Extreme mass-ratio inspirals to probe modified gravitational-wave propagation and LCDM

Danny Laghi

CNES Postdoctoral Fellow[†] Laboratoire des 2 Infinis - Toulouse (L2IT)

Based on C. Liu, DL, N. Tamanini, arXiv:2310.12813 [†]This research is directly supported by the CNES

Amaro-Seoane et al., arXiv:1702.00786

Extreme Mass-Ratio Inspirals

• Binary systems with mass ratio $m_2/m_1 \sim 10^{-6} - 10^{-3}$

• Slow inspiral, $10^4 - 10^5$ orbital cycles in the final year before plunge

Very accurate measurements of the system parameters

Babak et al., PRD (2017)

Credit: eLISA White Paper, arXiv:1305.5720

GWs to probe late-time FLRW cosmology

Individual GW sources at cosmological distances are "standard sirens" Hubble parameter Atoms

Luminosity distance-redshift relation

$$d_L^{\text{EM}}(z) = \frac{c(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}$$

Modified GW propagation

In General Relativity, GW propagating on FLRW background:

 $\tilde{h}_A'' + 2\mathcal{H}$

$$\mathscr{H}\tilde{h}'_{A} + k^{2}\tilde{h}_{A} = 0 \qquad \qquad \mathscr{H} = a'$$

$$A = +$$

Modified GW propagation

In General Relativity, GW propagating on FLRW background:

 $\tilde{h}_{A}^{\prime\prime}+2\mathcal{H}$

In modified gravity, GW propagating on FLRW background:

$$\tilde{h}_A'' + 2\mathcal{H}\left[1 - \delta(\eta)\right]\tilde{h}_A' + k^2\tilde{h}_A = 0$$

Saltas+, PRL (2014) Nishizawa, PRD (2018) Belgacem+, PRD (2018)

$$\mathscr{H}\tilde{h}_{A}' + k^{2}\tilde{h}_{A} = 0 \qquad \qquad \mathscr{H} = a' A = + A$$

Modified GW propagation

In General Relativity, GW propagating on FLRW background:

 $\tilde{h}_{A}^{\prime\prime}+2\mathcal{H}$

In modified gravity, GW propagating on FLRW background:

$$\tilde{h}_{A}^{\prime\prime} + 2\mathscr{H} \begin{bmatrix} 1 - \delta(\eta) \end{bmatrix} \tilde{h}_{A}^{\prime} + k^{2} \tilde{h}_{A} = 0$$

$$\downarrow$$
Modified "friction"

This affects the GW amplitude across cosmological distances

Saltas+, PRL (2014) Nishizawa, PRD (2018) Belgacem+, PRD (2018)

$$\mathscr{C}\tilde{h}'_A + k^2\tilde{h}_A = 0 \qquad \qquad \mathscr{H} = a' A = + A$$

GW luminosity distance

"GW luminosity distance":

Belgacem et al., PRD (2018)

The net effect is that the quantity extracted from GW observations is a

6

GW luminosity distance

"GW luminosity distance":

A convenient phenomenological

Belgacem et al., PRD (2018)

The net effect is that the quantity extracted from GW observations is a

EMRIs as dark standard sirens

Macleod, Hogan, PRD (2008)
 Proof-of-principle study

Laghi+, MNRAS (2021)
 Bayesian constraints (90% Cl) on
 H₀ (2-6%) and w₀ (<10%)

EMRIs as dark sirens up to $z \sim 1$

Can we use EMRIs to constrain Ξ_0 + LCDM parameters ?

- In Liu, Laghi, Tamanini arXiv:2310.12813 we explored:
 - Different astrophysical EMRI models and waveforms (M1/M5/M6 + AKS/AKK)from Babak et al., PRD (2017)

-				
	Model	Total	EMRI rate [yr ⁻¹] Detected (AKK)	Detected (AKS)
$\left(\begin{array}{c} \end{array} \right)$	M1	1600	294	189
	M2	1400	220	146
	M3	2770	809	440
	M4	520 (620)	260	221
	M5	140	47	15
C	M6	2080	479	261
	M7	15800	2712	1765
	M8	180	35	24
	M9	1530	217	177
	M10	1520	188	188
	M11	13	1	1
	M12	20000	4219	2279

Babak et al., PRD (2017)

 Different injected values of $\Xi_0 = 0.9, 1.0, 1.2 (n = 2)$

Example: $\Xi_0 \sim 0.934$ (6.6% dev. from GR) Belgacem et al., JCAP (2019)

Analysis Setup

- Select EMRIs at SNR>100
- Move to *z*-space using d_L^{GW} and assuming cosmological priors: $h \in [0.6, 0.76], \Omega_m \in [0.04, 0.5],$ $\Xi_0 \in [0.6, 2.0], n \in [0.0, 3.0]$
- Cross-match EMRI sky locations with simulated galaxy light cone (z < 1)

