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Bayes theorem definition

Probability of the hypothesis H given the data D 
= “posterior probability on H” 

P(H |D) =
P(D |H) P(H)

P(D)
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Probability of observing the data D according to hypothesis H 
= “likelihood” 

Probability of the hypothesis H 
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Bayes theorem definition

Probability of the hypothesis H given the data D 
= “posterior probability on H” 

P(H |D) =
P(D |H) P(H)

P(D)

Probability of observing the data D according to hypothesis H 
= “likelihood” 

Probability of the hypothesis H 
= “prior probability” 

Probability of the data D independently of the hypothesis H   
= “ evidence” 
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Bayes theorem derivation
Derivation from conditional probabilities 

• Probability to observe A and B:  
P(A ∩ B) = P(A) P(B |A)
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Bayes theorem derivation
Derivation from conditional probabilities 

• Probability to observe A and B:  
P(A ∩ B) = P(A) P(B |A)

Probability to observe A Probability to observe B if A is observed
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Bayes theorem derivation
Derivation from conditional probabilities 

• Probability to observe A and B:  
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Probability to observe B Probability to observe A if B is observed
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Bayes theorem derivation
Derivation from conditional probabilities 

• Probability to observe A and B:  
 

 

  

P(A ∩ B) = P(A) P(B |A) = P(B) P(A |B)

⇒ P(A |B) =
P(B |A) P(A)

P(B)
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Bayes theorem derivation
Derivation from conditional probabilities 

• Probability to observe A and B:  
 

 

  

P(A ∩ B) = P(A) P(B |A) = P(B) P(A |B)

⇒ P(A |B) =
P(B |A) P(A)

P(B)

Physical interpretation 
• In physics, we often have A as the hypothesis H, and B as the data D:  

 
 
 

• The posterior probability is the prior probability when it is weighted by the 
likelihood of observing the data, normalised by the probability of observing any data 

P(H |D) =
P(D |H ) P(H )

P(D)
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Bayesian inference

Bayesian inference is the process of updating the probability on a statement 
• Evaluation of the posterior probability on  according  the data  
• Bayes theorem actualises the prior probability according to the evidence 
• Also referred to as “updating belief on  “ 

H D

H
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Bayesian inference

Bayesian inference is the process of updating the probability on a statement 
• Evaluation of the posterior probability on  according  the data  
• Bayes theorem actualises the prior probability according to the evidence 
• Also referred to as “updating belief on  “ 

H D

H

Example from neutrino physics 
• We do not know  → our prior probability on the parameter is flat  
• We compute the likelihood of observing  the   and   spectra according to several 

 hypothetical values 
• We measure the posterior probability for each hypothesis 
• We estimate which value of   corresponds to the highest posterior probability

δCP

νe ν̄e
δCP

δCP
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Posterior probability sampling
Simple 1 parameter case: 

• Chose a grid, and evaluate the posterior probability at each point 
e.g.   for   with steps of    

• Easy to extend to 4 oscillation parameters
P(δCP,i |D) i ∈ [−π, π] π/100
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Posterior probability sampling
Simple 1 parameter case: 

• Chose a grid, and evaluate the posterior probability at each point 
e.g.   for   with steps of    

• Easy to extend to 4 oscillation parameters 
P(δCP,i |D) i ∈ [−π, π] π/100

But: systematics! 
• At each step, one needs to evaluate the posterior probability varying the 

systematical parameters as well (throws) 
• Neutrino physics →  systematical parameters 

(flux, interaction model, detector response…) 
• The real posterior probability is:   

where  is the vector of systematical uncertainties  
• Grid searches can become computationally very expensive  

(many points to evaluate)

𝒪(100)

P(δCP,i, ⃗ςj |D)
⃗ςj
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Markov Chain Monte-Carlo (MCMC) 
• Alternate procedure to grid to sample the space of oscillation parameters   

and systematics parameters  
• Semi-random walk in the parameter space 
• Stochastic model: randomness of throws 
• Sequential process: the state of a throw only depends on the throw before

⃗ϑ
⃗ς

Markov Chain Monte-Carlo
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Markov Chain Monte-Carlo (MCMC) 
• Alternate procedure to grid to sample the space of oscillation parameters   

and systematics parameters  
• Semi-random walk in the parameter space 
• Stochastic model: randomness of throws 
• Sequential process: the state of a throw only depends on the throw before

⃗ϑ
⃗ς

Metropolis-Hastings algorithm 
• Most generic implementation of Markov Chain Monte-Carlo (MCMC) 
• The semi-random walks is proportional to the target distribution 
• The collection of steps are samples from the posterior distribution 
• Ensure 2 specific properties of the MCMC:  

Aperiodicity: do not oscillate between same values 
Ergodicity: can converge to the stationary distribution 

