Vertex reconstruction using the Photo Detection System

DUNE France Analysis Workshop Ariel Cohen 16/11/2023

DUNE low energy group

<u>Laura Paulucci (</u>UFABC) \rightarrow leading the Supernova (SN) neutrino simulations production

<u>Franciole Marinho</u> (ITA) \rightarrow developed the improvements for the clustering algorithm discussed in this talk

<u>Ajib Paudel</u> (Fermilab), <u>Ariel Cohen & Jaime Dawson</u> (APC) \rightarrow working on the neutrino signal analysis for the Photo Detection System (PDS) vertex reconstruction for SN neutrinos

Supernova explosion:

Low energy neutrinos of all flavors are emitted

DUNE \rightarrow sensitivity of 10 - few tens of MeV \rightarrow CC interactions produce short electron tracks in LAr

$$\nu_e + {}^{40} Ar \to e^- + {}^{40} K^*$$

Also, deexcitation gammas product of K* allow for a unique way of tagging interactions

What DUNE can do: directionality

Number of expected interactions as a function of SN distance

- Main objective: SN localization
- Neutrinos arrive before light signal
- Gives astronomers a chance to see the complete SN light curve!

Simulation and reconstruction

Simulation software

Liquid Argon Software (*LarSoft*) to produce the simulations

Github link → https://github.com/DUNE/dunesw/tree/develop/fcl/dunefdvd

Contains all the .fcl files required to run a neutrino + LAr interaction events

Scintillation light simulation

Light yield

The **light yield (LY)** is defined as the amount of PEs obtained per unit of energy (usually MeV) \rightarrow LY = PE/MeV

<LY> expected for DUNE > 20 PEs/MeV

Clustering for position reconstruction

- <u>Objective</u>: generate *flashes* → clusterings of optical hits related in time and space
- With these flashes, we can perform a position reconstruction for the true event
- PDS reconstruction + TPC reconstruction → great imaging capabilities
- The PDS system also provides a good tool for triggering (can see DUNE TDR), and calorimetry (can see talk https://agenda.infn.it/event/33107/contributions/205130/attachments/112095/1 60096/NeutrinoTelescope23_brunetti.pdf)

Creating flashes: how does it work?

Presented with xmind

#Flashes

- 4-30 MeV SN nues with a flat spectrum
- <LY> ~ 32 PEs/MeV

- The mean #flashes is ~2.32. Since all the hits come from a single signal event, ideally this value would be ~ 1
- Amount of 0 flashes is ~ 1.6 %

Undetected points

Undetected events XY True y (cm) Top volume simulated 800 600 -2.5 400 Wall axis 200 1.5 -200 -400 0.5 -600 -800 300 -300-200 -100100 200 True x (cm)

Drift axis

- 1. Amount of 0 flashes ~1.6%
- 2. Most of the undetected point occur further away from the cathode and the walls

Undetected points

- 1. Amount of 0 flashes ~1.6%
- 2. Most of the undetected point occur further away from the cathode and the walls

Undetected points

Undetected events XY True y (cm) 800 $x \rightarrow drift axis$ $y \rightarrow walls axis$ 600 2.5 400 2 200 1.5 0 -200 -400 -600 0.5 Walls -800 300 -300 -200-100100 True x (cm) Top volume simulated Cathode

- 1. Amount of 0 flashes ~1.6%
- 2. Most of the undetected point occur further away from the cathode and the walls

Detector efficiency

Detector efficiency. TrueE = 4-30 MeV

Detector efficiency

Detector efficiency. TrueE = 4-30 MeV

Spatial resolution

Distance from true to reconstructed vertexes

- Resolution for *all* flashes (blue), and the *largest* flash (red).
- Flashes with lower amount of PEs have a worse reconstruction

Signal + background

Background model

Component	Activity (mBq/cm ³)
³⁹ Ar in LAr	1.41
42 Ar and 42 K in LAr	0.128×10^{-3}
⁸⁵ Kr in LAr	0.16
²²² Rn chain in LAr	1.395×10^{-3}
⁴⁰ K in cathode	9.1
²³⁸ U chain in cathode	0.113
⁶⁰ Co in anode	0.361
$^{238}\mathrm{U}$ chain in anode	95
²²² Rn chain in PDS	0.021
External neutrons	7.6×10^{-3}
(rocks, concrete walls, etc)	
Cavern gammas	64

The two bigger points of interest are:

- Low energy, lots of events: mainly Ar39/Ar42 (Ar 39 is generated at a rate of 1/Ls, which with 17 kt of LAr would produce ~ 10^{10} particles of 2 MeV each.
- High energy, fewer events: mainly neutrons, which capture producing a ~6.1 MeV gamma shower.

Signal + background simulation

<u>Signal</u>

- SN nue
- 5-30 MeV energy spectrum
- Entire simulation extends through +- 4 ms (determined by the electron drift time), with the signal is located at **T=0**.

Background

 Background extends throughout the *entire* detector, and also throughout the *entire* time window **T** = +- 4 ms.

Resolution comparison

Background \rightarrow more light across the detector and throughout the entire time window (+- 4 ms considering TPC drift) \rightarrow more flashes

For example, looking at the spatial resolution:

#PEs vs time, near X-Arapuca

#PEs vs time, center volume

30 MeV nue signal only

30 MeV nue signal plus background

What is the plan?

#PEs vs cluster time

- <u>Objective:</u> explore clustering to maximise number of photons from the neutrino signal
- Explore discrimination capability as a function of spatial position

Conclusions

- Clustering algorithm shows good performance for a signal only simulation, with a spatial resolution of ~1.2m when considering the largest flash
- Optimization of waveforms and peak finding parameters to increase detection efficiency is under study
- Background induces some significant alteration in the clustering process due to the high amount of extra PEs generated
- Obtain a set of parameters for signal identification and background discrimination

Backup slides

Detector efficiency, X and Y cuts

Detector efficiency far from OpDets. TrueE = 4-30 MeV

<u>Spatial cuts:</u> 225 cm < x < 325 cm -100 cm < y < 100 cm

Detector efficiency, deposited energy

Detector efficiency. TrueE = 4-30 MeV

Detector efficiency, deposited energy

Detector efficiency. TrueE = 4-30 MeV

PE waveform threshold variation

Detector efficiency. TrueE = 4-30 MeV

<LY> ~ 23 PE/MeV