CP Violation in the Higgs Sector: Understanding Matter-Antimatter Asymmetry

Andrea Cardini – Deutsches Elektronen-Synchrotron DESY

Road of the talk

• The aim:

- > general understanding of the mystery of absence of antimatter in the Universe
- > review of CP violation results in CMS that could help explain it

December 1, 2023

Andrea Cardini – CP violation and BAU

• the Universe was not like we see it today:

December 1, 2023

• the Universe was not like we see it today:

> No people

- the Universe was not like we see it today:
 - > No people
 - > No Earth

- the Universe was not like we see it today:
 - > No people
 - > No Earth
 - > No Galaxies

- the Universe was not like we see it today:
 - > No people
 - > No Earth
 - > No Galaxies
 - > and it was much much *smaller*

- the Universe was not like we see it today:
 - > No people
 - > No Earth
 - > No Galaxies
 - > and it was much much *smaller*
- The primordial Universe contained both matter and anti-matter

- the Universe was not like we see it today:
 - > No people
 - > No Earth
 - > No Galaxies
 - > and it was much much *smaller*
- The primordial Universe contained both matter and anti-matter
- Energy was converting into matter and anti-matter which then annihilated to create again energy

M

- the Universe was not like we see it today:
 - > No people
 - > No Earth
 - > No Galaxies
 - > and it was much much *smaller*
- The primordial Universe contained both matter and anti-matter
- Energy was converting into matter and anti-matter which then annihilated to create again energy
- This cycle was broken, and the Universe now is made just of matter
- Where did the anti-matter go?

The Universe

- CMS
- Our Universe is now made of matter, forming the baryons and leptons which make up the atoms and molecules we are made of 0.27
- This required an **asymmetry** between matter and anti-matter in the primordial Universe
 - > Baryon Asymmetry in the Universe (BAU)
 - Matter : Antimatter 1'000'000'001 : 1'000'000'000
- More specifically, the asymmetry is encoded in the ratio of baryons over photons in the Universe
- From the cosmic microwave background this is

$$\eta = \frac{(n_B - n_{\bar{B}})}{n_{\gamma}} = \frac{n_{B,relic}}{n_{\gamma}} \approx 6 \times 10^{-10}$$

Eur. Phys. J. A 57, 128 (2021) baryon-to-photon ratio $\eta = n_b/n_\gamma$

Evolution of the Universe

- The cosmic microwave background originated when the Universe cooled off enough that the photons were free to propagate
 - > Epoch or recombination: formation of atoms
- Going backward in time particle density and temperature increase:
 - > formation of nuclei
 - > cosmic neutrino background
 - > the baryon-antibaryon annihilation → the matter asymmetry should have been present before this moment
- Sakharov theorized 3 conditions **<u>necessary</u>** for a CPT conserving theory to explain the BAU:
 - > Baryon number violation: generate asymmetry in a symmetric Universe
 - > C and CP violation: asymmetric interaction to remove antimatter
 - > Deviation from thermal equilibrium: to prevent reverting to a symmetric state
- Is there a theory that satisfies all 3 conditions?

- Successful theory predicting the behavior of matter constituents (fermions)
- Interactions mediated by **gauge bosons**, gravity not included

Standard Model of Elementary Particles

• Relevant symmetries:

- > Time reversal (T)
- > Chirality: χ_L , χ_R
- The decoupling of the weak and electromagnetic forces is a key moment in the history of the Universe

December 1, 2023

- The gauge invariance of the SM would prevent mass terms for the vector bosons and the fermions
- The Higgs boson was introduced to softly break the electroweak symmetry and give mass to the particles
- EWSB: $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{em}$
 - > Gauge bosons gain mass directly through Higgs kinetic term

$$L_{mWZ} = \left(\frac{v^2 g^2}{4} W^{\dagger}_{\mu} W^{\mu} + \frac{v^2 (g^2 + {g'}^2)}{8} Z_{\mu} Z^{\mu}\right)$$

> Fermions gain mass via Yukawa coupling

$$L_Y^f = -\underbrace{m_f(\bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L)}_{\text{fermionic mass term}} - \underbrace{\frac{m_v}{v}(\bar{\psi}_LH\psi_R + \bar{\psi}_RH\psi_L)}_{\text{our line of the Hiere to fermione}}$$

coupling of the Higgs to fermions

• Fermions form the matter our Universe is made of \rightarrow Look for CP violation in the Higgs sector