Markov Chain Monte-Carlo
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Metropolis-Hastings MCMC
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

G(x)
i = 1 xi



Leïla Haegel  /  IP2I Lyon Bayesian inference for neutrino physics 18

Metropolis-Hastings MCMC
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

G(x)
i = 1 xi

i + 1 J(xi + 1 |xi)

step i is: -1 | G(xi) = 0.23 
 

step i+1 is: -1 | G(xi+1) = 0.29 
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Metropolis-Hastings MCMC
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

G(x)
i = 1 xi

i + 1 J(xi + 1 |xi)

step i is: -1 | G(xi) = 0.23 
 

step i+1 is: -1 | G(xi+1) = 0.29 
 

ratio r = 1.216

Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

G(x)
i = 1 xi

i + 1 J(xi + 1 |xi)

r r =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1) |xi
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Metropolis-Hastings MCMC

step i is: -1 | G(xi) = 0.23 
 

step i+1 is: -1 | G(xi+1) = 0.29 
 

ratio r = 1.216

Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

• Apply  the acceptance function  
•  → accept step 

G(x)
i = 1 xi

i + 1 J(xi + 1 |xi)

r r =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1) |xi

A(xi+1, xi) :

r ≥ 1 i + 1



Leïla Haegel  /  IP2I Lyon Bayesian inference for neutrino physics 21

Metropolis-Hastings MCMC
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

• Apply  the acceptance function  
•  → accept step  
•  → throw a number  

                → accept step  

G(x)
i = 1 xi

i + 1 J(xi + 1 |xi)

r r =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1) |xi

A(xi+1, xi) :

r ≥ 1 i + 1

r < 1 u ∈ U(0,1)
r ≥ u i + 1
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Metropolis-Hastings MCMC
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

• Apply  the acceptance function  
•  → accept step  
•  → throw a number  

                → accept step  
                → reject step  
                              count again step 

G(x)
i = 1 xi

i + 1 J(xi + 1 |xi)

r r =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1) |xi

A(xi+1, xi) :

r ≥ 1 i + 1

r < 1 u ∈ U(0,1)
r ≥ u i + 1
r < u i + 1

i
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Metropolis-Hastings MCMC
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

• Apply  the acceptance function  
•  → throw a number  

                → accept step  
                → reject step  
                              count again step  

•  → accept step  
• Iterate process until obtaining enough  

step to analyse the distribution 

G(x)
i = 1 xi

i + 1 J(xi + 1 |xi)

r r =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1) |xi

A(xi+1, xi) :

r < 1 u ∈ U(0,1)
r ≥ u i + 1
r < u i + 1

i

r ≥ 1 i + 1
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

                                                     →  

                                                     → 

A(xi+1, xi) = min(1, r)

r ≥ 1 A(xi+1, xi) = 1

r < 1 A(xi+1, xi) = r
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                           

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
J(xi |xi+1)G(xi+1)

J(xi+1 |xi)G(xi)
     = G(xi) J(xi+1 |xi) min(1, )
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
J(xi |xi+1)G(xi+1)

J(xi+1 |xi)G(xi)
     = G(xi) J(xi+1 |xi) min(1, )

   = min(G(xi) J(xi+1 |xi) , J(xi |xi+1)G(xi+1) )
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
J(xi |xi+1)G(xi+1)

J(xi+1 |xi)G(xi)
     = G(xi) J(xi+1 |xi) min(1, )

   = min(G(xi) J(xi+1 |xi) , J(xi |xi+1)G(xi+1) )

    = G(xi+1) J(xi |xi+1) A(xi, xi+1)
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
J(xi |xi+1)G(xi+1)

J(xi+1 |xi)G(xi)
     = G(xi) J(xi+1 |xi) min(1, )

   = min(G(xi) J(xi+1 |xi) , J(xi |xi+1)G(xi+1) )

    = G(xi+1) J(xi |xi+1) A(xi, xi+1)

   = G(xi+1) T(xi |xi+1)
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Detailed balance equation
The detailed balance equation ensure that the samples follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

      

• Interpretation: if we propose a step with  

The acceptance function is:   

       The transition probability is:  = 

       → The probability to jump back on the previous step is proportional to the ratio of    

             value 

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi+1) T(xi |xi+1)

G(xi+1) > G(xi)

A(xi+1, xi) = 1

T(xi |xi+1)

G(x)

G(xi+1)

G(xi)
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Application for neutrino physics
In the case of neutrino physics 

• The target distribution is the posterior probability on the oscillation parameters   
and systematics parameters  

• All parameters are treated the same,  
they just have different prior  
probabilities 

• All parameters are inferred  
at the same time  
→ joint analysis of near and  
far detector values

⃗ϑ
⃗ς
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Step size
Jump function parameter 

