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As a first step the algorithm 
will randomly generate many 
different equations



f(X) = sin(X) + 2

f(X) = X² - 1

f(X) = 42

f(X) = -4X + 8

f(X) = 2X

RANDOM 
EQUATIONS
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Traditional Symbolic Regression

DATA SET

9

Apply random mutations 
to the best candidates
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f(X) = 2X - 8

f(X) = X

f(X) = 2X + 2

f(X) = 2X

f(X) = 1/X
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f(X) = 2 X + 3

Best answer

After many 
generation

COST ~ 0

Traditional Symbolic Regression

DATA SET
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Traditional Symbolic Regression
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https://github.com/heal-research/operon



DATA SETS

f(X) = 2 X + 3

Best answers

Traditional Symbolic Regression : Limitation
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Could it find f(X) = AX + B ?



MultiView 
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Multiview Symbolic Regression (MvSR)
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f(X) = sin(X) + A

f(X) = A + B X²

f(X) = A

RANDOM 
EQUATIONS
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Multiview Symbolic Regression (MvSR)

After many 
generation

f(X) = A X + B
Best answer       0

COST =  0
      0

DATA SETS
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Multiview Symbolic Regression (MvSR)

Toy data illustration
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Multiview Symbolic Regression (MvSR)

Strong points

● Directly reconstructs parametric 
equations

● Make sense of partial multiple 
information 

● Much harder to overfit
● Allow for a control of the number 

of free parameters
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Multiview Symbolic Regression (MvSR)

Strong points

● Directly reconstructs parametric 
equations

● Make sense of partial multiple 
information 

● Much harder to overfit
● Allow for a control of the number 

of free parameters

Currently working on a paper with a partial 
implementation of the idea
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Astrophysical use case 
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Astrophysical use case 

Bazin function :

Anything better ?



SNAD 160

https://ztf.snad.space/dr8/view/821207100004043
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37

Astrophysical use case



38

Astrophysical use case

Already used 
inside Fink !

Superluminous 
supernovae classifier for 
the ELAsTiCC challenge

Gives better classification 
result than using a Bazin fit
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Astrophysical use case Preliminary work !
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Conclusion

● MvSR is working and we are writing a paper to 
present it formally

● For now MvSR implementation is just a proof 
of concept, more work to come

● Can be used in astrophysics to optimally 
describe light curves

● Future work: analysis of the different 
astrophysical functions proposed by MvSR



Thank you for your attention


