CP Violation in the Higgs Sector: Understanding Matter-Antimatter Asymmetry

Andrea Cardini – Deutsches Elektronen-Synchrotron DESY

Road of the talk

• The aim:

- > general understanding of the mystery of absence of antimatter in the Universe
- > review of CP violation results in CMS that could help explain it

• the Universe was not like we see it today:

• the Universe was not like we see it today:

> No people

- the Universe was not like we see it today:
	- > No people
	- > No Earth

- the Universe was not like we see it today:
	- > No people
	- > No Earth
	- > No Galaxies

- the Universe was not like we see it today:
	- > No people
	- > No Earth
	- > No Galaxies
	- > and it was much much *smaller*

- the Universe was not like we see it today:
	- > No people
	- > No Earth
	- > No Galaxies
	- > and it was much much *smaller*
- The primordial Universe contained both **matter** and **anti-matter**

- the Universe was not like we see it today:
	- > No people
	- > No Earth
	- > No Galaxies
	- > and it was much much *smaller*
- The primordial Universe contained both **matter** and **anti-matter**
- Energy was converting into matter and anti-matter which then annihilated to create again energy

- the Universe was not like we see it today:
	- > No people
	- > No Earth
	- > No Galaxies
	- > and it was much much *smaller*
- The primordial Universe contained both **matter** and **anti-matter**
- Energy was converting into matter and anti-matter which then annihilated to create again energy
- This cycle was broken, and the Universe now is made just of matter
- Where did the anti-matter go?

The Universe

-
- Our Universe is now made of matter, forming the baryons and leptons which make up the atoms and molecules we are made of baryon density parameter $\Omega_{\rm B}h^2$ 10^{-2}
- This required an **asymmetry** between matter and anti-matter in the primordial Universe
	- > **Baryon Asymmetry in the Universe** (BAU)
	- > Matter : Antimatter 1'000'000'001 : 1'000'000'000
- More specifically, the asymmetry is encoded in the ratio of baryons over photons in the Universe
- From the cosmic microwave background this is

$$
\eta = \frac{(n_B - n_{\bar{B}})}{n_{\gamma}} = \frac{n_{B, \text{relic}}}{n_{\gamma}} \approx 6 \times 10^{-10}
$$

Evolution of the Universe

- The cosmic microwave background originated when the Universe cooled off enough that the photons were free to propagate 10^{-12} s $100 s$
	- > Epoch or recombination: formation of atoms
- Going backward in time particle density and temperature increase:
	- > formation of nuclei
	- > cosmic neutrino background
	- > **the baryon-antibaryon annihilation→** the matter asymmetry should have been present before this moment
- Sakharov theorized 3 conditions **necessary** for a CPT conserving theory to explain the BAU:
	- > Baryon number violation: generate asymmetry in a symmetric Universe
	- > C and CP violation: asymmetric interaction to remove antimatter
	- > Deviation from thermal equilibrium: to prevent reverting to a symmetric state
- Is there a theory that satisfies all 3 conditions?

- Successful theory predicting the behavior of matter constituents (**fermions**)
- Interactions mediated by **gauge bosons**, gravity not included

Standard Model of Elementary Particles

Relevant symmetries:

- > Time reversal (T)
- \triangleright Chirality: $χ$ _L, $χ$ _R
- The decoupling of the weak and electromagnetic forces is a key moment in the history of the Universe

- The gauge invariance of the SM would prevent mass terms for the vector bosons and the fermions
- The Higgs boson was introduced to softly break the electroweak symmetry and give mass to the particles
- EWSB: $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{em}$
	- > Gauge bosons gain mass directly through Higgs kinetic term

$$
L_{mWZ} = \left(\frac{v^2 g^2}{4} W_{\mu}^{\dagger} W^{\mu} + \frac{v^2 (g^2 + g'^2)}{8} Z_{\mu} Z^{\mu}\right)
$$

> Fermions gain mass via **Yukawa coupling**

$$
L_Y^f = -\underbrace{m_f(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L)}_{\text{fermionic mass term}} - \underbrace{\frac{m_v}{v}(\bar{\psi}_L H \psi_R + \bar{\psi}_R H \psi_L)}_{\text{symline to fermionic mass term}}
$$

coupling of the Higgs to fermions

• Fermions form the matter our Universe is made of \rightarrow Look for CP violation in the Higgs sector

