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Bayesian inference tor neutrino physics



Baves theorem detinition

P(D|H) P(H)

(PH1D)= =555

l

Probability of the hypothesis H given the data D
= “posterior probability on H”
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Baves theorem detinition

Probability of observing the data D according to hypothesis H
= “likelihood”

T

P(D | H)) P(H)
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Probability of the hypothesis H given the data D
= “posterior probability on H”
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Baves theorem detinition

Probability of observing the data D according to hypothesis H Probability of the hypothesis H
= “likelihood” = “prior probability”

T T
@(Hw) (P(D|H))(P(H))

P(D)
l

Probability of the hypothesis H given the data D
= “posterior probability on H”
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Baves theorem detinition

Probability of observing the data D according to hypothesis H Probability of the hypothesis H
= “likelihood” = “prior probability”

(P(D|H))(P(H)

(Furin)-
|

Probability of the hypothesis H given the data D
= “posterior probability on H” Probability of the data D independently of the hypothesis H
= “evidence”
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Baves theorem derivation

o Derivation from conditional probabilities

* Probability to observe A and B:
P(AnB) = P(A) P(B|A)
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Baves theorem derivation

o Derivation from conditional probabilities

e Probability to observe A and B:
P(AnB) = (P(A)(P(B|A))

Probability to observe A Probability to observe B if A is observed
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Baves theorem derivation

o Derivation from conditional probabilities

e Probability to observe A and B:
P(ANnB) = P(A) P(B|A) = (P(B)(P(A|B)

Do

Probability to observe B Probability to observe A if B is observed
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Baves theorem derivation

o Derivation from conditional probabilities

e Probability to observe A and B:
PANnB) = PA) P(BIA) = P(B) P(A|B)

P(B|A) P(A)

= P(A|B) = B
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Baves theorem derivation

o Derivation from conditional probabilities

e Probability to observe A and B:
PANnB) = PA) P(BIA) = P(B) P(A|B)

P(B|A) P(A)

= P(A|B) = B

o Physical interpretation
* In physics, we often have 4 as the hypothesis H, and B as the data D:

P(D|H) P(H)

P(H|D) = D)

e The posterior probability is the prior probability when it is weighted by the
likelihood of observing the data, normalised by the probability of observing any data
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Bavesian inference

o Bayesian inference is the process of updating the probability on a statement
e Evaluation of the posterior probability on H according the data D
e Bayes theorem actualises the prior probability according to the evidence

o Also referred to as “updating belief on H "
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Bavesian inference

o Bayesian inference is the process of updating the probability on a statement
e Evaluation of the posterior probability on H according the data D
e Bayestheorem actualises the prior probability according to the evidence

o Also referred to as “updating belief on H”

o Example from neutrino physics
* We do not know &-p = our prior probability on the parameter is flat

* We compute the likelihood of observing the v, and I, spectra according to several
Ocp hypothetical values

* We measure the posterior probability for each hypothesis

* We estimate which value of §.p corresponds to the highest posterior probability
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Posterior probability samplinc

o Simple 1 parameter case:

e Chose a grid, and evaluate the posterior probability at each point
e.g. P(6¢cp;| D) for i € [—r, n] with steps of 7/100

e Easy to extend to 4 oscillation parameters
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Posterior probability samplinc

o Simple 1 parameter case:

e Chose a grid, and evaluate the posterior probability at each point
e.g. P(6¢cp;| D) for i € [—r, n] with steps of 7/100

e Easy to extend to 4 oscillation parameters

o But: systematics!

e Ateach step, one needs to evaluate the posterior probability varying the
systematical parameters as well (throws)

* Neutrino physics = 0(100) systematical parameters
(flux, interaction model, detector response...)