November 23, 2022

~MS

The Higgs boson – short recap

CMS

- At the LHC the main way to produce the Higgs boson is via gluon-gluon fusion
- Production via vector boson fusion,
 Higgs-strahlung and in association with
 top or bottom quarks are rarer

Higgs decays at m_H=125GeV

- The Higgs boson is not stable and decays immediately
- It can decay directly to W and Z bosons, and to all fermions via Yukawa coupling
- Via intermediate fermion or boson loop it can also decay to photons and gluons

CP violation

• Weak interactions massively violates C and P symmetries, it also violates CP: K_0 oscillation $\rightarrow K_s$ and K_L decays – Cronin and Fitch in the 60s

- The most notable violation of C, P and CP in the SM comes from flavor changing currents in the weak interaction
- CP violation located in the complex phase in the Cabibbo-Kobayashi-Maskawa matrix
- The matrix was introduced to describe the quark mixing in the weak interaction

- The quark mixing and the quark masses have a common origin: the Yukawa interaction
- The Higgs boson gives mass to the particles and defines the fermion generations

•
$$\mathcal{L}_{\phi q} = -\sum_{ij} G_{ij} \left(\bar{U}_{iL} \quad \bar{D}_{iL} \right) \cdot \begin{pmatrix} \phi^{0\dagger} \\ -\phi^{-} \end{pmatrix} U_{jR}$$
 \longrightarrow Yukawa for up-type quarks
 $-\sum_{ij} H_{ij} \left(\bar{U}_{iL} \quad \bar{D}_{iL} \right) \cdot \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} D_{jR} + H.c.$ \longrightarrow Yukawa for down-type quarks

with the indices i,j running over the quark generations

• After EWSB the quarks acquire mass via the Higgs vacuum expectation value

•
$$\mathcal{L}_m = -\sum_{ij} \bar{U}_{iL} m^U_{ij} U_{jR} - \sum_{ij} \bar{D}_{iL} m^D_{ij} D_{jR} + H.c.$$

• No theoretical requirement for the m_{ij} matrices to be diagonal **but** the SM Lagrangian is invariant under unitarity transformations

MS

The CKM matrix

• We can multiply all fields by unitary matrices and redefine the quark fields to diagonalize the mass matrices

$$m_{ij}^{U} = \frac{1}{\sqrt{2}} G_{ij} v \qquad m^{U'} = A_L^U m^U A_R^{U\dagger}$$
$$m_{ij}^{D} = \frac{1}{\sqrt{2}} H_{ij} v \qquad m^{D'} = A_L^D m^D A_R^{D\dagger}$$

- Cannot diagonalize both mass matrices at once → diagonalize one mass matrix and redefines the fields for either up or down type quarks
- The lightest quarks are u, d and s → the quark mixing was observed for kaon decays between the d and s quarks → the mass term diagonalized is the one for up-type quarks

•
$$V_{CKM} = A_L^U (A_L^D)^{-1} \longrightarrow q_{uL} = \left(\frac{1-\gamma_5}{2}\right) \left(\begin{array}{c} u \\ V_{ud} + V_{us} s + V_{ub} b \end{array}\right)$$

CP violation in the SM

• The CKM matrix is unitary **but** is not required to be Real → it can have a complex phase leading to direct CP violation in the electroweak sector

•
$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

- The complex phase δ = 1.196 ± 0.045 [rad] is the main source of CP violation allowed in the SM
- Another source of CP violation *could** be found in the neutrino oscillation if the PMNS matrix presents a complex phase
- The strong interaction does not seem to violate CP experimentally... however in QCD CP-violating terms can arise leading to the question of why no signs of CP violation have been observed

*there is no experimental consensus on a CP-violating phase in the PMNS matrix

EW baryogenesis – B violation

- The main source of CP violation in the SM comes from the EW sector and is linked to the Higgs boson
- What about the other 2 Sakharov's conditions?
 - > Baryon number violation \rightarrow is there baryon number violation in the SM?
 - In the SM the baryon (B) and lepton (L) number are conserved only via accidental symmetries there are no gauge invariant operators of dim 4 that violate them
 - Anomalies appear at triangular loop level due to the chiral structure of the SM Adler, Bell and Jackiw (ABJ) anomalies

