Neutrino Oscillation Computational Aspects

João Coelho

APC Laboratory

15 November 2023

Neutrino Oscillations

- Neutrinos are created in a superposition of mass states
- Time evolution generates flavour oscillations

Neutrino Oscillations

Neutrino e⁻ Oscillations π v_{2} $|\nu_{\mu}\rangle = U_{\mu 1} |\nu_{1}\rangle + U_{\mu 2} |\nu_{2}\rangle + U_{\mu 3} |\nu_{3}\rangle$ $|\nu(t)\rangle = U_{\mu 1}e^{-iE_{1}t}|\nu_{1}\rangle + U_{\mu 2}e^{-iE_{2}t}|\nu_{2}\rangle + U_{\mu 3}e^{-iE_{3}t}|\nu_{3}\rangle$ $P_{\mu e} = |\langle \nu_e | \nu(t) \rangle|^2 = |U_{e1}^* U_{\mu 1} e^{-iE_1 t} + U_{e2}^* U_{\mu 2} e^{-iE_2 t} + U_{e3}^* U_{\mu 3} e^{-iE_3 t}|^2$ $P_{lpha ightarrow eta} = \delta_{lpha eta} - 4 \, \sum_{j > k} \, \mathcal{R}_e \Big\{ \, U^*_{lpha j} \, U_{eta j} \, U_{lpha k} \, U^*_{eta k} \, \Big\} \, \sin^2 \left(rac{\Delta_{jk} m^2 \, L}{4E} ight)$ $E_i \approx E + \frac{m_i^2}{2E}$

 $t pprox L + 2 \sum_{j>k} \mathcal{I}_m \Big\{ U^*_{lpha j} \, U_{eta j} \, U_{lpha k} \, U^*_{eta k} \, \Big\} \, \sin \! \left(rac{\Delta_{jk} m^2 \, L}{2E}
ight),$

15 Nov 2023

Neutrino Oscillations

$$P(\nu_{\alpha} \to \nu_{\beta}) \approx \sin^2 2\theta \times \sin^2 \left(1.27 \times \Delta m^2 \,[\text{eV}^2] \times L/E \,[\text{km/GeV}]\right)$$

The Data: Reactor Neutrinos

The Data: Accelerator Neutrinos

Neutrino Oscillations

- There are 3 neutrinos, so things are a bit more complicated
- Two independent differences in mass-squared (Δm_{21}^2 , Δm_{32}^2)
- 3 mixing angles (θ_{12} , θ_{13} , θ_{23}) and 1 CPV phase δ_{CP}

Quantum Evolution

Schrödinger:
$$i\frac{\partial}{\partial t}\mathcal{U} = H \mathcal{U}$$

 $\mathcal{P}_{\alpha \to \beta} = |\langle \beta | \mathcal{U}(t) | \alpha \rangle|^2$
Time-independent H :
 $\mathcal{U}(t) = e^{-iHt}$
 $H = VH_DV^{\dagger}$ \longleftarrow Main problem
 $\mathcal{U}(t) = Ve^{-iH_Dt}V^{\dagger}$ \longleftarrow Easy to compute

Neutrino Hamiltonian in Vacuum

PMNS Matrix = Vacuum Eigenvectors

(Eigenvectors and Eigenvalues)

Neutrinos in Matter

Resonance

Resonances

15 Nov 2023

Resonances

15

15 Nov 2023

$$H_{eff} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U^{\dagger} + V_e \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{17}$$

Atmospheric Neutrinos

Neutrino Hamiltonian in Matter

Earth radius [km]

Quantum Evolution

- Trace neutrino path through the Earth
- Break path into N segments of similar electron density
- Compute evolution through each segment with constant density assumption

Atmospheric Neutrinos

Oscillations are **resonant** at certain energies

 $E_{res} \sim 7 \text{ GeV}$ in Mantle $E_{res} \sim 3 \text{ GeV}$ in Core

Extended Models

Non-Standard Interactions (NSI)

$$H_{eff} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U^{\dagger} + V_e \begin{bmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{bmatrix}$$

