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Current Position: Starting a postdoc in October at Lagrange
(OCA), with Astrid Lamberts (CNES Founding)
∗ Developing / Consolidating / Preparing the pipeline of
Catalogs (L2/L3)

∗ Figure of Merit calculation on catalogs and Global Fit output
∗ Developing techniques to compare Global Fits
∗ Generating new populations of Double White Dwarfs (DWD)
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» Stochastic background in LISA band

Stochastic Background : Superposition of a large number of
independent sources (unresolved sources):

∗ White dwarf binaries in our galaxy Lamberts et al.
simulation of the waveform with galactic population of
Double White Dwarf (DWD)
s(t) = ∑N

i=1

∑
P=+,× hP,i(forb,i,M1i,M2i,Xi,Yi,Zi, t)×

FP(θ, ϕ, t)D(θ, ϕ, f)P : eP
with a modulated waveform (Adams & Cornish)

∗ Binary Black Holes and Binary Neutron Stars from
LIGO/Virgo Band

∗ ΩGW ≃ 1.8× 10−9 − 2.5× 10−9 at 25 Hz Chen et al. (2019)
∗ ΩGW ≃ 4.97× 10−9 − 2.58× 10−8 at 25 Hz Périgois et al. (2020)

∗ Cosmological sources: Phase transition, Preheating, Cosmic
strings ... (early universe)
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» Stochastic background in LISA band

Energy density spectrum:

Model of Energy density spectrum SGWB sources

ΩGW(f) =
A1

(
f
f∗

)α1

1 + A2

(
f
f∗

)α2
+ΩAstro

( f
f∗

)αAstro
+ΩGW,Cosmo(f)

with α = 2/3 for the astrophysical component and low frequency
DWD (ΩDWD,LF(f) = A1

A2

(
f
f∗

)α1−α2) and different Cosmological
models

Goal: Detecting a cosmological SGWB with LISA in the presence
of an astrophysical background and Galactic foreground
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» LISA noise model

Time-seriesXYZ toAET
A = 1√

2
(Z− X)

E = 1√
6
(X− 2Y+ Z)

T = 1√
3
(X+ Y+ Z)

PSDAET
NA = NE = NX(f)− NXY(f)
NT = NX(f) + 2NXY(f) NX(f) =

(
4Ss(f) + 8

(
1 + cos2

(
f
f∗

))
Sa(f)

)
|1− e−

2if
f∗ |2

NXY(f) = − (2Ss(f) + 8Sa(f)) cos
(

f
f∗

)
|1− e−

2if
f∗ |2 Ss(f) = NPos

Sa(f) = Nacc
(2πf)4

(
1 +

(
f1
f

)2
)

with f∗ = c
2πL , L = 2.5× 109 m, f1 = 0.4 mHz

Acceleration noise: NAcc = 1.44× 10−48 s−4 Hz−1

Optical Metrology System noise: NPos = 3.6× 10−41 Hz−1
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» MCMC (Markov Chain Monte Carlo)
Likelihood function, (d = data, θ = parameter)
Likelihood

L(d|θ) = −1

2

N∑
k=0

[
d2A

SA + NA
+

d2E
SE + NE

+
d2T
NT

+ log
(
8π3(SA + NA)(SE + NE)NT

) ]
with NI as the LISA noise of channel I = [A, E,T] and SI(f) = 3H2

0

4π2

∑
i ΩGW,i

RI(f)f3
the SGWB.
∗ Posterior distribution p(θ|d) ∝ p(θ)L(d|θ)
∗ Using log-uniform and uniform priors p(θ) = ∏

i U(θi, ai,bi)
∗ Estimation parameters: θLISA + θAstro + θGalac + θCosmo.

=⇒ Using a Metropolis-Hastings sampler
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» Fisher Information Matrix
Fisher Information Matrix

Fab =
1

2
Tr
(
C−1 ∂C

∂θa
C−1 ∂C

∂θb

)

=
1

2

∑
I=A,E,T

N∑
k=0

∂SI(f)+NI(f)
∂θa

∂SI(f)+NI(f)
∂θb

(SI(f) + NI(f))2

Co-variance Matrix

C(θ, f) =

 SA + NA 0 0
0 SE + NE 0
0 0 NT


with NI is the LISA noise of the channel I = [A, E,T] and
SI ∝

∑
αΩα

(
f
fref

)α−3
the SGWB.