Sphalerons

• $U(1)_B$ and $U(1)_L$ are broken at quantum level, as is B+L, however **B-L is preserved**

$$\partial_{\mu}J^{\mu}_{\rm B+L} = \frac{\alpha_{1}^{2}}{8\pi}N_{g}Y^{\alpha\beta}\tilde{Y}_{\alpha\beta} - \frac{\alpha_{2}^{2}}{4\pi}N_{g}W^{\alpha\beta}_{i}\tilde{W}_{i\alpha\beta}$$

$$\partial_{\mu}J^{\mu}_{\rm B-L} = 0 .$$

• At low temperatures the B violation is low, but at high temperature it can proceed via **sphaleron** production $E = \frac{1}{2} \sum_{k=1}^{T} E_{k}$

F. R. Klinkhamer and N. S. Manton Phys. Rev. D 30, 2212

- A Sphaleron from Greek Σφαλερός ready to fall is a static, but unstable, solution for the electroweak theory
- It allows the transition between distinct EW vacuum states (different baryon or lepton number)
- > $E_{sph} \sim 8\pi v(T)/g_w$ the energy is proportional to the vacuum expectation value of the Higgs field

M. Dine (2016). Supersymmetry and String Theory

- The last condition necessary for matter-antimatter asymmetry to occur is that the CP violating interactions take place out of thermal equilibrium
- We need a **phase transition:** an interaction outside of thermal equilibrium
- The electroweak symmetry breaking provides the appropriate conditions

- The last condition necessary for matter-antimatter asymmetry to occur is that the CP violating interactions take place out of thermal equilibrium
- We need a **phase transition:** an interaction outside of thermal equilibrium
- The electroweak symmetry breaking provides the appropriate conditions
- The Higgs potential in the present has the usual *sombrero* shape you are familiar with

CMS

- The last condition necessary for matter-antimatter asymmetry to occur is that the CP violating interactions take place out of thermal equilibrium
- We need a **phase transition:** an interaction outside of thermal equilibrium
- The electroweak symmetry breaking provides the appropriate conditions
- The Higgs potential in the present has the usual *sombrero* shape you are familiar with
- The electroweak phase transition started at $T < T_C$ when the the absolute minima of the system became $|\Phi|^2 > 0$
 - > 1st order PT: the system goes to the absolute minima via tunnelling

Electroweak phase transition

1st order PT: the system goes to the absolute minima via tunnelling

2nd order PT: there is no energy barrier and the system goes to the minimum *smoothly*

• Like when boiling water, the entire Universe did not reach EWPT instantaneously everywhere

December 1, 2023

giphy

CMS

/ 37

- Like when boiling water, the entire Universe did not reach EWPT instantaneously everywhere
- The transition happened along expanding *bubbles* where the EW symmetry breaks

- CMS
- Like when boiling water, the entire Universe did not reach EWPT instantaneously everywhere
- The transition happened along expanding *bubbles* where the EW symmetry breaks
- Along the bubble walls transition from the symmetric state to the broken EW one

- Like when boiling water, the entire Universe did not reach EWPT instantaneously everywhere
- The transition happened along expanding *bubbles* where the EW symmetry breaks
- Along the bubble walls transition from the symmetric state to the broken EW one
- Fields on the bubble walls are highly out of equilibrium \rightarrow satisfy the 3rd Sakharov's condition

- B violating processes have different rates in the EW symmetric or broken phases
 - > In the unbroken phase T is high enough to have a continuous sphaleron production → B-L is preserved but the rate of B violating processes is high
 - > At the wall they are Boltzmann suppressed
 - > In the broken phase they are exponentially suppressed
- To have baryon asymmetry inside the bubble and freeze it, the sphaleron processes need to shut down quickly
 - $\rightarrow\,$ require a strong 1st order phase transition
- Problem: this would require a Higgs of mass < 80 GeV
 - > The SM provides the conditions for generating some baryon asymmetry but not enough for the observed BAU

 $^{\rm M}$

Andrea Cardini – CP violation and BAU

Explaining the BAU with CPV in the Higgs sector

- To explain the BAU we need either
 - More Higgs bosons ► extra Higgs doublets/singlets, SUSY, etc. >
 - > More sources of **CP violation** → today's topic
 - As the Higgs boson is intrinsically linked to the SM contributions to the baryogenesis it is a good • candidate to look for additional CPV
- What do we know about the Higgs boson now?
 - Discovery announced in 2012 by the ATLAS and CMS experiments – over 10 years ago
 - > Established couplings to 3rd generation fermions
 - Coupling to W and Z well studied since Run 1
 - More recently studied are decays to muons and charm quarks, > and evidence for Zy has been established