* The real posterior probability is: P(6¢p;» 6; | D)
where E; is the vector of systematical uncertainties

e Grid searches can become computationally very expensive
(many points to evaluate)
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Markov Chain Monte-Carlo

o Markov Chain Monte-Carlo (MCMC)

—

o Alternate procedure to grid to sample the space of oscillation parameters 9
and systematics parameters ¢

e Semi-random walk in the parameter space
e Stochastic model: randomness of throws

e Sequential process: the state of a throw only depends on the throw before
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Markov Chain Monte-Carlo

o Markov Chain Monte-Carlo (MCMC)

o Alternate procedure to grid to sample the space of oscillation parameters 9

and systematics parameters ¢
e Semi-random walk in the parameter space
* Stochastic model: randomness of throws

e Sequential process: the state of a throw only depends on the throw before

o Metropolis-Hastings algorithm
* Most generic implementation of Markov Chain Monte-Carlo (MCMC)
e The semi-random walks is proportional to the target distribution
e The collection of steps are samples from the posterior distribution

* Ensure 2 specific properties of the MCMC:
Aperiodicity: do not oscillate between same values
Ergodicity: can converge to the stationary distribution
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Metropolis-Hastings MCMC

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

mcmc_distribution

G ( '.I:) meme_distribution
’ Entries 1
Mean -1.05
RMS 0
stepiis :-1|G(x) =0.23
0.8
0.6
04—
0.2
—lllllllllllllllllll lllllllllllllllllllllllllllll

95 -4 -3 —2 -1 0 1 2 3 B 5
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Metropolis-Hastings MCMC

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

mcmc_distribution

G ( '.I:) meme_distribution
) Entries 1
stepiis: -1 | G(xi) = 0.23 Mean -1.05
RMS 0
step i+1 is: -1 | G(xi+1) = 0.29
0.8
0.6—
04—
0.2
-lllllllllllllllllll llllllllllllllllllllllllllll

95 -4 -3 —2 -1 0 1 2 3 B 5
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Metropolis-Hastings MCMC

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

. Compute the Metropolis-Hastings ratior: r =

G(x;y1) JOg X 00)

G(x) J(xip1) | x;

mcmc_distribution

G(x)

stepiis: -1 | G(xi) = 0.23

step i+1 is: -1 | G(xi+1) = 0.29

0.8
ratior = 1.216

0.6

04

0.2

[ | I  BRLEER I R | I

lllllllllllllllllll

mecmc_distribution
Entries 1
Mean -1.05
RMS 0

llllllllllllllllllllllllllll

% 4 8 -2

-1

0 1 2 3 B 5
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Metropolis-Hastings MCMC

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

G(Xi+1) ](xi | xi+1)
G(x;) J(x) | x;

. Compute the Metropolis-Hastings ratior: r =

e Apply the acceptance function A(x;, ¢, x;) :
PR P (Xi1, %) meme_distribution

e r>1—acceptstepi+1 G(z) g::;;;:‘s"“’“"m;
stepiis: -1 | G(xi) = 0.23 Mean -1.05
RMS 0
step i+1 is: -1 | G(xi+1) = 0.29
0.8
ratior =1.216
0.6—
04—
0.2
™ Y BT FUTRY Y AFTTRY PUTEY FUTTI FETTY TP
-5 -3 -2 -1 0 1 3 4 5
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Metropolis-Hastings MCMC

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

G(x; J(x: | x.
. Compute the Metropolis-Hastings ratior: r = (1) JOG X4 1)
G(x;) J(xip) | x;

e Apply the acceptance function A(x;, ¢, x;) :
PR P (Xig1 %) memc_distribution

o 7 Z 1 — accept Step I + 1 G(x) mcm.c*distribution
2| stepiis :-1|G(x) =0.23 Entries -
' Mean -1.05
e r<1—throwanumberu e U(0,1) 1.8 RMS 0
. step i+1is:-1.6| G(xM) = 0.1
r>u— acceptstepi+ 1 16
14 ratio r = 0.483268
1.2
1=
0.8
0.6
0.4
0.2
oCiislinesliinl WTETY PUTTY FEUTY PEUTY IUT
-5 8 2 4 0 1 2 3 4 5
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Metropolis-Hastings MCMC

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

G(x; J(x: | x.
. Compute the Metropolis-Hastings ratior: r = (1) JOG X4 1)
G(x;) J(xip) | x;

e Apply the acceptance function A(x;, ¢, x;) :
PR P (Xig1 %) memc_distribution

o 7 Z 1 — accept Step I + 1 G(z) gcm.cwdistribution
2| stepiis :-1|G(x) =0.23 Mr;t;'ﬁs i Og
e r<1—throwanumberu e U(0,1) 1.8 RMS 0
. step i+1is:-1.6| G(xM) = 0.1
r>u— acceptstepi+ 1 16
r<u —rejectstepi+ 1 14| eSTEeN
count again step i 1L
1=
0.8
0.6
0.4
0.2
oCiislinesliinl WTETY PUTTY FEUTY PEUTY IUT
°5 88 4 0 1T 27 3 & 9