=⇒
√
F−1
aa = σa [7/24]
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» Context: Stochastic background Astrophysical and flat cosmological
components

Energy density spectrum:

Model of Energy density spectrum SGWB sources

ΩGW(f) = ΩAstro

( f
f∗

)αAstro
+ΩCosmo

( f
f∗

)αCosmo

with αAstro = 2/3 for the astrophysical component and αCosmo = 0
for the cosmological component

Goal: Detecting a cosmological SGWB with LISA in the presence
of an astrophysical background
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» Results 6 parameter A-MCMC

Uncertainty of the estimation of the Cosmological Amplitude from the Fisher Information
study in line (with the Cramer-Rao calculation) and the parametric estimation from the
A-MCMC in scatters for the channel A with the noise channel T. The upper horizontal dash
line represents the error level 50%. In fact, above the line, the error is greater than 50%.
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» Results 6 parameter A-MCMC
Prediction of the measurement limit of Cosmological Amplitude in
4 cases of isotropic astrophysical background with 2 noise
parameters (acceleration noise : NAcc = 1.44× 10−48 s−4Hz−1 and
Optical Metrology System noise NPos = 3.6× 10−41 Hz−1) of 4
years mission data measurement:

Limit for BBH/BNS + Cosmo + LISA noise

∗ Ωastro = 3.55× 10−8 (25 Hz): ΩCosmo,lim = 7.8× 10−12

∗ Ωastro = 3.55× 10−9 (25 Hz): ΩCosmo,lim = 7.8× 10−13

∗ Ωastro = 1.8× 10−9 (25 Hz): ΩCosmo,lim = 3.6× 10−13

∗ Ωastro = 3.55×10−10 (25 Hz): ΩCosmo,lim = 7.6×10−14

=⇒ paper G. Boileau et. al. (PhysRevD.103.103529).

@ Guillaume Boileau, Nelson Christensen, Renate Meyer, Neil J. Cornish
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» Population of the white dwarf binaries in our Galaxy

Map Galactic DWD for fGW ≥ 1 ×
10−5 Hz. DWD distribution from
Lamberts et. al. Galactic coordi-
nates GLON,GLAT with Nside = 256.

ASD galactic DWD fromA. Lamberts
(2019), black: ≃ 35 000 000 bina-
ries, red: binaries SNR > 7 and
blue: SNR > 7 + LISA bin (≃ 32 000
binaries)
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» Context: Stochastic background In LISA paper of BBH/BNS prediction

Energy density spectrum:

Model of Energy density spectrum SGWB sources

ΩGW(f) =
A1

(
f
f∗

)α1

1 + A2

(
f
f∗

)α2
+ΩAstro

( f
f∗

)αAstro
+ΩCosmo

( f
f∗

)αCosmo

with αAstro = 2/3 for the astrophysical component and low
frequency DWD : ΩDWD,LF(f) = A1

A2

(
f
f∗

)α1−α2.
Cosmological model : αCosmo = 0

Goal: Detecting a cosmological SGWB with LISA in the presence
of an astrophysical background and Galactic foreground
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» 10 parameter runs of A-MCMC (LISA noise + BBH/BNS + DWD + Cosmo)

ΩCosmo ≈ 1× 10−12

=⇒ paper for MNRAS G. Boileau et al. (10.1093/mnras/stab2575)

@ Guillaume Boileau, Astrid Lamberts, Nelson Christensen, Neil J. Cornish, Renate Meyer
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» Models : cosmic strings
Cosmic strings:
∗ predictions from field theory, stable topological defects
∗ formed during symmetry breaking phase transitions in the early Universe

Energy Spectral Density

ΩGW,Gµ(Gµ,Mi, f), i ∈ [1, 2, 3]

∗ M1: Auclair et. al analytical model of loops produced by the network of
long chains described by a single free parameter (size of loops at the time
of their formation) Kibble et. al

∗ M2: simulations of the Blanco-Pillado, Olum and Shlar (BOS) model.
Networks of cosmic strings present between the eras of radiation and
matter.

∗ M3: simulation of Lorenz, Ringeval and Sakellariadou (LRS), sister
simulation to model 2, calculates and considers different quantities. (the
power in the age of matter differs from that of model 2)
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» Uncertainty: Cosmic Strings

Gµ uncertainty from Fisher information for3 models Mi.

Solid lines : CS + LISA noise. Dot-dashed lines: CS + LISA

noise + galactic foreground astrophysical SGWB.