19/37

CMS

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
 - > HVV couplings (V= Z,W bosons)
 - studied in 4 lepton final state / VBF production

 Phys. Rev. D 104 (2021) 052004
 Phys. Rev. D 108 (2023) 032013

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
 - > HVV couplings (V= Z,W bosons)
 - studied in 4 lepton final state / VBF production

Phys. Rev. D 104 (2021) 052004

Phys. Rev. D 108 (2023) 032013

Pure CP odd excluded already with Run 1 data \rightarrow search for anomalous couplings

Phys. Rev. D 108 (2023) 032013

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
 - > HVV couplings (V= Z,W bosons)
 - studied in 4 lepton final state / VBF production

<u>Phys. Rev. D 104 (2021) 052004</u>

Pure CP odd excluded already with Run 1 data \rightarrow search for anomalous couplings

- > Yukawa coupling of Higgs to fermions
 - $gg \rightarrow H$ +jets: effective Higgs-gluon coupling via top quark loop
 - <u>Phys. Rev. D 104 (2021) 052004</u>

Phys. Rev. D 108 (2023) 032013

sseudo experiments

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
 - > HVV couplings (V= Z,W bosons)
 - studied in 4 lepton final state / VBF production

Phys. Rev. D 104 (2021) 052004

Pure CP odd excluded already with Run 1 data \rightarrow search for anomalous couplings

- > Yukawa coupling of Higgs to fermions
 - gg → H +jets: effective Higgs-gluon coupling via top quark loop
 Phys. Rev. D 104 (2021) 052004
 - $gg \rightarrow ttH$: direct Yukawa coupling of Higgs to top quarks
 - <u>JHEP 07 (2023) 092</u>

Phys. Rev. D 108 (2023) 032013

sseudo experiments

- Higgs boson predicted to have spin-parity $0^+ \rightarrow$ direct coupling to Z and W bosons
- CP violation in the Higgs sector:
 - > HVV couplings (V= Z,W bosons)
 - studied in 4 lepton final state / VBF production

<u>Phys. Rev. D 104 (2021) 052004</u>

Pure CP odd excluded already with Run 1 data \rightarrow search for anomalous couplings

- > Yukawa coupling of Higgs to fermions
 - $gg \rightarrow H$ +jets: effective Higgs-gluon coupling via top quark loop
 - <u>Phys. Rev. D 104 (2021) 052004</u>
 - $gg \rightarrow ttH$: direct Yukawa coupling of Higgs to top quarks
 - <u>JHEP 07 (2023) 092</u>
 - $H \rightarrow \tau \tau$ decays: exploit spin correlation between tau leptons and their decay products
 - JHEP 06 (2022) 012

Phys. Rev. D 89 (2014), 092007

- Investigating CP violation in HVV couplings with an EFT approach
 - Amplitude for Higgs coupling to two spin 1 particles (VV= WW, ZZ, Zγ, γγ, gg etc.) with operators up to dimension 6

- Investigating CP violation in HVV couplings with an EFT approach
 - Amplitude for Higgs coupling to two spin 1 particles (VV= WW, ZZ, Zy, yy, gg etc.) with operators up to dimension 6

Effect on cross-section parametrized as the fractional contribution / of the anomalous coupling to the total cross-section

- Investigating CP violation in HVV couplings with an EFT approach
 - Amplitude for Higgs coupling to two spin 1 particles (VV= WW, ZZ, Zy, yy, gg etc.) with operators up to dimension 6

- Effect on cross-section parametrized as the fractional contribution of the anomalous coupling to the total cross-section
- Theoretical approach includes also Hyy and Hgg with tree level coupling being set to 0

• Higgs direct and effective couplings to vector bosons studied both in production and decay

• Decay:

- > Target process: $H \rightarrow VV \rightarrow 4$ leptons
- > Uses kinematics of leptons in the final state
- Production:
 - > Target process: Vector Boson Fusion (VBF)
 - > Higgs CP nature affects kinematics of jets from the initial state
 - > Studied in Higgs decays to ττ, 4 leptons and γγ