Sterile Neutrinos (3+N Flavours)

$$H_{eff} = U_S \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 & 0 & \cdots \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} & 0 & \cdots \\ 0 & 0 & 0 & \frac{\Delta m_{41}^2}{2E} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} U_S^{\dagger} + \begin{bmatrix} V_e & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & V_n/2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$U_{S} = U_{N-1,N} \cdots U_{34} U_{24}^{(c)} U_{14}^{(c)} U_{23} U_{13}^{(c)} U_{12}$$

15 Nov 2023

Extended Models

Decoherence

Unitary Non-Unitary $\partial_t \rho = -i[H, \rho] + \frac{1}{2} \sum_j 2A_j \rho A_j^{\dagger} - \{A_j^{\dagger}A_j, \rho\}$

Operators as sum SU(3) of generators

$$\mathscr{D} = \sum_{j} \operatorname{tr} \left[\mathscr{O} F_{j} \right] F_{j}$$

 $\partial_t \vec{\rho} = \left(\widetilde{H} - \widetilde{L} \right) \vec{\rho}$

System of 9

coupled equations

In general* 36 parameters!

$$\widetilde{L}_{jk} = \frac{1}{2} \sum_{lmn} \left(\vec{a}_l \cdot \vec{a}_m \right) f_{lkn} f_{nmj}$$

Diagonal w/ energy conserv.

$$\widetilde{L} = \begin{bmatrix} 0_{3\times3} & 0 & 0 & 0\\ 0 & I_2\Gamma_{21} & 0 & 0\\ 0 & 0 & I_2\Gamma_{31} & 0\\ 0 & 0 & 0 & I_2\Gamma_{32} \end{bmatrix}$$

OscProb Package

- Diagonalises Hamiltonian to obtain exact probabilities Single Step (2.2µs)
- Three step process:
 - Build Hamiltonian from parameters
 - Solve Hamiltonian
 - Fast algorithm from GLoBES for 3 neutrinos*
 - Propagate neutrino state

• PremModel class has built-in Earth layers model

85 steps (110µs) †

[†] Up-going (42+2 layers)

¹⁵ Nov 2023 *J. Kopp, Int. J. Mod. Phys. C, **19**, 523 (2008)

Why Performance Matters

- Computing oscillation probabilities is a big part of CPU time
- Total computations: $F_p \times F_d \times CP \times E_b \times \Theta_b \times L \times C \times Pn \times M$
 - Fp: Initial flavours produced (2)
 - Fd: Flavours detected (3+NC)
 - CP: Nu and nubar (2)
 - E_{b} : Energy bins (~100)
 - $\Theta_{\rm b}$: Direction bins (~100)
 - L: Earth layers to cross (~40)
 - C: $\Delta \chi^2$ surface points (e.g. contour: ~50x50)
 - P_n: Nuisance parameters (e.g. syst.: ~20)
 - M: Minimisation steps (~100)
- Typically ~10¹³ computations to obtain a full likelihood surface
- At 1µs / comp.: ~1 CPU-year
- M typically grows with P_n

15 Nov 2023

 Feldman-Cousins corrections would require ~10k contours

Main Optimisations

- Use a fast algorithm for solving eigensystem
 - J. Kopp, Int. J. Mod. Phys. C, 19, 523 (2008)
 - Uses analytical solutions for 3x3 matrix
 - Developed for GLoBES
- Some BSM models need different methods: Eigen library
 - PMNS_Sterile class solves NxN matrices
 - PMNS_Decay class solves non-Hermitian matrices
- Reduce number of operations when **computing Hamiltonian**
 - Take into account known form of PMNS matrix
- Caching of eigensystem for reusing known solutions

