

SEARCH FOR ORPHAN GAMMA-RAY BURST AFTERGLOWS IN RUBIN LSST DATA WITH FINK

FINK Collaboration Meeting

MARINA MASSON JOHAN BREGEON

8 – 10 January 2024

BRIEF OVERVIEW

- 1- General context
- 2- Simulation of a population of GRBs
- 3- "Pseudo-observed" light curves and their analysis
- 4- Light curve feature-based orphan selection
- 5- Overlap with supernova and kilonova light curves
- 6- Conclusions & perspectives

GENERAL CONTEXT THE ORPHAN AFTERGLOW: A GRB VIEWED OFF-AXIS

Afterglow = long-lasting and fading emission following the gamma prompt emission

 Orphan afterglow = afterglow observed offaxis (without gamma-ray emission)
 ⇒ No orphan afterglow detected so far! (Some candidates but none confirmed)

Why study orphan afterglows?

- More information on the GRB physics and their progenitors
- Multi-messenger analysis with gravitational waves

DESC project n°270

SIMULATION OF A POPULATION OF GRBS

Identification of orphans based on their light curve

Forward shock model + electron synchrotron model (Van Eerten et al. 2010)

Studied parameters:

- Energy E₀
- Circumburst medium density n₀
- Redshift z
- Observer angle θ_{obs}
- Jet type (uniform or structured)
- Core angle θ_c
- Truncature angle θ_w

Marina Masson | FINK Collaboration Meeting | 8-10 January 2024

afterglowpy package https://github.com/geoffryan/afterglowpy

SIMULATION OF A POPULATION OF GRBS POPULATION OF SHORT GRBS (TEMPORARY)

Goal: To simulate somewhat realistic distributions for short GRBs

Studied parameters distributions:

- Circumburst density n₀: uniform distribution [1.0 ; 100] cm⁻³
- **Observer angle cos(θ**_{obs}): uniform distribution [0 ; 1] (isotropic)

SIMULATION OF A POPULATION OF GRBS

POPULATION OF SHORT GRBS BASED ON THE SBAT4 CATALOGUE

SBAT4 catalogue (D'Avanzo et al. 2014) = selected sample of short GRBs observed by the Swift satellite up to June 2013

- Short GRBs detected by the Swift BAT instrument in the **15-150 keV energy band**
- Selection criteria: peak flux PF₆₄ > 3.5 ph/s/cm²

Method = compute the flux of the prompt emission for a given configuration and applying the selection criteria of the SBAT4 catalogue

SIMULATION OF A POPULATION OF GRBS

POPULATION OF SHORT GRBS BASED ON THE SBAT4 CATALOGUE

SBAT4 catalogue (D'Avanzo et al. 2014) = selected sample of short GRBs observed by the Swift satellite up to June 2013

- Short GRBs detected by the Swift BAT instrument in the **15-150 keV energy band**
- Selection criteria: peak flux PF₆₄ > 3.5 ph/s/cm²

Method = compute the flux of the prompt emission for a given configuration and applying the selection criteria of the SBAT4 catalogue

> STILL IN PROGRESS

BRIEF OVERVIEW

- 1- General context
- 2- Simulation of a population of GRBs
- **3-** "Pseudo-observed" light curves and their analysis
- 4- Light curve feature-based orphan selection
- 5- Overlap with supernova and kilonova light curves
- 6- Conclusions & perspectives

PSEUDO-OBSERVATION ANALYSIS SIMULATION OF AN OBSERVATION: METHOD

rubin_sim package \implies Realisation of the scheduler simulation for the 10 years of LSST (<u>https://github.com/lsst/rubin_sim</u>)

- **1** Take time and coordinates of a GRB
- 2- Keep only observations inside the Rubin/LSST field of view
- **3** Compute spectra at observation time bins in magnitude with **afterglowpy** (Ryan et al. 2020)
- 4- Keep only "real" observation for the right filter
- 5- Plot pseudo observed light curve

PSEUDO-OBSERVATION ANALYSIS EXAMPLE OF A "PSEUDO-OBSERVATION"

GRB date: 12 March, 2030

GRB (RA, Dec) coordinates: (19h00m55.04s, -53d23m42.38s)

Parameters:

- Power-Law jet
- $E_0 = 1.3 \times 10^{52} \text{ erg}$
- $\theta_{obs} = 21.2$ °
- $\theta_c = 2.9^\circ$
- $\theta_{\rm w} = 8.6^{\circ}$
- $n_0 = 0.45 \text{ cm}^{-3}$
- z = 0.001

⇒ Fraction of "pseudo-observable" orphans by the Rubin Observatory: a few %

- Minimal magnitude
- Time of the minimal magnitude

Marina Masson | FINK Collaboration Meeting | 8-10 January 2024

- Minimal magnitude
- Time of the minimal magnitude
- Duration between the first detection and the peak

Marina Masson | FINK Collaboration Meeting | 8-10 January 2024

- Minimal magnitude
- Time of the minimal magnitude
- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve

- Minimal magnitude
- Time of the minimal magnitude
- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve
- g-r color (expected value for synchrotron emission ~ 0.3)