CP violation in $H \rightarrow 4$ leptons

CMS

CMS

Constraints expressed in several scenarios based on the possible symmetries imposed on the couplings:

> Approach 1: $a_i^{WW} = a_i^{ZZ}$

December 1, 2023

Andrea Cardini – CP violation and BAU

24 / 37

Combination with off-shell H \rightarrow 2l2v/4 lepton

- Off-shell Higgs production can provide additional sensitivity to anomalous couplings
 - > CP-odd anomalous coupling constrained between [-4.6,11] × 10⁻⁴ at 95% CL

Combination with off-shell H \rightarrow 2l2v/4 lepton

- Off-shell Higgs production can provide additional sensitivity to anomalous couplings
 - > CP-odd anomalous coupling constrained between [-4.6,11] × 10⁻⁴ at 95% CL

$H \rightarrow ZZ^* \rightarrow 4$ leptons differential cross-section

- $H \rightarrow 4$ leptons also studied differentially
- Differential measurement performed with respect to angular variables, Higgs momentum, and accompanying jet $pT \rightarrow sensitivity$ to loop correction and BSM operators

$H \rightarrow ZZ^* \rightarrow 4$ leptons differential cross-section

- CMS
- The increased sensitivity allows to constrain better CP-violating terms and validate our current theoretical understanding

VBF production with $H \rightarrow \tau\tau$ decays

28/37

- Higgs decays to tau leptons can be used as a probe both for CP violation in Higgs decays and in combination with H → 4l for the search of CP violation in production
 - > When studying Higgs CP in production the $H \rightarrow \tau\tau$ vertex is kept SM-like
 - The azimuthal angle between jets coming from the initial state offers sensitivity to the Higgs CP quantum number

Andrea Cardini – CP violation and BAU

• Higgs Yukawa interaction can be parametrized as follows:

>
$$\mathscr{L}_{Y,f} = -\frac{m_f}{v} \bar{\psi}_f (\kappa_f + i\gamma^5 \tilde{\kappa}_f) H \psi_f$$

- > Higgs direct coupling to top quarks investigated in ttH and tH production
 - CP-odd anomalous coupling affects top quark(s) kinematics
 - Investigated with MVA techniques
- > Higgs coupling to τ leptons investigated in decays via τ spin correlation
 - CP mixing encoded in $\alpha^{H\pi}$:
 - $\kappa_{\tau} = \sqrt{\mu^{\tau\tau}} \cos\left(\alpha^{H\tau\tau}\right)$
 - $\bar{\kappa}_{\tau} = \sqrt{\mu^{\tau\tau}} \sin \left(\alpha^{H\tau\tau} \right)$
 - Mixing angle can be accessed via the angle between τ decay planes

 $^{\rm M}$

Lepton Flavor Violation

- Beyond the coupling to top quarks and tau leptons we also look for lepton flavor violation
 - > Lepton flavor is conserved \rightarrow the Yukawa matrix is diagonal wrt lepton generations
- In analogy with the CKM matrix we can look for CP violation also by studying off-diagonal elements of the lepton Yukawa matrix
 - A search for $H \rightarrow e\mu$ decays can hint towards sources > of new physics
 - Search performed in mass window 110< m_{eu} <160 GeV >
 - Analysis exploits BDT to improve S/B ratio in two signal categories: ggH and VBF

$H \rightarrow e\mu \ LFV \ decays$

doi:10.48550/arXiv.2305.18106

- Constraints on the H \rightarrow eµ branching fraction determined for SM-like H(125) and more generally for generic scalar particle X of mass between 110 and 160 GeV
 - > First direct search for eµ resonance in chosen mass range
- Observed (expected) limit on $\mathcal{B}(H \rightarrow e\mu) < 4.4 (4.7) \times 10^{-5}$ at 95% for a SM-like Higgs
- The X \rightarrow eµ search presents a local (global) excess of 3.8 σ (2.8 σ) for the 146 GeV mass point <u>CMS</u> 138 fb⁻¹(13 T
- The best fit signal for this mass point has a crosssection of 3.89±1.25 fb
- More data is needed to investigate this excess

CP violation in Higgs-top couplings

- Top quark loop has leading contribution to ggH effective coupling
 → simultaneous fit of CP-odd contribution ggH and ttH
 production
 - Combination performed under hypothesis that ggH loop is dominated by top quark