Leila Haegel / IP2I Lyon Bayesian inference for neutrino physics



Metropolis-Hastings MCMC

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

G(x; J(x: | x.
. Compute the Metropolis-Hastings ratior: r = (1) SO | Xi )
G(x;) J(xip) | x;

e Apply the acceptance function A(x;, ¢, x;) :
PPYY P (¥is1> %) mecmc_distribution

e r<1—throwanumberue U0,1) G (x) morme_distribution

Entries 100000
stepiis :1.7|G =0.094
4000| SRS 18 Mean 0002336

RMS 1

r>u — acceptstepi+ 1

r<u— rejectstepi+1 3500/ stepiviis 112Gl ) =021
count again step i 3000|  ratior=2.18312
2500

e r>1—acceptstepi+ 1

* [terate process until obtaining enough 2000

step to analyse the distribution 1500

1000

500

lll[IIIIIII]IIIIIIIIIIIII
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)

r<l1-AM,.,x) = r
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T(x;py [ x) = J Qi 1) AQy 1, %)
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T(x;py [ x) = J Qi 1) AQy 1, %)
* We can derive the detailed balance equation:

Gx) Ty lx) =Gx) JOr[x) A, x)
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)
» Defining the probability to transition to the step x;,, i.e. the transition probability:
T 1x) = T 1) Alxgy g, x)
* We can derive the detailed balance equation:
Gx) T(xyrlx) =G0 JOog1x) Al x)
=G(x;) J(x;.q|x;) min(l, r)
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
Ty | x) = JCxpy [x) Alxy g, X)
* We can derive the detailed balance equation:
Glx) Ty lx) =G0 Jxiy|x) A, x)
=G(x;) J(x;.q|x;) min(l, r)
G(xip1) Jxglxg)
G(x) T 1x)

=G(x;) J(x;.q|x;) min(1,
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
Ty | x) = JCxpy [x) Alxy g, X)
* We can derive the detailed balance equation:
Glx) Ty lx) =G0 Jxiy|x) A, x)
=G(x;) J(x;.q|x;) min(l, r)
G(xip1) Jxglxg)
G(x) T 1x)

=G(x;) J(x;.q|x;) min(1,

= min(G(x;) Jx 1 |1x), GOy JOxglxg) )
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
Ty | x) = JCxpy [x) Alxy g, X)
* We can derive the detailed balance equation:
Glx) Ty lx) =G0 Jxiy|x) A, x)
=G(x;) J(x;.q|x;) min(l, r)
G(xip1) Jxglxg)
G(x) T 1x)

=G(x;) J(x;.q|x;) min(1,

= min(G(x;) Jx 1 |1x), GOy JOxglxg) )

= G(xy ) JOx | x4 ) ACx, x4 0)
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
Ty | x) = JCxpy [x) Alxy g, X)
* We can derive the detailed balance equation:
Glx) Ty lx) =G0 Jxiy|x) A, x)
=G(x;) J(x;.q|x;) min(l, r)
G(xip1) Jxglxg)
G(x) T 1x)

=G(x;) J(x;.q|x;) min(1,

= min(G(x;) Jx 1 |1x), GOy JOxglxg) )
= G(x, ) JOq | x, ) A, Xy p)

= G(x;p) T(x | x4 )
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Detalled balance eguation

o The detailed balance equation ensure that the samples follow the target distribution
* The acceptance function is: A(x;,,x;) = min(l, r)
» Defining the probability to transition to the step x;,, i.e. the transition probability:
T(x;py [ x) = J Qi 1) AQy 1, %)
* We can derive the detailed balance equation:
Gx) T(xylx) = Gl T0|x;)
* Interpretation: if we propose a step with G(x;, ;) > G(x;)

The acceptance functionis: A(x;,,x;) = 1

G(x;y 1)
G(x;)

The transition probability is: T(x; | x;, ) =

— The probability to jump back on the previous step is proportional to the ratio of

G(x) value
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Application Tor neutrino ph

o In the case of neutrino physics

—

* The target distribution is the posterior probability on the oscillation parameters 9

and systematics parameters ¢

o All parameters are treated the same,
they just have different prior

post. proba.