Hamiltonian Optimisation

 $U_{S} = U_{N-1,N} \cdots U_{34} U_{24}^{(c)} U_{14}^{(c)} U_{23} U_{13}^{(c)} U_{12}$

$$H = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 20 & 0 \\ 0 & 0 & 0 & 40 \end{bmatrix} \xrightarrow{U_{12}} \begin{bmatrix} 3.2 & 4.7 & 0 & 0 \\ 4.7 & 6.8 & 0 & 0 \\ 0 & 0 & 20 & 0 \\ 0 & 0 & 0 & 40 \end{bmatrix} \xrightarrow{U_{12}} \begin{bmatrix} 3.2 & 4.7 & 0 & 0 \\ 4.7 & 6.8 & 0 & 0 \\ 0 & 0 & 20 & 0 \\ 0 & 0 & 0 & 40 \end{bmatrix}$$

$$\xrightarrow{U_{13}} \begin{bmatrix} 3.9 & 4.6 & 3.3 & 0 \\ 4.6 & 6.8 & -0.9 & 0 \\ 3.3 & -0.9 & 19 & 0 \\ 0 & 0 & 0 & 40 \end{bmatrix} \xrightarrow{U_{23}} \begin{bmatrix} 3.9 & 5.6 & -0.7 & 0 \\ 5.6 & 12 & 6.2 & 0 \\ -0.7 & 6.2 & 14 & 0 \\ 0 & 0 & 0 & 40 \end{bmatrix} \xrightarrow{U_{24}} \begin{bmatrix} 5.3 & 6.8 & -0.7 & 5.8 \\ 6.8 & 12 & 6.1 & 4.2 \\ -0.7 & 6.1 & 14 & -1.1 \\ 5.8 & 4.2 & -1.1 & 38 \end{bmatrix} \xrightarrow{U_{24}} \begin{bmatrix} 5.3 & 6.8 & -0.7 & 5.8 \\ 6.8 & 12 & 6.1 & 4.2 \\ -0.7 & 6.1 & 14 & -1.1 \\ 5.8 & 4.2 & -1.1 & 38 \end{bmatrix}$$

$$U_{34}$$

- $\xrightarrow{U_{34}}$ $\xrightarrow{5.3} \begin{array}{c} 6.8 \\ 2.2 \\ 5.4 \\ 2.2 \\ 5.4 \\ 0.8 \\ 2.3 \\ 3.4$
- Each rotation only affects some columns and rows
- Hermitian, so only upper triangle
- Total of O(n³) operations
- Std. matrix mult. $\rightarrow O(n^4)$

Extra Considerations

- 1. Caching of eigensystem solutions
 - Often we have to solve the same eigensystem multiple times
 - E.g.: Neutrinos cross same Earth layer from different angles
 - OscProb can save these to avoid repeated computations
 - Balance between hashing overhead and eigensystem
- 2. Earth models can be too detailed for our needs
 - Default is 44 layers of constant density
 - Can easily go down to 15 layers
 - Even better, OscProb can dynamically merge similar layers
- 3. Parallelise oscillation propagations
 - Usually we need to compute 2x3 transitions ($v_{e,\mu} \rightarrow v_{e,\mu,\tau}$)
 - OscProb can compute all of these in parallel
 - Avoids some extra propagation costs

Iterative Approximation

Zassenhaus Formula

 $e^{(X+Y)t} = e^{Xt}e^{Yt}e^{-[X,Y]\frac{t^2}{2}}e^{(2[Y,[X,Y]]+[X,[X,Y]])\frac{t^3}{6}}\cdots$

If t is small, we can ignore higher order terms

$$e^{-i(UH_0U^{\dagger}+V)t} \approx e^{-iUH_0U^{\dagger}t}e^{-iVt} = Ue^{-iH_0t}U^{\dagger}e^{-iVt}$$

Everything is already diagonal. No need for solving eigensystems

- Interpolating oscillation probabilities can be difficult due to fast oscillations at some energies
- One idea would be to instead interpolate the eigensystem solutions
- Equivalent to interpolating the effective mixing parameters

- Another problem with fast oscillations is computing the average oscillation over a bin
- Simply taking the bin center value is equivalent to a linear approximation of the function

- Another problem with fast oscillations is computing the average oscillation over a bin
- Simply taking the bin center value is equivalent to a linear approximation of the function

- Another problem with fast oscillations is computing the average oscillation over a bin
- Will fail if function is not approximately linear
- Gaussian quadrature improves this to 3rd order polynomial

- Another problem with fast oscillations is computing the average oscillation over a bin
- But also fails for oscillating functions
- Can be extended by moving from polynomial to trig functions