- Higgs couplings are proportional to the mass \rightarrow enhanced coupling with the top quark \rightarrow target ttH and tH production
- Htt coupling CP structure was probed in the H \rightarrow WW, $\tau\tau$ (multilepton) $\gamma\gamma$ and ZZ decays

CP violation in $H \rightarrow \tau \tau$ decays

 τ

The cross section of the $H \rightarrow \tau\tau$ decay acquires a synusoidal dependence on the azymuthal angle spanned between the two τ polarimeters

$$\frac{d\,\sigma}{d\,\varphi_{CP}} \propto const - \cos(\varphi_{CP} - 2\,\varphi_{\tau\tau})$$

- CP mixing appears as a **phase-shift** in the distribution
- Measuring the Higgs CP mixing angle requires accessing the azymuthal difference between the polarimetric vectors
- This angle can be generalized to the angle between the τ decay planes, an **acoplanarity angle**

CP violation in $H \rightarrow \tau \tau$ decays

doi:10.3204/PUBDB-2021-03550 Hidden lavers 137 fb⁻¹ (13 TeV Use of ML classifiers to identify the Higgs boson Input features higgs $\tau_{\mu}\tau_{h}$ fakes tata- 137 fb^{-1} (13 TeV) CMS 04 0.6 0.8 μρ NIN score Events **CMS** Simulation 13 TeV (0.33, 0.45)(0.8, 0.9)(0.9, 1.0)(0.45, 0.6)(0.6, 0.7)(0.7, 0.8)Observed a.u. CP even ---- CP odd Best fit $H \rightarrow \tau \tau$ ----- CP mix ---- Z 10^3 0.1 $\tau\tau$ bkg. $2\alpha^{H\tau\tau}$ Jet $\rightarrow \tau_h$ 0.08 10^{2} Others Bkg. unc. 0.06 $PSH \rightarrow \tau\tau$ 10^{1} Best fit $H \rightarrow \tau \tau$ 0.04 0.02 30 p_τ^τ > 33 GeV $\tau^+\tau^- \rightarrow \pi^+\pi^-$ <u>Jbs.-Bkg.</u> <u>Bkg. unc.</u> 20 300 360 10 60 120 240 ϕ_{CP} (degrees) Obs. Modulation of the differential cross-section 10 20 30 40 50 60 can be used to probe the CP mixing angle JHEP 06 (2022) 012 Bin number December 1, 2023 34/37 Andrea Cardini – CP violation and BAU

CP-even/odd couplings

CP-even/odd couplings

December 1, 2023

Andrea Cardini – CP violation and BAU

35 / 37

Summary and prospects

- CMS
- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe

- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe
- Exclusion limits for pure CP-odd Higgs couplings:
 - > HVV couplings: $|f_{a3}| < O(10^{-3})$ at 95% CL in combination with off-shell production

- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe
- Exclusion limits for pure CP-odd Higgs couplings:
 - > HVV couplings: $|f_{a3}| < O(10^{-3})$ at 95% CL in combination with off-shell production
 - > Htt: $|f_{CP}^{Htt}| < 0.55$ at 68% CL

- CMS
- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe
 CMS Supplementary
- Exclusion limits for pure CP-odd Higgs couplings:
 - > HVV couplings: $|f_{a3}| < O(10^{-3})$ at 95% CL in combination with off-shell production
 - > Htt: $|f_{CP}^{Htt}| < 0.55$ at 68% CL
 - > Hττ: tan ($\alpha^{H\tau\tau}$) < 0.36 at 68% CL
- All analyses exclude pure CP-odd hypothesis and agree with SM prediction

- Higgs boson couplings have been investigated looking for CP-odd contributions which could help explaining the baryon asymmetry in the Universe
 CMS Supplementary
- Exclusion limits for pure CP-odd Higgs couplings:
 - > HVV couplings: $|f_{a3}| < O(10^{-3})$ at 95% CL in combination with off-shell production
 - > Htt: $|f_{CP}^{Htt}| < 0.55$ at 68% CL
 - Hττ: tan (α^{Hττ}) < 0.36 at 68% CL</p>
- All analyses exclude pure CP-odd hypothesis and agree with SM prediction
- Promising future for CP violation studies at Run3, HL-LHC, and in combination with ATLAS

CP Violation in the Higgs Sector: Understanding Matter-Antimatter Asymmetry

Keep looking for more!

Andrea Cardini – Deutsches Elektronen-Synchrotron DESY