• The jump function can be symmetrical → Metropolis algorithm 
                                        or asymmetrical → Hastings addition 

• The jump function has a width parameter: 
→ this is referred to as the step size 
→ its value is heuristic, although literature exist about its optimisation 
 → strongly impacts the convergence rate of the chain
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Burn-in
The Markov chain takes time to reach equilibrium 

• The chain can start far from the target distribution  
→ creates a bias towards initial values 

• The first values must be discarded: “burn-in”  
•  The burn-in size can be determined from the trace of the chain
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Autocorrelation
The steps are correlated between them 

• Independent samples can be selected by subsampling the chain 
• Value of subsampling order can be determined from the autocorrelation function 

            𝒜(k) =

= expectation  
     value

where:
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Convergence tests
Ergodicity  

• Are the chains spanning the entire value of parameter space? 
• Test: comparison of independent chains

Chains not properly tuned Chains properly tuned
Not ergodic Ergodic

increase step size
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Convergence tests
Ergodicity  

• Are the chains spanning the entire value of parameter space? 
• Test: comparison of independent chains

Geweke diagnostic  
• Compare the beginning and the end of a Markov chain  
• Select 5% of the chain from its beginning and increment of 5% 

e.g. [0-5%], [5-10%], …, [45-50%] 
and compare with remaining 50% of the chain: [50-100%] 

• Useful to determine burn-in value and spot issues

Note: 5% is not a hard rule, other binning can be chosen
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Credible intervals

In Bayesian probabilities, results are given 
as credible intervals 

• Area where there is the highest 
probability that the true value lies in  

• E.g. there is a 90% probability that the 
true value of  is in [0.42, 0.59]sin2 θ23
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Credible intervals

In Bayesian probabilities, results are given 
as credible intervals 

• Area where there is the highest 
probability that the true value lies in  

• E.g. there is a 90% probability that the 
true value of  is in [0.42, 0.59]sin2 θ23

The posterior probabilities are 
automatically marginalised 

• When projecting in lower dimensions 
than the Markov chain, the shape of the 
posterior probabilities of the other 
parameters is included in the integral
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Bayes factor
Comparison of 2 hypotheses  

• If we have 2 hypotheses  and ,  we can compare them with the Bayes factor, i.e. 
the ratio of marginalised likelihood  

• Bayes factor:  
 

• If the prior probabilities are the same, this is equivalent to the ratio of posterior 
probabilities  

• Example: the Bayes factor for normal 
ordering is  on this plot

H1 H2

BF = 3.72

BF =
P(D |H1)
P(D |H2)
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Changing the prior
The posterior probability can be evaluated for a different definition of the prior 

• Equivalent to a variable change of the distribution:  
prior in  → prior in  

• Need to evaluate the Jacobian of the transformation: 
 

                                       

• Can be extended to multi-variable cases

x y = f(x)

P(H(x)) → P(H(y)) = P(H(x)) |J(y) |

= P(H(x)) |
∂x
∂y

|
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Changing the prior

A useful way to: 
• Check the robustness of the prior 

The posterior probability can be evaluated for a different definition of the prior 
• Equivalent to a variable change of the distribution:  

prior in  → prior in  

• Need to evaluate the Jacobian of the transformation: 
 

                                       

• Can be extended to multi-variable cases

x y = f(x)

P(H(x)) → P(H(y)) = P(H(x)) |J(y) |

= P(H(x)) |
∂x
∂y

|
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Changing the prior

A useful way to: 
• Check the robustness of the prior 
• Answer a different question 

e.g. what is the probability of  
CP-violation (instead of what is the 

 value) δCP

The posterior probability can be evaluated for a different definition of the prior 
• Equivalent to a variable change of the distribution:  

prior in  → prior in  

• Need to evaluate the Jacobian of the transformation: 
 

                                       

• Can be extended to multi-variable cases

x y = f(x)

P(H(x)) → P(H(y)) = P(H(x)) |J(y) |

= P(H(x)) |
∂x
∂y

|
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Comparison with frequentist stat.

Slide by Romain Madar, School of Statistics 2022

https://indico.in2p3.fr/event/26179/contributions/106546/attachments/70481/99962/BasicConcepts_SOS2022.pdf
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Conclusion
Bayesian inference consist in computing a posterior probability density 

• Update the probability of a hypothesis according to the information on the data 
• Markov Chain Monte-Carlo is a useful tool to sample high dimensional cases 
• Can infer any shape of posterior probabilities

The process requires careful tuning 
• Asymptotically, MCMC properties ensure that it will converge to the target distribution 
• We do not have infinite time, neither an infinite number of processors 
• Ensuring convergence is key to the process  
→ convincing ourselves that the output is the needed one is not easy! 

• Extensive literature about it, but no « one-solution-fit-all »  
• Does not mean it should no be used! But not blindly 