- Another problem with fast oscillations is computing the average oscillation over a bin
- Works even at high frequencies, but requires known freqs
- Also, only valid for single frequency

- Solution can be generalized for multiple frequencies
- However, no analytical solution and hard to solve numerically
- Current implementation approximates by assuming frequencies are hierarchical and can be solved independently
- Numerical solution improves on this, but doesn't work reliably

perf: Use improved Gaussian guadrature rule in AvgProb #43 ຳ Open joaoabcoelho wants to merge 1 commit into master from dev-avgprob Conversation 2 -O- Commits 1 E Checks 1 E Files changed 1 joaoabcoelho commented 2 weeks ago • edited 👻 Owner) ••• Given that oscillation probabilities typically are of the form: $f(x) = a + b x + \sum_{i=1}^{n} c_i \cos(k_i x + \phi_i)$ We can compute the integral of f(x) via a quadrature rule solving for: $\int_{x_0+\Delta x}^{x_0+\Delta x} f(x)dx = \frac{1}{2^n} \sum_{i=1}^{2^n} f(x_0 + \sum_{i=1}^n (-1)^{\lfloor (j-1)/2^{i-1} \rfloor} \delta x_i)$ The solution satisfies: $orall j \in \{1...n\} \;\; \prod^n \cos(k_j \delta x_i) = \operatorname{sinc}(k_j \Delta x)$ Here I'm implementing solutions to this system of equations by Newton's method. \odot

Alternative Approach

• Use perturbation theory to approximate evolution:

 $S(\bar{E} + \xi_E) \approx \bar{S} e^{-iK_E \xi_E}$ with $\bar{S} = e^{-i\bar{H}L}$

- Based on very interesting new paper:
 - <u>https://arxiv.org/abs/2308.00037</u>

From ray to spray: augmenting amplitudes and taming fast oscillations in fully numerical neutrino codes

Michele Maltoni

Instituto de Física Teórica (IFT-CFTMAT), CSIC-UAM, Calle de Nicolás Cabrera 13–15, Campus de Cantoblanco, E-28049 Madrid, Spain

E-mail: michele.maltoni@csic.es

• MaCh3 does something similar adapted from SK

AvgProb Precision

- Whatever the solution, we need to be able to estimate the approximation error
- Current estimates are too conservative
- Default precision set to 0.01% but samples too many points
- At analysis level, one needs to optimize the balance between precision and speed in these calculations

Benchmarking

- Compute 100x20 oscillograms for $v_{\mu} \rightarrow v_{e}$
- Using AvgProb to remove fast oscillations

32	Processing StressTest.C			
33	PMNS_Fast:	Performance =	: 142	μs/iteration
34	PMNS_Iter:	Performance =	: 72	μs/iteration
35	PMNS_Sterile:	Performance =	940	µs/iteration
36	PMNS_NSI:	Performance =	: 155	µs/iteration
37	PMNS_Deco:	Performance =	267	µs/iteration
38	PMNS_Decay:	Performance =	241	µs/iteration
39	PMNS_LIV:	Performance =	328	µs/iteration
40	PMNS_SNSI:	Performance =	: 217	µs/iteration

• Would be great to have some comparisons with other tools

Conclusion

- Oscillation calculations are the core of many analyses
- Computations are fast, but need to be done trillions of times
- OscProb is an open source option for computing oscillations
- Goal is to be fast and cover many BSM models
- If you have ideas or would like to help with current issues, you are very welcome to contribute to the project in Github
- Integrating OscProb into DUNE tools like MaCh3 would also be very much appreciated

Joao Coelho, Rebekah Pestes, Alba Domi, Simon Bourret, Ushakrhmn, Imaderer, & vicacuen. (2023). joaoabcoelho/OscProb: v2.0.12 (v2.0.12). Zenodo. <u>https://doi.org/10.5281/zenodo.10104847</u>

Backup

Missing Pieces

• Is $\theta_{23} = \pi/4$? Underlying symmetry?

- Do neutrinos violate CP? (δ_{CP})
- What is the mass ordering? (Mass Hierarchy)

symmetries

Matter Effects