November 23, 2022 **Andrea Cardini** –

The Higgs boson – short recap

- At the LHC the main way to produce the Higgs boson is via gluon-gluon fusion
- Production via vector boson fusion, Higgs-strahlung and in association with top or bottom quarks are rarer

Higgs decays at m_{^{11}=125GeV}</sub>

WW $\tau\tau$ 99 6% $9%$ 21% 3% **ZZ** 3% **Other** $1%$ bb 57%

- The Higgs boson is not stable and decays immediately
- It can decay directly to W and Z bosons, and to all fermions via Yukawa coupling
- Via intermediate fermion or boson loop it can also decay to photons and gluons

CP violation

• Weak interactions massively violates C and P symmetries, it also violates CP: $\rm K_{0}$ oscillation $\rm \rightarrow~K_{S}$ and $\rm K_{L}$ decays – Cronin and Fitch in the 60s

- The most notable violation of C, P and CP in the SM comes from flavor changing currents in the weak interaction
- CP violation located in the complex phase in the Cabibbo-Kobayashi-Maskawa matrix
- The matrix was introduced to describe the quark mixing in the weak interaction

- The quark mixing and the quark masses have a common origin: the Yukawa interaction
- The Higgs boson gives mass to the particles and defines the fermion generations

•
$$
\mathcal{L}_{\phi q} = -\sum_{ij} G_{ij} (\bar{U}_{iL} \bar{D}_{iL}) \cdot (\frac{\phi^{0\dagger}}{\phi^0}) U_{jR}
$$
 Yukawa for up-type quarks
\n
$$
-\sum_{ij} H_{ij} (\bar{U}_{iL} \bar{D}_{iL}) \cdot (\frac{\phi^{+}}{\phi^0}) D_{jR} + H.c.
$$
 Yukawa for down-type quarks

with the indices i,j running over the quark generations

After EWSB the quarks acquire mass via the Higgs vacuum expectation value

•
$$
\mathcal{L}_m = -\sum_{ij} \bar{U}_{iL} m_{ij}^U U_{jR} - \sum_{ij} \bar{D}_{iL} m_{ij}^D D_{jR} + H.c.
$$

• No theoretical requirement for the m_{ij} matrices to be diagonal **but** the SM Lagrangian is invariant under unitarity transformations

The CKM matrix

• We can multiply all fields by unitary matrices and redefine the quark fields to diagonalize the mass matrices

$$
m_{ij}^U = \frac{1}{\sqrt{2}} G_{ij} v
$$

\n
$$
m_{ij}^D = \frac{1}{\sqrt{2}} H_{ij} v
$$

\n
$$
m_{ij}^D = A_L^D m^D A_R^{D\dagger}
$$

\n
$$
m_{ij}^D = A_L^D m^D A_R^{D\dagger}
$$

- Cannot diagonalize both mass matrices at once \rightarrow diagonalize one mass matrix and redefines the fields for either up or down type quarks
- The lightest quarks are **u**, **d** and $\mathbf{s} \rightarrow$ the quark mixing was observed for kaon decays between the **d** and **s** quarks \rightarrow the mass term diagonalized is the one for up-type quarks

•
$$
V_{CKM} = A_L^U (A_L^D)^{-1}
$$
 \longrightarrow $q_{uL} = \left(\frac{1-\gamma_5}{2}\right) \left(\begin{array}{c} u \\ V_{ud}d + V_{us}s + V_{ub}b \end{array}\right)$

CP violation in the SM

• The CKM matrix is unitary **but** is not required to be Real \rightarrow it can have a complex phase leading to direct CP violation in the electroweak sector

$$
\bullet \ V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}
$$

- The complex phase $\delta = 1.196 \pm 0.045$ [rad] is the main source of CP violation allowed in the SM
- Another source of CP violation *could** be found in the neutrino oscillation if the PMNS matrix presents a complex phase
- The strong interaction does not seem to violate CP experimentally... however in QCD CP-violating terms can arise leading to the question of why no signs of CP violation have been observed