Henriques et al., MNRAS (2019) Izquierdo-Villalba et al., A&A (2019)

Analysis Setup

- Select EMRIs at SNR>100
- Move to *z*-space using d_L^{GW} and assuming cosmological priors: $h \in [0.6, 0.76], \Omega_m \in [0.04, 0.5],$ $\Xi_0 \in [0.6, 2.0], n \in [0.0, 3.0]$
- Cross-match EMRI sky locations with simulated galaxy light cone (z < 1)

Henriques et al., MNRAS (2019) Izquierdo-Villalba et al., A&A (2019)

	Model	Parameters	Num of StS	
			AKS	AKK
	M1	$h + \Omega_M + \Xi_0 + n$	17	29
		$h + \Omega_M + \Xi_0$	19	30
		$h + \Xi_0$	19	30
		$\Xi_0 + n$	19	32
		Ξ0	19	33
	M5	$h+\Omega_M+\Xi_0+n$	3	5
		$h + \Omega_M + \Xi_0$	3	6
		$h + \Xi_0$	3	6
		$\Xi_0 + n$	3	6
		Ξ_0	3	7
	M6	$h+\Omega_M+\Xi_0+n$	23	60
		$h + \Omega_M + \Xi_0$	23	65
		$h + \Xi_0$	23	68
		$\Xi_0 + n$	23	69
		Ξ_0	24	72
	Liu DI Tamanini arViv.2210 12012			

Liu, DL, Tamanini, arXiv:2310.12813

Analysis Setup

- Select EMRIs at SNR>100
- Move to *z*-space using d_L^{GW} and assuming cosmological priors: $h \in [0.6, 0.76], \Omega_m \in [0.04, 0.5],$ $\Xi_0 \in [0.6, 2.0], n \in [0.0, 3.0]$
- Cross-match EMRI sky locations with simulated galaxy light cone (z < 1)

Henriques et al., MNRAS (2019) Izquierdo-Villalba et al., A&A (2019)

Bayesian inference with **cosmoLISA**

Del Pozzo, Laghi [github.com/wdpozzo/cosmolisa]

	Model	Domonsotomo	Num of StS	
	Model Parameters		AKS	AKK
	M 1	$h + \Omega_M + \Xi_0 + n$	17	29
		$h + \Omega_M + \Xi_0$	19	30
		$h + \Xi_0$	19	30
		$\Xi_0 + n$	19	32
		Ξ0	19	33
		$h + \Omega_M + \Xi_0 + n$	3	5
	M5	$h + \Omega_M + \Xi_0$	3	6
		$h + \Xi_0$	3	6
		$\Xi_0 + n$	3	6
		Ξ0	3	7
	M 6	$h + \Omega_M + \Xi_0 + n$	23	60
		$h + \Omega_M + \Xi_0$	23	65
		$h + \Xi_0$	23	68
		$\Xi_0 + n$	23	69
		Ξ0	24	72
	Liu, DL.	Tamanini, arXiv:23	10.128	313

EMRIs with LISA can constrain Ξ_0 in several scenarios

EMRIs with LISA can constrain $\Xi_0~$ in several scenarios

Overall, AKK better than AKS

EMRIs with LISA can constrain $\Xi_0\,$ in several scenarios

 $\Xi_0 = 0.992^{+0.101}_{-0.067}$ Overall, AKK better than AKS ► Ξ alone: > 2 - 8% (90% CI) 0.9 1.0 1.2 1.3 1.1 8.0 =0 • $\Xi_0 + h: > 9 - 29\%$ and > 4 - 10% $h = 0.704^{+0.049}_{-0.069}$ respectively $\Omega_m = 0.278^{+0.198}_{-0.213}$ $\mathbf{\Omega}_m$ 0 111 2

EMRIs with LISA can constrain $\Xi_0~$ in several scenarios

Overall, AKK better than AKS

- ► Ξ alone: > 2 8% (90% CI)
- $\Xi_0 + h: > 9 29\%$ and > 4 10%respectively

- M5 10x worse than M1
- 10 yrs 1.4x better than 4 yrs
- Similar constraints for $\Xi_0 \neq 1$

Conclusion

- LISA can probe modified friction in GW propagation
- EMRIs used as dark sirens could constrain Ξ_0 at the few-% level
 - Better than current 2G detector constraints Chen, Gray, Baker, arXiv:2309.03833
 - In general as not as good as 3G detector forecasts Belgacem+, JCAP (2019)
- Full details and results in Liu, Laghi, Tamanini, arXiv:2310.12813

Thank you!

danny.laghi@l2it.in2p3.fr

