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Lets look at some data

* In general, our data doesn’t agree with our predictions
« We quantify the disagreement by computing some metric

+ |deally we want a metric that is zero if data = prediction, and growing
as prediction deviates from data
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Log Likelihood-Ratio

The natural choice is to use the likelihood P(data | prediction)
In general our metric is:

P(data | pred
A(data, pred) = —2log [ (data | pred) ]

P(data | pred = data)*

If data is distributed as a Gaussian:

2 'i_dr'?
Ad,p) =X :Z(p =~ )
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For Poisson distributed data, this results in:

A(d,p) =2 Z'Pf — d; + d; log(d; /p:)

* Technically pred = best possible prediction, which may not be =data



Now lets try to fix the prediction

« We can play around with multiple parameters to minimize -2logL
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Now lets try to fix the prediction

* In practice, we use gradient descent and fit all parameters

 We can then build confidence regions around any parameter by
considering what parameter values have -2AlogL < o
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Building Confidence Intervals

In practice, we use gradient descent and fit all parameters

We can then build confidence regions around any parameter by
considering what parameter values have -2AlogL < o
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Translating:

Wilks’ Theorem

Theorem: If a population with a variate x s distributed according to the probabil-
ity function f(z, 6, , 6z - - - 6,), such that optimum estimates 0; of the 6; exist which
are distributed in large samples according to (3), then when the hypothesis H is
true that 0; = 6pi,t = m + 1, m 4 2, - .. h, the distribution of — 2 log \, where \
ts given by (2) 1s, except for terms of order 1/+/n, distributed like x* with h — m
degrees of freedom.

In the limit of large samples, 0'5003'

-2AlogL behaves as a

XZ distribution 0. 100}

@ [

= 0.050f
Since we know the relationship 7
between p-values and y2, we < 0 010
can convert easily from one to T
the other 0.005¢

0 2 4 6 8 10
Ax?

16 Nov 2023 7



« The FC procedure is design to obtain CLs without assuming the -2AlogL

distribution

Feldman-Cousins

« Sometimes Wilks’ theorem fails. Typically near physical boundaries and/or
when statistics are low

is v2 shaped

« Simulate many possible realizations of our experiment and plot their

distribution

* Pick the -2AlogL that contains the fraction of realizations that you want

o
—

e
o
@

e
o
>

o
(=]
=

e
o
o

Fraction of Pseudoexperiments
o

o
\v}

16 Nov 2023

2
‘&Xcrit (90%)

T T T T T T T T T T

[ Pseudoexperiments

—— Gaussian 2 distribution ]

2
AXEc (90%)

10

FC 68%
0 1 ; t
— 1IC2017 [NO] (this work) SK IV 2015 [NO]
340 MINOS w/atm [NO] ~.. NOwA 2017 [NOJT
300== T2K 2017 [NOJ
% 3.0}
o
= 2.8}
— -
— o FC:68%
oo 2.6} i i
<|E 2.4t
2.2}
2.0} 90% CL contours k
0.4 0.5 0.6 1 2
sin’ (6yy) Ax?
8




Nuisance Parameters

One of the open questions about the FC procedure is how to deal with the
nuisance parameters

What counts as a different realization of our experiment?

From a frequentist perspective, all parameters have a fixed true value and
all pseudo-experiments should be simulated at those true values

This works well for the parameters of interest, since we are anyway
scanning them over different hypotheses

But what true value should we assume for nuisance parameters?
— Best knowledge before you ran your experiment?
— Best knowledge after you ran your experiment?
— Sample randomly from some prior distribution? (not really frequentist: Hybrid)
— Posterior distribution? (not really frequentist: Hybrid)

Maybe answer should be based on how well the results agree with our
definition of confidence interval:

— The interval whose construction would lead to the true value being included at the target
fraction of the realizations



Nuisance Parameters

« NOVA study shows standard FC procedure can fail coverage if true value of
nuisance parameters are different from the assumed valued
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https://inspirehep.net/literature/2102110

Nuisance Parameters

« NOVA study shows standard FC procedure can fail coverage if true value of
nuisance parameters are different from the assumed valued

« Hybrid methods do better in this case, at the expense of no perfect solution

* NOVA proposes to choose the post-fit value of nuisances at each value of
the parameter of interest: Profiled FC
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Another Proposal

TASK: Study coverage of

different methods —2Alog L = ming ), L(D;(07,vr) | M;(07,7))

— ming, Y, £(D; (07, vr) | M0, 7))

Proposed sampling choices:

¢ D:Pseudo-data (v;—1/9)?
— sampled from Poisson with mean value M + Zj ?}
®  0;: True pars of interest, e.g. TauNorm ’
— Always kept fixed at test point Profiled FC
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Conclusion

Frequentist methods have been the bread and butter of
particle physics statistical inference for years

Usually liked because “no dependence on priors”

However, interpreting the likelihood ratios can be difficult

Feldman-Cousins procedure helps, but does not have a
clear choice for dealing with nuisance parameters

And beyond theoretical aspects, performing FC corrections
typically involves performing thousands of fits at each tested
point and can be computationally prohibitive

Still very useful to be able to provide both Bayesian and
Frequentist results to the community
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