**there is no experimental consensus on a CP-violating phase in the PMNS matrix*

EW baryogenesis – B violation

- The main source of CP violation in the SM comes from the EW sector and is linked to the Higgs boson
- What about the other 2 Sakharov's conditions?
	- \geq Baryon number violation \rightarrow is there baryon number violation in the SM?
		- \bullet In the SM the baryon (B) and lepton (L) number are conserved only via accidental symmetries there are no gauge invariant operators of dim 4 that violate them
		- **Anomalies** appear at triangular loop level due to the chiral structure of the SM Adler, Bell and Jackiw (ABJ) anomalies

Sphalerons

• $U(1)_{B}$ and $U(1)_{L}$ are broken at quantum level, as is B+L, however **B-L is preserved**

$$
\begin{aligned}\n&\partial_{\mu}J_{\text{B+L}}^{\mu} = \frac{\alpha_1^2}{8\pi}N_g Y^{\alpha\beta}\tilde{Y}_{\alpha\beta} - \frac{\alpha_2^2}{4\pi}N_g W_i^{\alpha\beta}\tilde{W}_{i\alpha\beta} \\
&\partial_{\mu}J_{\text{B-L}}^{\mu} = 0 \,.\n\end{aligned}
$$

At low temperatures the B violation is low, but at high temperature it can proceed via **sphaleron** production

[F. R. Klinkhamer and N. S. Manton Phys. Rev. D 30, 2212](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.30.2212)

- \geq A Sphaleron from Greek Σφαλερός ready to fall is a static, but unstable, solution for the electroweak theory
- > It allows the transition between distinct EW vacuum states (different baryon or lepton number)
- $>E_{\rm sph} \sim 8\pi \text{ v(T)/g_w}$ the energy is proportional to the vacuum expectation value of the Higgs field

[M. Dine \(2016\). Supersymmetry and String Theory](https://www.cambridge.org/core/books/supersymmetry-and-string-theory/FD183F56066D0E8256B16B4D9400FC74)

- The last condition necessary for matter-antimatter asymmetry to occur is that the CP violating interactions take place out of thermal equilibrium
- We need a **phase transition:** an interaction outside of thermal equilibrium
- The electroweak symmetry breaking provides the appropriate conditions

- The last condition necessary for matter-antimatter asymmetry to occur is that the CP violating interactions take place out of thermal equilibrium
- We need a **phase transition:** an interaction outside of thermal equilibrium
- The electroweak symmetry breaking provides the appropriate conditions
- The Higgs potential in the present has the usual *sombrero* shape you are familiar with

- The last condition necessary for matter-antimatter asymmetry to occur is that the CP violating interactions take place out of thermal equilibrium
- We need a **phase transition:** an interaction outside of thermal equilibrium
- The electroweak symmetry breaking provides the appropriate conditions
- The Higgs potential in the present has the usual *sombrero* shape you are familiar with
- The electroweak phase transition started at $T < T_C$ – when the the absolute minima of the system became $|\Phi|^2 > 0$
	- > 1st order PT: the system goes to the absolute minima via tunnelling

1st order PT: the system goes to the absolute minima via tunnelling

2nd order PT: there is no energy barrier and the system goes to the minimum *smoothly*

• Like when boiling water, the entire Universe did not reach EWPT instantaneously everywhere

giphy

' 37

- Like when boiling water, the entire Universe did not reach EWPT instantaneously everywhere
- The transition happened along expanding *bubbles* where the EW symmetry breaks

17 / 37

- Like when boiling water, the entire Universe did not reach EWPT instantaneously everywhere
- The transition happened along expanding *bubbles* where the EW symmetry breaks
- Along the bubble walls transition from the symmetric state to the broken EW one

17 / 37

- Like when boiling water, the entire Universe did not reach EWPT instantaneously everywhere
- The transition happened along expanding *bubbles* where the EW symmetry breaks
- Along the bubble walls transition from the symmetric state to the broken EW one
- Fields on the bubble walls are highly out of equilibrium \rightarrow satisfy the 3rd Sakharov's condition