probabilities

* All parameters are inferred

at the same time : s
— joint analysis of near and ) k-
far detector values “

0.02 0.04 0.06 0.4 \ 0.5 0.6.002 0.0025 0.003 -2 0 2

.2 .2 2
sin” 0, sin” 0,, A m3, dcp
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o Jump function parameter

e The jump function can be symmetrical = Metropolis algorithm

or asymmetrical = Hastings addition

e The jump function has a width parameter:
— this is referred to as the step size
— its value is heuristic, although literature exist about its optimisation
— strongly impacts the convergence rate of the chain

[
L[ '
il
o ‘! I g B i kjl
S 065 = : =
g : f g 0r Wl
T | g E i
: | ML | ‘i |y | o TR '*I
0.55— "‘ "H | I:!?ul:‘ || 1 ‘.J ” L | 0.55:_ ; J,l 11" I; *]”‘ . 1;5 ;
- | H |:|||T | |||| || l‘ 1|’J|'| I| ’ﬂl‘ - | ' ) .ll R :
- | it | N S AN T
"E i |y} i'!"l !1 i"‘!"ﬂ“'\ | M r oSt UL TR
- U0 L Lo aTIAL protf 1‘3;‘5 ¥
oasf | | TR TN oasir |1
/ | I”I Hu" & | |.‘ ! |F AR
0,4}\” I I |! ol
ST T T R Y S S T
60000 62000 64000 66000 68000 70000 60000 62000 64000 66000 68000 70000
step step
in® (a) sin?0 t st 1
(c) sin” 023, large step scale a) sin” 0,3, correct step scale
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SUrN-in

o The Markov chain takes time to reach equilibrium

e The chain can start far from the target distribution
— creates a bias towards initial values

e The first values must be discarded: “burn-in”

e The burn-in size can be determined from the trace of the chain

-2 In(L/Lmax)
5o
S

~J

()

(@)
..T|l|rl||T| leI"I I"l"I'T
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Autocorrelation

o The steps are correlated between them

* Independent samples can be selected by subsampling the chain

e Value of subsampling order can be determined from the autocorrelation function

k
ot = &)
0(0) o
g i
T sl
where: é :
8 06—
o(k) = E(z; — 7) E(zi+x — T) oF
1 N—k < 0.4:—.
=~ _ 5 Ti —X)(Xirk — X -
N 2 5~ D =D
[ e
o
E = expectation 010 20 30 a0 50 60 70 80 90100
1
value ag
(b) Am§2
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Convergence tests

o Ergodicity
e Are the chains spanning the entire value of parameter space?

e Test: comparison of independent chains

Chains not properly tuned increase step size Chains properly tuned

v

Not ergodic Ergodic

1800

1700

-2 In(L/Lmax)
-2 In(L/Lmax)

1600

1500

TlllrlllTllTrI|

111111111111111111111)(103
0 20 40 60 80 100 120

step
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Convergence tests

o Ergodicity
e Are the chains spanning the entire value of parameter space?

e Test: comparison of independent chains

o Geweke diagnostic
e Compare the beginning and the end of a Markov chain

e Select 5% of the chain from its beginning and increment of 5%
e.g.[0-5%], [5-10%], ..., [45-50%)]
and compare with remaining 50% of the chain: [50-100%]

e Useful to determine burn-in value and spot issues

Geweke factor

Tini — T fin
G — f

—_— 0.5

Vo@2 +0(@)%, | S o

Note: 5% is not a hard rule, other binning can be chosen

0 5 10 15 20 25 30 35 40 45 50
start of chain A [%]
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Crediple intervals

o In Bayesian probabilities, results are given

as credible intervals

* Area where there is the highest
probability that the true value lies in

* E.g.thereis a 90% probability that the
true value of sin® 05 is in [0.42, 0.59]

Leila Haegel / IP2I Lyon

marg. post. proba. density

Bayesian inference for neutrino physics
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Crediple intervals

o In Bayesian probabilities, results are given
as credible intervals

* Area where there is the highest
probability that the true value lies in

* E.g.thereis a 90% probability that the
true value of sin® 05 is in [0.42, 0.59]

50

8.3 035 04 045 05 055 06 065 0.7

0

o The posterior probabilities are
automatically marginalised

 When projecting in lower dimensions
than the Markov chain, the shape of the
posterior probabilities of the other
parameters is included in the integral

marg. post. proba. density
~

lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlI

llllJI III IIII 1 1
837035 04 045 05 055 0.6 065 07
. 2
sin 823

W
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Baves tactor

o Comparison of 2 hypotheses

 If we have 2 hypotheses H, and H,, we can compare them with the Bayes factor, i.e.
the ratio of marginalised likelihood

