Frequentist Analysis Feldman-Cousins Challenges

João Coelho

APC Laboratory

16 November 2023

Lets look at some data

- In general, our data doesn't agree with our predictions
- We quantify the disagreement by computing some metric
- Ideally we want a metric that is zero if data $=$ prediction, and growing as prediction deviates from data

Log Likelihood-Ratio

- The natural choice is to use the likelihood P(data | prediction)
- In general our metric is:

$$
\lambda(data, pred) = -2 \log \left[\frac{P(data \mid pred)}{P(data \mid pred = data)^*} \right]
$$

• If data is distributed as a Gaussian:

$$
\lambda(d, p) = \chi^2 = \sum_i \frac{(p_i - d_i)^2}{\sigma_i^2}
$$

• For Poisson distributed data, this results in:

$$
\lambda(d, p) = 2 \sum_{i} p_i - d_i + d_i \log(d_i/p_i)
$$

Now lets try to fix the prediction

• We can play around with multiple parameters to minimize -2logL

Now lets try to fix the prediction

- In practice, we use gradient descent and fit all parameters
- We can then build confidence regions around any parameter by considering what parameter values have -2 Δ logL < α

Building Confidence Intervals

- In practice, we use gradient descent and fit all parameters
- We can then build confidence regions around any parameter by considering what parameter values have -2 Δ logL < α

Wilks' Theorem

Theorem: If a population with a variate x is distributed according to the probability function $f(x, \theta_1, \theta_2 \cdots \theta_h)$, such that optimum estimates $\tilde{\theta}_i$ of the θ_i exist which are distributed in large samples according to (3) , then when the hypothesis H is **true** that $\theta_i = \theta_{0i}$, $i = m + 1$, $m + 2$, \cdots h, the distribution of $-2 \log \lambda$, where λ is given by (2) is, except for terms of order $1/\sqrt{n}$, distributed like χ^2 with $h - m$ degrees of freedom.

Translating:

- In the limit of large samples, -2Δ logL behaves as a χ^2 distribution
- Since we know the relationship between p-values and χ^2 , we can convert easily from one to the other

Feldman-Cousins

- Sometimes Wilks' theorem fails. Typically near physical boundaries and/or when statistics are low
- The FC procedure is design to obtain CLs without assuming the -2Δ logL distribution is χ^2 shaped
- Simulate many possible realizations of our experiment and plot their distribution
- Pick the -2 Δ logL that contains the fraction of realizations that you want

Nuisance Parameters

- One of the open questions about the FC procedure is how to deal with the nuisance parameters
- What counts as a different realization of our experiment?
- From a frequentist perspective, all parameters have a fixed true value and all pseudo-experiments should be simulated at those true values
- This works well for the parameters of interest, since we are anyway scanning them over different hypotheses
- But what true value should we assume for nuisance parameters?
	- Best knowledge before you ran your experiment?
	- Best knowledge after you ran your experiment?
	- Sample randomly from some prior distribution? (not really frequentist: Hybrid)
	- Posterior distribution? (not really frequentist: Hybrid)
- Maybe answer should be based on how well the results agree with our definition of confidence interval:
	- The interval whose construction would lead to the true value being included at the target fraction of the realizations

Nuisance Parameters

• NOvA study shows standard FC procedure can fail coverage if true value of nuisance parameters are different from the assumed valued

16 Nov 2023 **10 <https://inspirehep.net/literature/2102110>** 10

Nuisance Parameters

- NOvA study shows standard FC procedure can fail coverage if true value of nuisance parameters are different from the assumed valued
- Hybrid methods do better in this case, at the expense of no perfect solution
- NOvA proposes to choose the post-fit value of nuisances at each value of the parameter of interest: Profiled FC

Another Proposal

TASK: Study coverage of different methods

Proposed sampling choices:

- D: Pseudo-data
	- **sampled from Poisson with mean value M**
- \bullet θ _T: True pars of interest, e.g. TauNorm
	- **Always kept fixed at test point**
- v_T : True value of nuisance pars, e.g. θ_{13}
	- Should be fixed from freq. persp.
	- Use best estimate, i.e. post-fit value at θ ^T
- v^0 : Mean value of our prior on v_T
	- Represents external measurement, e.g. Daya Bay measurement of θ_{13}
	- **May be sampled as part of PE ?**
- σ : Std dev of our prior on v_{τ}
	- Represents uncertainty on external measurement
	- **Should be fixed at original value pre-fit**

Similar, but not same as HC Sample, v^0 instead of v_T

$$
-2\Delta \log \mathcal{L} = \min_{\vec{\theta}, \vec{\nu}} \sum_{i} \mathcal{L}(D_i(\vec{\theta}_T, \vec{\nu}_T) | M_i(\vec{\theta}_T, \vec{\nu}))
$$

$$
- \min_{\vec{\theta}, \vec{\nu}} \sum_{i} \mathcal{L}(D_i(\vec{\theta}_T, \vec{\nu}_T) | M_i(\vec{\theta}, \vec{\nu}))
$$

 $\hspace{0.1mm} +$

 $\sum_j \frac{(\nu_j - \nu_j^0)^2}{\sigma_i^2}$

Conclusion

- Frequentist methods have been the bread and butter of particle physics statistical inference for years
- Usually liked because "no dependence on priors"
- However, interpreting the likelihood ratios can be difficult
- Feldman-Cousins procedure helps, but does not have a clear choice for dealing with nuisance parameters
- And beyond theoretical aspects, performing FC corrections typically involves performing thousands of fits at each tested point and **can be computationally prohibitive**
- Still very useful to be able to **provide both Bayesian and Frequentist results to the community**

Backup