PRINCIPE DE FONCTIONNEMENT DU PET-SCAN

Remerciements à Hugo LEVILLAIN

M. Tomsej, Chef du service de Radiophysique Médicale Réseau Hospitalier Humani CHU Charleroi-Chimay BELGIQUE

β+ emission

emission of an antiparticle : the positron e⁺ the positron loses its kinetic energy and quickly annihilates with an atomic electron from the medium

emission of two 511 keV (= $m_e c^2$) gamma photons at \approx 180°

Interaction of y rays

attenuation by absorber

 the γ ray intensity decreases exponentially with the length of medium, due to the combined effect of the different interaction modes

6 **Positron Emission Tomography** ۲ ۲ 3 ŵ. Uman

Positron annihilation

Positron emission tomography (PET)

Technique based on the detection of 511 keV gammas emitted following the annihilation of β+ produced by decay with electrons in the medium

 4ν

Positron annihilation

range of the positron

- Chimay

- Ioses its energy by successive collisions with the material
- distance between the positions of emission and annihilation depends on the energy

~ mm

Iimits the spatial resolution !

Positron annihilation

gamma collinearity

- If p≠0 at the annihilation
 - ${\cal O}~$ deviation θ from collinearity
- FWHM = 0.58°

nan Charleroi - Chimay

β+ emitters									
lsotope	Half-life (min)	Positon max energy (MeV)	Path of the positon in water (mm)						
			Mean	Max					
¹¹ C	20	0.98	1.1	4.1					
¹³ N	10	1.19	1.5	5.1					
¹⁵ 0	2	1.72	2.7	7.3					
¹⁸ F	110	0.64	0.6	2.4					
⁶⁸ Ga	68	1.9	3.1	8.9					

Coincidence detection

two events are detected simultaneously

- in the same temporal coincidence window (5-20 ns)
- allows to determine a line along which the annihilation has occured \rightarrow same purpose as the collimator in conventional gamma cameras
- often termed electronic collimation

\rightarrow effect on sensitivity ?

Coincidence detection

the two detectors in which the detection of the photons has taken place provide the line of response (LOR)

- no direct information on the exact position along that line
- necessity of image *reconstruction* (see Recon chapter)

in theory : with sufficient time resolution, it would be possible to determine the exact point of annihilation of the positron

Time-Of-Flight detection (TOF)

Detectors

high stopping power for 511 keV photons

- high Z (photoelectric effect)
- high density

fast decay (high count rates)

t < 100 ns</p>

affordable

high number of detectors !

Crystal

	/					
Property	NaI(Tl)	BGO	LSO	GSO	YSO	BaF ₂
Density (g/cm3)	3.67	7.13	7.4	6.71	4.53	4.89
Effective Z	50.6	74.2	65.5	58.6	34.2	52.2
Decay constant (ns)	230	300	40	60	70	0.6
Light output (photons/keV)	38	6	29	10	46	2
Wavelength (nm)	410	480	420	440	420	220
ΔE/E (%)	6.6	10.2	10	8.5	12.5	11.4
$\mu/ ho~(cm^2/g)$	0.3411	0.9496	0.8658	0.6978	0.3875	0.4545
μ (cm ⁻¹)	0.0948	0.1332	0.117	0.104	0.853	0.0929

- Nal(TI) : used in the first PET cameras
- BGO : first used in 1979, used in most cameras from 1980 to 2000
- GSO : Philips Allegro system
- LSO : used in modern Siemens cameras
- LYSO : substitute to LSO in Philips TOF cameras

Block detectors

high number of detector elements (crystals) are measured by a smaller number of PM tubes

- e.g. 6 x 6 crystals coupled to 4 PMTs, positioning circuit similar to gamma cameras
- cost reduction
- good spatial resolution and axial coverage

a = 8.4 mm t = 4.0 mm e = 30 mm

event detection relies on electronic collimation an event is **valid** if:

- two photons are detected within the coincidence window
- the LOR between them is within a valid acceptance angle
- the energy deposited in the crystal by both photons is within the selected window (e.g. 425-650 keV)
 - \rightarrow such coincidence events are referred to as **prompts**
 - \rightarrow include various types of events :
 - true
 - random
 - multiple
 - scattered

Registered events

True coincidences = Coincidence of two singles coming from the same annihilation and not having scattered in the attenuating medium.

 \Rightarrow Well localised on the projection line \Rightarrow Useful information

Registered events

- The random coincidences:
 - O Two singles not coming from the same annihilation and having diffused or not in the attenuating medium

 \Rightarrow Wrong localisation \Rightarrow Reduction quantitative capacities

Two singles from the same annihilation, one or both of which have undergone one or more scatterings in the attenuating medium

Registered events

- The multiple coincidences:
 - \mathcal{O} multiple events are detected \rightarrow rejected

Acquisition modes - 2D

tungsten septa are placed between the detector rings

first PET scans

leroi - Chimay

rejection of oblique events

spatial resolution and sensitivity ?

true, random, scatter count rates ?

reconstruction ?

Acquisition modes - 2D

reduction of the scatter and random count rates better spatial resolution ? lower sensitivity

easier reconstruction

originally no 3D reconstruction was available

Acquisition modes - 3D

septa are retracted (or absent in modern cameras)

- more LORs are accepted
- If all LORs are accepted : Nc −1 slices

Sinogram

PET raw data are acquired into sinograms

the LOR associated with each coincidence detection is plotted as a function of angle of orientation versus the shortest distance between the LOR and the center of the gantry

a separate sinogram for each slice

each pixel in the sinogram corresponds to a particular LOR

events associated with a particular detector are plotted on diagonals across the sinogram

Common procedure

F-18 FDG scan

- represents the majority of PET exams (90 %)
- FDG is a glucose analogue that is highly taken up by tumors
- physiologic uptake in brain, heart, liver, muscles, bladder, etc.

- the patient needs to fast before the exam, and to rest between the injection and start of acquisition to avoid muscle uptake that would degrade the contrast
- the injection-acquisition delay must be reproduced accurately (~ I h)
- used for initial staging, follow-up, and therapeutic purposes (e.g. radiotherapy)

Summary

Positron Emission Tomography

- mostly used in oncology (less in neurology and cardiology)
- electronic collimation allows better spatial resolution and quantification than in SPECT techniques (see Quantif chapter)
- modes of acquisition : 2D or 3D, but the 2D tends to disappear
- hybrid PET-CT system : all new devices
- much more expensive than SPECT (number of detectors)

<u>Merci</u>

milan.tomsej@humani.be milan.tomsej@gmail.com