- B violating processes have different rates in the EW symmetric or broken phases
	- $>$ In the unbroken phase T is high enough to have a continuous sphaleron production \rightarrow B-L is preserved but the rate of B violating processes is high
	- > At the wall they are Boltzmann suppressed
	- > In the broken phase they are exponentially suppressed
- To have baryon asymmetry inside the bubble and freeze it, the sphaleron processes need to shut down quickly
	- → **require a strong 1st order phase transition**
- Problem: this would require a Higgs of mass ≤ 80 GeV
	- > The SM provides the conditions for generating some baryon asymmetry but not enough for the observed BAU

December 1, 2023 Andrea Cardini – CP violation and BAU

 $10⁰$ 10^{1} Particle mass (GeV)

19 / 37

- More Higgs bosons \longrightarrow extra Higgs doublets/singlets, SUSY, etc. Not mutually exclusive
- > More sources of **CP violation** \rightarrow today's topic
	- As the Higgs boson is intrinsically linked to the SM contributions to the baryogenesis it is a good candidate to look for additional CPV free parameter

Iп

- What do we know about the Higgs boson now?
	- > Discovery announced in 2012 by the ATLAS and CMS experiments – over 10 years ago **10**
	- \geq Established couplings to $3rd$ generation fermions
	- > Coupling to W and Z well studied since Run 1
	- > More recently studied are decays to muons and charm quarks, and evidence for Zγ has been established

Explaining the BAU with CPV in the Higgs sector

• To explain the BAU we need either

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
	- > HVV couplings (V= Z,W bosons)
		- studied in 4 lepton final state / VBF production

[Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004) [Phys. Rev. D 108 \(2023\) 032013](https://doi.org/10.1103/PhysRevD.108.032013)

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
	- > HVV couplings (V= Z,W bosons)
		- studied in 4 lepton final state / VBF production

[Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004) [Phys. Rev. D 108 \(2023\) 032013](https://doi.org/10.1103/PhysRevD.108.032013)

Pure CP odd excluded already with Run 1 data \rightarrow search for anomalous couplings

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
	- > HVV couplings (V= Z,W bosons)
		- studied in 4 lepton final state / VBF production

[Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004) [Phys. Rev. D 108 \(2023\) 032013](https://doi.org/10.1103/PhysRevD.108.032013)

Pure CP odd excluded already with Run 1 data \rightarrow search for anomalous couplings

- > Yukawa coupling of Higgs to fermions
	- $gg \rightarrow H$ +jets: effective Higgs-gluon coupling via top quark loop
		- [Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004)

oseudo experiments

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
	- > HVV couplings (V= Z,W bosons)
		- studied in 4 lepton final state / VBF production

[Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004) [Phys. Rev. D 108 \(2023\) 032013](https://doi.org/10.1103/PhysRevD.108.032013)

Pure CP odd excluded already with Run 1 data \rightarrow search for anomalous couplings

- > Yukawa coupling of Higgs to fermions
	- $gg \rightarrow H$ +jets: effective Higgs-gluon coupling via top quark loop – [Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004)
	- $gg \rightarrow$ ttH: direct Yukawa coupling of Higgs to top quarks
		- [JHEP 07 \(2023\) 092](https://link.springer.com/article/10.1007/JHEP07(2023)092)

oseudo experiments

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
	- > HVV couplings (V= Z,W bosons)
		- studied in 4 lepton final state / VBF production

[Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004) [Phys. Rev. D 108 \(2023\) 032013](https://doi.org/10.1103/PhysRevD.108.032013)

Pure CP odd excluded already with Run 1 data \rightarrow search for anomalous couplings

- > Yukawa coupling of Higgs to fermions
	- $gg \rightarrow H$ +jets: effective Higgs-gluon coupling via top quark loop – [Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004)
	- $gg \rightarrow$ ttH: direct Yukawa coupling of Higgs to top quarks
		- [JHEP 07 \(2023\) 092](https://link.springer.com/article/10.1007/JHEP07(2023)092)
	- $H \rightarrow \tau\tau$ decays: exploit spin correlation between tau leptons and their decay products
		- [JHEP 06 \(2022\) 012](https://link.springer.com/article/10.1007/JHEP06(2022)012)