Marina Masson | FINK Collaboration Meeting | 8-10 January 2024

PSEUDO-OBSERVATION ANALYSIS CORRELATIONS BETWEEN THE DEFINED FEATURES

\Rightarrow Correlations between rates and magnitude

BRIEF OVERVIEW

- 1- General context
- 2- Simulation of a population of GRBs
- **3-** "Pseudo-observed" light curves and their analysis
- 4- Light curve feature-based orphan selection
- 5- Overlap with supernova and kilonova light curves
- 6- Conclusions & perspectives

CUTS ON THE LIGHT CURVE FEATURES ELASTICC DATA CORRELATIONS

Marina Masson | FINK Collaboration Meeting | 8-10 January 2024

CUTS ON THE LIGHT CURVE FEATURES ELASTICC DATA CORRELATIONS

color

time_peak

first_detect

rate_inc

rate_dec_3

ate_dec

Ч

(1 month of ELAsTiCC data)

CUTS ON THE LIGHT CURVE FEATURES ELASTICC DATA CORRELATIONS

Marina Masson | FINK Collaboration Meeting | 8-10 January 2024

Different correlations

than for orphans

CUTS ON THE LIGHT CURVE FEATURES EXAMPLE OF A CUT ON THE COLOR

CUTS ON THE LIGHT CURVE FEATURES **EXAMPLE OF A CUT ON THE COLOR**

CUTS ON THE LIGHT CURVE FEATURES FIRST STAB AT BASIC CUTS

Marina Masson | FINK Collaboration Meeting | 8-10 January 2024

0.5

100

CUTS ON THE LIGHT CURVE FEATURES FIRST STAB AT BASIC CUTS

Color:

CUTS

0.16 < color < 0.34 mag

Decrease rate: rate < 0.15 mag/day

Increase rate: rate > -0.18 mag/day

Duration between the first detection and the peak: dt < 25 days

What remains

- ELAsTiCC data: 163 / ~2 millions events (but for 1 month...)
- Orphans: 1884 / ~200,000 events (~ 30 years...)

CUTS ON THE LIGHT CURVE FEATURES EVENTS THAT PASS AND DON'T PASS THE CUTS

ELAsTiCC data that pass the cuts

CUTS ON THE LIGHT CURVE FEATURES EVENTS THAT PASS AND DON'T PASS THE CUTS

ELAsTiCC data that pass the cuts

"Good" orphan (> 10 points) that does not pass the cuts

 \Rightarrow Work needed on feature design and selection cuts!

CUTS ON THE LIGHT CURVE FEATURES EVENTS THAT PASS AND DON'T PASS THE CUTS

ELAsTiCC data that pass the cuts

"Good" orphan (> 10 points) that does not pass the cuts

 \Rightarrow Work needed on feature design and selection cuts!

BRIEF OVERVIEW

- 1- General context
- 2- Simulation of a population of GRBs
- **3-** "Pseudo-observed" light curves and their analysis
- 4- Light curve feature-based orphan selection
- 5- Overlap with supernova and kilonova light curves
- 6- Conclusions & perspectives

OVERLAP WITH SUPERNOVA AND KILONOVA LIGHT CURVES KILONOVA (KN) AND SUPERNOVA (SN) OVERLAP

STILL IN PROGRESS

OVERLAP WITH SUPERNOVA AND KILONOVA LIGHT CURVES KILONOVA (KN) AND SUPERNOVA (SN) OVERLAP

STILL IN PROGRESS

Collaboration with the Osservatorio Astronomico di Brera, Italy

 \Rightarrow Orphan light curve "hidden" by the SN light curve \Rightarrow Impact of the orphan on the SN light curve seen at later times

OVERLAP WITH SUPERNOVA AND KILONOVA LIGHT CIRVFS KILONOVA (KN) AND SUPERNOVA (SN) OVERLAP

🗕 u

🗕 Z

— v

62450

Collaboration with the Osservatorio Astronomico di Brera, Italy

CONCLUSION & PERSPECTIVES

CONCLUSION

Simulation of a population of GRBs

- Choose parameter distributions
- Work on a short GRB population based on SBAT4 catalogue STILL IN PROGRESS

Simulation of "pseudo-observations"

- Just a few % of "pseudo-observations" will be observable by the Rubin Observatory
- Expected number of observed orphans by the Rubin LSST ~ 10 orphan/yr (compatible with Ghirlanda et al. 2015)

Characterize "pseudo-observed" light curve of orphan GRBs

- Compute some features to describe the shape of the light curve and their correlations
- Compare to ELAsTiCC data and define some cuts to discriminate orphans
- Study of the impact of a SN or KN light curve STILL IN PROGRESS

PERSPECTIVES

• Develop a first version of a filter for FINK to identify OAs

THANK YOU FOR YOUR ATTENTION!

SIMULATION OF A POPULATION OF GRBS STUDY OF THE MODEL: PARAMETERS IMPACT

Scan of the model parameters \Rightarrow study their impact on the observability of the afterglow

 \Rightarrow Some parameters may balance out each other \Rightarrow The parameters space is very large

ANNEXE 1

https://github.com/geoffryan/afterglowpy

SIMULATION OF A POPULATION OF GRBS THEORETICAL ORPHAN LIGHT CURVES

ANNEXE 2

https://github.com/geoffryan/afterglowpy

HO MEASUREMENT

817 Counterpart
$$a(1 + z) \in Z$$

$$d_L(z) = \frac{c(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda (1+z')^{3(1+w(z'))}}}$$

When z << 1:

$$d_L(z) = \frac{cz}{H_0}$$

ANNEXE 3