DIC values for different scenarios. ∆DIC < 2: Not worth

more than a bare mention,∆DIC 2 to 10: positive,∆DIC >

10: very strong.
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» Result
∗ Development of a discrete MCMC with a library (limit ∆Gµ

Gµ )
∗ Good overlap between Fisher study and MCMC
∗ Development of DIC technic
∗ Future study: add MBHB and EMRIs GWB

LISA noise + Cosmic strings
M1 M2 M3

Gµlim 1× 10−17 3× 10−17 3× 10−17

LISA noise + DWD + BBH/BNS + Cosmic strings
M1 M2 M3

Gµlim 3× 10−17 1× 10−16 2× 10−16

Measurement limit

Gµ ≈ 10−16 −→ 10−15

=⇒ paper G. Boileau et. al. (PhysRevD.105.023510)
@ Guillaume Boileau, Alexander C. Jenkins, Mairi Sakellariadou, Renate Meyer, Nelson
Christensen
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» First order phase transitions
∗ Quantum and thermal fluctuation from bubbles in the early Universe
∗ Production of GWs: Collision of Bubble / subsequent sound waves /

Magneto hydrodynamic turbulence
∗ Simulation: Sound shell model (SSM) for GWs production Hindmarsh et. al
∗ SSM approximated by a double broken power law (Caprini et. al, Guo et.

al, Gowling & Hindmarsh)

Broken Power law first order phase transitions

ΩGW,PT(f) = ΩP

(
f
fp

)9

 1 + r4b
r4b +

(
f
fp

)4


(9−b)/4  b+ 4

b+ 4−m+m
(

f
fp

)2


(b+4)/2

with ΩP amplitude at the frequency peak fp, rb the ratio between the two
breaks, b the spectral slope between the two breaks, and m =

9r4b+b
r4b+1

.
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» Result
Context: Phase transition model
(rb = 0.4, = 1) + Astrophysical
background + DWD + LISA noise,
Limit for ∆DIC > 5:

∗ ΩP = 1× 10−9 →
fp ∈ [2× 10−3, 4× 10−2] Hz

∗ ΩP = 1× 10−10 →
fp ∈ [5× 10−3, 7× 10−3] Hz

Limit from Fisher (rb = 0.4, b = 1,
fp = 1mHz):

∗ ∆ΩP
ΩP

= 0.01 → ΩP ∼ 1× 10−10

∗ ∆ΩP
ΩP

= 0.1 → ΩP ∼ 1× 10−11

∗ Similar result for Fisher (lines)
and MCMC (scatter)

=⇒ Paper G. Boileau et. al (JCAP 02 (2023) 056)

Guillaume Boileau, Nelson Christensen, Chloe Gowling, Mark Hindmarsh, Renate Meyer.
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» Conclusion
- We provide evidence that it is possible for LISA to measure the
cosmological SGWB :
Measurement limit

ΩCosmo,lim = 8 × 10−14 − 8 × 10−12

Limitation

BBH and BNS principal limitation for the Cosmological
background
- We use Lamberts et al. (10 October 2019), possibility to
generate white dwarf waveform with other catalogs
- able to estimate more complex backgrounds, like broken power
laws, or spectrum with peaks. Our method can be easily
expanded with more complex cosmological backgrounds
=⇒ papers G. Boileau et al. (PhysRevD.103.103529) and MNRAS
G. Boileau et al. (10.1093/mnras/stab2575)
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» Conclusion Cosmological Sources

Cosmic Strings
Gµ ≈ 10−16 −→ 10−15

=⇒ Paper G. Boileau et. al. (PhysRevD.105.023510)

First Order Phase Transition
∗ DIC: ΩP = 1× 10−9 → fp ∈ [2× 10−3, 4× 10−2] Hz

ΩP = 1× 10−10 → fp ∈ [5× 10−3, 7× 10−3] Hz
∗ Fisher/MCMC: ∆θ

θ
∼ 1%: ΩP = 1× 10−10 and fp = 3 mHz

∆θ
θ

∼ 10%: rb = 0.2 and b = 1

Limitations of the Study
∗ LISA noise assumed stationary, Gaussian, and AET are uncorrelated
∗ Future study: add MBHB and EMRIs GWB or other cosmological

sources
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The End : Thank You !

1GB thanks the Centre national d’études spatiales (CNES) and Université de
la Côte d’Azur (UCA) for support for this research.
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