[Phys. Rev. D 89 \(2014\), 092007](http://dx.doi.org/10.1103/PhysRevD.89.092007)

- Investigating CP violation in HVV couplings with an EFT approach
	- > Amplitude for Higgs coupling to two spin 1 particles (VV= WW, ZZ, Zγ, γγ, gg etc.) with operators up to dimension 6

- Investigating CP violation in HVV couplings with an EFT approach
	- > Amplitude for Higgs coupling to two spin 1 particles (VV= WW, ZZ, Zγ, γγ, gg etc.) with operators up to dimension 6

> Effect on cross-section parametrized as the fractional contribution of the anomalous coupling to the total cross-section

- Investigating CP violation in HVV couplings with an EFT approach
	- > Amplitude for Higgs coupling to two spin 1 particles (VV= WW, ZZ, Zγ, γγ, gg etc.) with operators up to dimension 6

- > Effect on cross-section parametrized as the fractional contribution of the anomalous coupling to the total cross-section
- Theoretical approach includes also Hγγ and Hgg with tree level coupling being set to 0

• Higgs direct and effective couplings to vector bosons studied both in production and decay

• Decay:

- > Target process: **H→VV→ 4 leptons**
- > Uses kinematics of leptons in the final state
- Production:
	- > Target process: **Vector Boson Fusion (VBF)**
	- > Higgs CP nature affects kinematics of jets from the initial state
	- > Studied in Higgs decays to ττ, 4 leptons and γγ

CP violation in $H \rightarrow 4$ leptons

-
- Higgs decays to 4 leptons were used already in the Higgs discovery [Phys. Rev. D 104 \(2021\) 052004](http://dx.doi.org/10.1103/PhysRevD.104.052004) Excellent handle to measure Higgs properties: [mass,](http://dx.doi.org/10.1016/j.physletb.2020.135425) [spin,](http://dx.doi.org/10.1103/PhysRevLett.110.081803) [width,](http://dx.doi.org/10.1103/PhysRevD.92.072010) and [CP properties](http://dx.doi.org/10.1103/PhysRevD.104.052004) > Used in Run 1 to exclude pure pseudoscalar HVV coupling and investigate other spin hypotheses g [Phys. Rev. D 89 \(2014\) 092007](http://dx.doi.org/10.1103/PhysRevD.89.092007) $\sqrt{15} = 7$ TeV, L = 5.1 fb¹; $\sqrt{15} = 8$ TeV, L = 19.7 fb¹ \mathcal{L}_r **Run 1** $2 \ln(\mathcal{L}_{\text{p}})$ $J^P \pm 1\sigma$ $+20$ \Box Γ + 20 \vert , \vert^p + 3c 20 **CMS** 137 fb⁻¹ (1 250 data -20 200 -40 $ZZ/Z\gamma^*$ Events / 2 GeV $Z+X$ $2⁺$ 2_m^+ Ω 0. \mathbf{f} 2_{h}^{+} 150 $gg \rightarrow X$ $q\overline{q} \rightarrow X$ any $gg \rightarrow X$ $gg \rightarrow X$ $gg \rightarrow X$ any $d\overline{d} \rightarrow X$ anv a $\overline{a} \rightarrow X$ anv anv > Analysis with full Run 2 also targets interference terms of anomalous 100 couplings with other hypothesis using MVA classifiers 50 $\mathcal{D}_{\mathrm{int}}\left(\boldsymbol{\Omega}\right)=\frac{\mathcal{P}_{\mathrm{int}}\left(\boldsymbol{\Omega}\right)}{2\sqrt{\mathcal{P}_{\mathrm{sig}}\left(\boldsymbol{\Omega}\right)\ \mathcal{P}_{\mathrm{alt}}\left(\boldsymbol{\Omega}\right)}}$ 100 120 160 m_{Λ} (GeV)

Constraints expressed in several scenarios based on the possible symmetries imposed on the couplings:

> Approach 1: $a_i^{WW} = a_i^{ZZ}$

 CM^c

December 1, 2023 Andrea Cardini – CP violation and BAU

Combination with off-shell $H \rightarrow 2l2v/4$ lepton

- Off-shell Higgs production can provide additional sensitivity to anomalous couplings
	- $>$ CP-odd anomalous coupling constrained between [-4.6,11] \times 10⁻⁴ at 95% CL

