Frequentist Analysis Feldman-Cousins Challenges

João Coelho

APC Laboratory

16 November 2023

Lets look at some data

- In general, our data doesn't agree with our predictions
- We quantify the disagreement by computing some metric
- Ideally we want a metric that is zero if data = prediction, and growing as prediction deviates from data

Log Likelihood-Ratio

- The natural choice is to use the likelihood P(data | prediction)
- In general our metric is:

$$\lambda(data, pred) = -2\log\left[\frac{P(data \mid pred)}{P(data \mid pred = data)^*}\right]$$

• If data is distributed as a Gaussian:

$$\lambda(d,p) = \chi^2 = \sum_i \frac{(p_i - d_i)^2}{\sigma_i^2}$$

• For Poisson distributed data, this results in:

$$\lambda(d,p) = 2\sum_{i} p_i - d_i + d_i \log(d_i/p_i)$$

Now lets try to fix the prediction

• We can play around with multiple parameters to minimize -2logL

Now lets try to fix the prediction

- In practice, we use gradient descent and fit all parameters
- We can then build confidence regions around any parameter by considering what parameter values have -2 Δ logL < α

Building Confidence Intervals

- In practice, we use gradient descent and fit all parameters
- We can then build confidence regions around any parameter by considering what parameter values have -2 Δ logL < α

Wilks' Theorem

Theorem: If a population with a variate x is distributed according to the probability function $f(x, \theta_1, \theta_2 \cdots \theta_h)$, such that optimum estimates $\tilde{\theta}_i$ of the θ_i exist which are distributed in large samples according to (3), then when the hypothesis H is true that $\theta_i = \theta_{0i}$, i = m + 1, m + 2, \cdots h, the distribution of $-2 \log \lambda$, where λ is given by (2) is, except for terms of order $1/\sqrt{n}$, distributed like χ^2 with h - mdegrees of freedom.

Translating:

- In the limit of large samples,
 -2∆logL behaves as a χ² distribution
- Since we know the relationship between p-values and χ^2 , we can convert easily from one to the other

Feldman-Cousins

- Sometimes Wilks' theorem fails. Typically near physical boundaries and/or when statistics are low
- The FC procedure is design to obtain CLs without assuming the -2 Δ logL distribution is χ^2 shaped
- Simulate many possible realizations of our experiment and plot their distribution
- Pick the -2 Δ logL that contains the fraction of realizations that you want

Nuisance Parameters

- One of the open questions about the FC procedure is how to deal with the nuisance parameters
- What counts as a different realization of our experiment?
- From a frequentist perspective, all parameters have a fixed true value and all pseudo-experiments should be simulated at those true values
- This works well for the parameters of interest, since we are anyway scanning them over different hypotheses
- But what true value should we assume for nuisance parameters?
 - Best knowledge before you ran your experiment?
 - Best knowledge after you ran your experiment?
 - Sample randomly from some prior distribution? (not really frequentist: Hybrid)
 - Posterior distribution? (not really frequentist: Hybrid)
- Maybe answer should be based on how well the results agree with our definition of confidence interval:
 - The interval whose construction would lead to the true value being included at the target fraction of the realizations

Nuisance Parameters

 NOvA study shows standard FC procedure can fail coverage if true value of nuisance parameters are different from the assumed valued

https://inspirehep.net/literature/2102110

Nuisance Parameters

- NOvA study shows standard FC procedure can fail coverage if true value of nuisance parameters are different from the assumed valued
- Hybrid methods do better in this case, at the expense of no perfect solution
- NOvA proposes to choose the post-fit value of nuisances at each value of the parameter of interest: Profiled FC

Another Proposal

TASK: Study coverage of different methods

Proposed sampling choices:

- D: Pseudo-data
 - sampled from Poisson with mean value M
- θ_{T} : True pars of interest, e.g. TauNorm
 - Always kept fixed at test point
- v_{T} : True value of nuisance pars, e.g. θ_{13}
 - Should be fixed from freq. persp.
 - Use best estimate, i.e. post-fit value at θ_T
- v^0 : Mean value of our prior on v_T
 - Represents external measurement, e.g. Daya Bay measurement of θ_{13}
 - May be sampled as part of PE ?
- σ : Std dev of our prior on v_T
 - Represents uncertainty on external measurement
 - Should be fixed at original value pre-fit

+

 $\sum_j \frac{(\nu_j - \nu_j^0)^2}{\sigma_j^2}$

Conclusion

- Frequentist methods have been the bread and butter of particle physics statistical inference for years
- Usually liked because "no dependence on priors"
- However, interpreting the likelihood ratios can be difficult
- Feldman-Cousins procedure helps, but does not have a clear choice for dealing with nuisance parameters
- And beyond theoretical aspects, performing FC corrections typically involves performing thousands of fits at each tested point and can be computationally prohibitive
- Still very useful to be able to provide both Bayesian and Frequentist results to the community

Backup