

Rainbow

A colorful approach on multi-passband light curve estimation

E. Russeil, K. L. Malanchev, P. D. Aleo, E. E. O. Ishida, M. V. Pruzhinskaya, E. Gangler, A. D. Lavrukhina, A. A. Volnova, A. Voloshina, T. Semenikhin, S. Sreejith, M. V. Kornilov, V. S. Korolev (The SNAD team)

Russeil et al., 2023, submitted to Astronomy & Astrophysics, arXiv:astro-ph: https://arxiv.org/abs/2310.02916

Light curve characterisation

Why produce a fit ?

- Understanding of the object
- Interpolation of missing points
- Prediction of the evolution
- Machine learning analysis

Transient feature extraction :

If one band is under sampled the feature extraction is impossible

Number of parameters scale with the number of filters of the telescope

What is Rainbow

$$F_{\nu}(t,\nu) = \frac{\pi}{\sigma_{SB}} \times \frac{B_{\nu}(T,\nu)}{T(t)^4} \times F_{bol}(t)$$

Theoretical solution (assuming that the object is a black body)

$$F_{\nu}(t,\nu) = \frac{\pi}{\sigma_{SB}} \times \frac{B_{\nu}(T,\nu)}{T(t)^4} \times F_{bol}(t)$$

We must decide what to use for **T(t)** and **Fbol(t)**?

Can be adapted to each science case

$$F_{\nu}(t,\nu) = \frac{\pi}{\sigma_{SB}} \times \frac{B_{\nu}(T,\nu)}{T(t)^4} \times F_{bol}(t)$$

$$F_{bol}(t) = A \times \frac{e^{\frac{-(t-t_0)}{t_{fall}}}}{1+e^{\frac{t-t_0}{t_{rise}}}}$$

Bazin function : 4 parameters

(here we assume that the baseline is 0)

$$F_{\nu}(t,\nu) = \frac{\pi}{\sigma_{SB}} \times \frac{B_{\nu}(T,\nu)}{T(t)^4} \times F_{bol}(t)$$

Rainbow fit examples

RAINBOW:

Typical behavior

Rainbow efficiency

Consider all points available at once. An undersample passband doesn't matter

Number of parameters is constant independently of the number of filters

Paper conclusion : simpler and better !

Paper teaser: PLAsTiCC transient classification

Rainbow

Independent fit

Balanced dataset (300 objects per class)

Paper teaser: PLAsTiCC transient classification

Rainbow - Independent fit

Fink applications

Science modules

- Active galactic nuclei
- Anomaly detection
- Early SNIa
- Super Luminous Supernovae
- Tidal disruption event
- More to come ?

All require a parametric fit at some point

Science modules

- Active galactic nuclei
- Anomaly detection
- Early SNIa
- Super Luminous Supernovae
- Tidal disruption event
- More to come ?

All require a parametric fit at some point

Need to adapt from 2 to 6 passbands with a low lower cadence for LSST !

Current work using Rainbow

Early SNIa

- Fit only rising light curves
- Details to presented by Emille

Early TDE

- Fit only rising light curves
- Use a constant temperature
- Work in progress

Conclusion

- Rainbow is displaying excellent results, see paper
- Offers a good transition from ZTF to LSST
- An implementation is available for easy use here: <u>https://github.com/light-curve/light-curve-python</u>
- Adaptable to future science cases ! Need to choose bolometric flux and temperature evolution
- If you are interested in using Rainbow don't hesitate to contact me

Why sigmoid ?

Goodness of fit : random points removal

nRMSEo =
$$\sqrt{\frac{1}{m} \sum_{i} \left[\frac{(y_i - \mu(t_i))^2}{2\epsilon_i^2} \right]},$$

Classification task

Rainbow - Monochromatic

Classification task

Classification rising light curves

Classification rising light curves

3 34

2.5

1.5

Wavelength (µm)

1

2

0.5

0