P(D|H,)
P(D | H,)

* Bayesfactor: Bp =

 |f the prior probabilities are the same, this is equivalent to the ratio of posterior

probabilities

> SR L T l
« Example: the Bayes factor for normal Z 3s00- [l Io C.I

o -

ordering is B = 3.72 on this plot 2 3000= [ 90% C.I
£ 2500 95% C.I.
Ha) -
2 20001
o
S
2 1500
g b
Z 1000
A n

500:—
A A\ c L] | x107
%2 o1 o0 1 3
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o The posterior probability can be evaluated for a different definition of the prior

e Equivalentto a variable change of the distribution:
prior in x = prioriny = f(x)
* Need to evaluate the Jacobian of the transformation:

P(H(x) — PHGY)) = PHW) |JO)]
0

- P(H®) | =)

dy

e Can be extended to multi-variable cases
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o The posterior probability can be evaluated for a different definition of the prior

e Equivalentto a variable change of the distribution:
prior in x = prioriny = f(x)

e Need to evaluate the Jacobian of the transformation:
P(H(x)) — P(H(y)) = PHx)) |J(y)]

0x
= P(H(x)) |—|
0y
e Can be extended to multi-variable cases o e
OOU B
N \/ —— prior flat in sin®0, ,
2 '
o A useful way to: E prior flat in 6,
1_
e Check the robustness of the prior -
0l— — 90% interval
-1 :— ------ 68% interval
—20 * 2D best fit
_3__ 1 | 1 |““I 1 l': | ‘ 1 1 1 I 1 | 1 I | 1 | I
0 002 004 006 008 0.1
sin*(0,,)
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o The posterior probability can be evaluated for a different definition of the prior

e Equivalentto a variable change of the distribution:

prior in x = prioriny = f(x)

e Need to evaluate the Jacobian of the transformation:

P(H(x)) — P(H(y))

P(H(x)) |J(y)|
0x

P(H(x)) | > |
y

e Can be extended to multi-variable cases

o A useful way to:
e Check the robustness of the prior

* Answer a different question
e.g. what is the probability of
CP-violation (instead of what is the

Ocp Value)

0.5

0.4

0.3

0.2

I'T'Ilf'T'III'T'III]'TIIT“_

Posterior probability density

0.1}

]

Prior flat in O

B isclL

[]90% C.1.
[ ]95% C.1.

Prior flat in sin SCP:

----90% C.I.
—-95% C.I.

hE
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Comparison with freguentist stat.

Leila Haegel / IP2I Lyon

Frequentist Bayesian
probability  frequency of occurence degree of belief
parameters fixed (once chosen) uncertain
observation fluctuates certain (once observed)

The two approaches in a nutshell:

e frequenstist — probability of observation, given a model

e bayesian — probability of a model, given an observation

Methodologies

e frequenstist: estimates frequencies, by emulating repetitions of the
experiment (toys) for a given parameter, using the likelihood as PDF

e bayesian: exploits the Bayes theorem to compute the posterior
P(para|obs), using the prior P(para) and P(obs|para) - the likelihood

3. Both approaches get unifed when

e there is an infinite number of measurements
e the prior is uniform: P(par|obs) = A x L(par; obs)

(same equation, but its meaning and the question it addresses are different)

Slide by Romain Madar, School of Statistics 2022

Bayesian inference for neutrino physics


https://indico.in2p3.fr/event/26179/contributions/106546/attachments/70481/99962/BasicConcepts_SOS2022.pdf

Concllie e

o Bayesian inference consist in computing a posterior probability density
* Update the probability of a hypothesis according to the information on the data
* Markov Chain Monte-Carlo is a useful tool to sample high dimensional cases

e Can infer any shape of posterior probabilities

o The process requires careful tuning

e Asymptotically, MCMC properties ensure that it will converge to the target distribution
* We do not have infinite time, neither an infinite number of processors

e Ensuring convergence is key to the process

— convincing ourselves that the output is the needed one is not easy!
 Extensive literature about it, but no « one-solution-fit-all »

* Does not mean it should no be used! But not blindly
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