Combination with off-shell $H \rightarrow 2l2v/4$ lepton

- Off-shell Higgs production can provide additional sensitivity to anomalous couplings
	- > CP-odd anomalous coupling constrained between $[-4.6, 11] \times 10^{-4}$ at 95% CL

$H \rightarrow ZZ^* \rightarrow 4$ leptons differential cross-section

- $H \rightarrow 4$ leptons also studied differentially
- Differential measurement performed with respect to angular variables, Higgs momentum, and accompanying jet $pT \rightarrow$ sensitivity to loop correction and BSM operators

$H \rightarrow ZZ^* \rightarrow 4$ leptons differential cross-section

-
- The increased sensitivity allows to constrain better CP-violating terms and validate our current theoretical understanding

VBF production with $H \rightarrow \tau\tau$ decays

 Φ

Ф

- > When studying Higgs CP in production the $H \rightarrow \tau\tau$ vertex is kept SM-like
- The azimuthal angle between jets coming from the initial state offers sensitivity to the Higgs CP quantum number

December 1, 2023 Andrea Cardini – CP violation and BAU

Higgs Yukawa interaction can be parametrized as follows:

$$
\mathcal{L}_{Y,f} = -\frac{m_f}{v} \bar{\psi}_f(\kappa_f + i\gamma^5 \tilde{\kappa}_f) H \psi_f
$$

- > Higgs direct coupling to top quarks investigated in ttH and tH production
	- CP-odd anomalous coupling affects top quark(s) kinematics
	- Investigated with MVA techniques
- Higgs coupling to τ leptons investigated in decays via $τ$ spin correlation
	- CP mixing encoded in $α^{Hττ}$:
		- $-$ K
		- $\tilde{\kappa}$
	- Mixing angle can be accessed via the angle between τ decay planes

 y'

Lepton Flavor Violation

- Beyond the coupling to top quarks and tau leptons we also look for lepton flavor violation
	- > Lepton flavor is conserved \rightarrow the Yukawa matrix is diagonal wrt lepton generations
- In analogy with the CKM matrix we can look for CP violation also by studying off-diagonal elements of the lepton Yukawa matrix
	- $\geq A$ search for H \rightarrow eµ decays can hint towards sources of new physics
	- Search performed in mass window $110 \le m_{\text{eq}} \le 160 \text{ GeV}$
	- > Analysis exploits BDT to improve S/B ratio in two signal categories: ggH and VBF

$H \rightarrow e\mu$ LFV decays

[doi:10.48550/arXiv.2305.18106](https://doi.org/10.48550/arXiv.2305.18106)

- Constraints on the H \rightarrow eµ branching fraction determined for SM-like H(125) and more generally for generic scalar particle X of mass between 110 and 160 GeV
	- > **First direct search for eμ resonance in chosen mass range**
- Observed (expected) limit on $\mathcal{B}(H\rightarrow e\mu) < 4.4$ (4.7) × 10⁻⁵ at 95% for a SM-like Higgs
- The $X \rightarrow e\mu$ search presents a local (global) excess of 3.8 σ (2.8 σ) for the 146 GeV mass point $_{CMS}$
- The best fit signal for this mass point has a crosssection of 3.89±1.25 fb
- More data is needed to investigate this excess

CP violation in Higgs-top couplings

Top quark loop has leading contribution to ggH effective coupling \rightarrow simultaneous fit of CP-odd contribution ggH and ttH production

> Combination performed under hypothesis that ggH loop is dominated by top quark

- Higgs couplings are proportional to the mass \rightarrow enhanced coupling with the top quark \rightarrow target ttH and tH production
- Htt coupling CP structure was probed in the H \rightarrow WW, ττ (multilepton) γγ and ZZ decays

CP violation in $H \rightarrow \tau \tau$ decays

 τ

The cross section of the $H \rightarrow \tau\tau$ decay acquires a synusoidal dependence on the azymuthal angle spanned between the two τ polarimeters

$$
\frac{d\,\sigma}{d\,\phi_{CP}} \propto const - \cos(\phi_{CP} - 2\,\phi_{\tau\tau})
$$

