likelihood

Camille Sironneau

- Increasing the size of the detector to 1Mt to allow a better cross-check of result
 → shows similar behaviour as KM3NeT/ORCA plot
- Higher frequency effect has been investigated and will likely be diffused when detector effects are included

Camille Sironneau

Expected number of events

Can calculate **number of expected events** and do the difference between 4-neutrino and 3-neutrino models for numu and nue (also anti-nu) depending on **true angle and true energy** of incoming neutrinos

Camille Sironneau