- CP mixing appears as a **phase-shift** in the distribution
- Measuring the Higgs CP mixing angle requires accessing the azymuthal difference between the polarimetric vectors
- This angle can be generalized to the angle between the τ decay planes, an **acoplanarity angle**

CP violation in $H \rightarrow \tau \tau$ decays

doi[:10.3204/PUBDB-2021-03550](http://dx.doi.org/10.3204/PUBDB-2021-03550) Hidden lavers 137 fb⁻¹ (13 TeV $\begin{array}{c}\n\overline{\mathbf{I}}\quad\text{Data} \\
\overline{\mathbf{B}}\quad\text{Bestfit H}\rightarrow\tau\tau\n\end{array}$ Input features • Use of ML classifiers to identify the Higgs boson higgs $\tau_{\mu} \tau_{h}$ fakes 岩层 137 fb⁻¹ (13 TeV) **CMS** 02 04 0.6 0.8 $\mu \rho$ NN score Events **CMS** Simulation 13 TeV $(0.8, 0.9)$ $(0.33, 0.45)$ $(0.45, 0.6)$ $(0.7, 0.8)$ $(0.9, 1.0)$ $(0.6, 0.7)$ Observed a.u. CP even \cdots CP odd Best fit H $\rightarrow \tau\tau$ 10^{3} $... CP$ mix \cdots Z 0.1 $\tau\tau$ bkg. $2\alpha^{\text{Htt}}$ Jet $\rightarrow \tau_h$ 0.08 $10²$ Others Bkg. unc. 0.06 $PSH \to \tau\tau$ 10^{1} Best fit H $\rightarrow \tau\tau$ 0.04 $10^{(}$ 0.02 30 p_{τ}^{τ} > 33 GeV $\frac{\text{Obs} - \text{Bkg}}{\text{Bkg} \cdot \text{unc}}$ $\tau^+\tau^-\to\pi^+\pi^-$ 20 300 10 60 120 240 360 ϕ_{CP} (degrees) Modulation of the differential cross-section 10 20 30 40 50 60 can be used to probe the CP mixing angle [JHEP 06 \(2022\) 012](https://link.springer.com/article/10.1007/JHEP06(2022)012) Bin number

34 / 37

CP-even/odd couplings

CP-even/odd couplings

35 / 37

Summary and prospects

-
- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe

- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe
- Exclusion limits for pure CP-odd Higgs couplings:
	- \geq HVV couplings: $|f_{a3}| \leq O(10^{-3})$ at 95% CL in combination with off-shell production

- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe
- Exclusion limits for pure CP-odd Higgs couplings:
	- \geq HVV couplings: $|f_{a3}| \leq O(10^{-3})$ at 95% CL in combination with off-shell production
	- > Htt: $|f_{CP}^{Ht\ell}|$ <0.55 at 68% CL

-
- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe
- Exclusion limits for pure CP-odd Higgs couplings:
	- \geq HVV couplings: $|f_{a3}| \leq O(10^{-3})$ at 95% CL in combination with off-shell production
	- > Htt: $|f_{CP}^{Ht\ell}|$ <0.55 at 68% CL
	- $>$ Hττ: tan (α^{Hττ}) < 0.36 at 68% CL
- All analyses exclude pure CP-odd hypothesis and agree with SM prediction

- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe
- Exclusion limits for pure CP-odd Higgs couplings:
	- \geq HVV couplings: $|f_{a3}| \leq O(10^{-3})$ at 95% CL in combination with off-shell production
	- > Htt: $|f_{CP}^{Ht\ell}|$ <0.55 at 68% CL
	- $>$ Hττ: tan (α^{Hττ}) < 0.36 at 68% CL
- All analyses exclude pure CP-odd hypothesis and agree with SM prediction
- Promising future for CP violation studies at Run3, HL-LHC, and in combination with ATLAS

CP Violation in the Higgs Sector: Understanding Matter-Antimatter Asymmetry

Keep looking for more!

Andrea Cardini – Deutsches Elektronen-Synchrotron DESY