TCAD Simulations: Applications at FBK

Matteo Centis Vignali¹

SIMDET 2023 LPNHE 24.11.2023

¹mcentisvignali@fbk.eu

Fondazione Bruno Kessler

Silicon Detector Technology at FBK

Single and Double Side Microstrip

3D-detectors

LGAD

Micro Nano Facility

FONDAZIONE BRUNO KESSLER

Two separate clean rooms

- 500m² of clean room (class 10-100)
- 200m² of clean area (class 100-1000) equipped for MEMS technology

6-inch wafers (Si, Quartz, Glass) - 0.35 um processing

•Dry/wet oxidation •sputtering Metallization •Diffusion •LPCVD

•PECVD

Projection lithography: CD 2μm
Stepping lithography: CD 350nm
Ion Implantation

Dry/wet etching

Where does Simulation Fit?

Why TCAD Simulations?

Powerful tool

- Design optimization of the device
- Problem solving
- Understanding of the device physics

Simulating sensors

- Avoid trivial errors and mistakes
- Reduce the number of splits and iterations during fabrication
 ⇒ save time & money

Process Simulation Example 1: Oxidation

...well known process, TCAD not strictly required...

Problem: n-type wafers ($\approx 10^{12} \text{cm}^{-3}$) sometimes behave as p-type after oxidation

Matteo Centis Vignali

Process Simulation Example 1: Oxidation

Hypothesis test: Boron contamination in the furnace (less than 1 ppm)

Test solution: oxidate during ramp \Rightarrow diffusion barrier

Silicon Photomultipiers (SiPM)

- Light detection with single photon sensitivity
- Array of single photon avalanche diodes (SPAD) connected in parallel
- Geiger mode operation
- Trench isolation to avoid optical cross talk

Trenches between SPAD cells width < 1 μ m, aspect ratio > 5

These will be filled with oxide (oxidation + deposition)

Trench oxidation: ideally oxidate only the inside of the trench \Rightarrow put nitride as diffusion barrier

```
deposit oxide thick=0.02 dy=0.001
deposit nitride thick=0.03 dy=0.001
etch nitride start x=2.2 v=-0.05
etch cont x=2.8 y=-0.05
etch cont x=2.8 y=0
etch done x=2.2 y=0
etch oxide start x=2.2 y=-0.05
etch cont x=2.8 y=-0.05
etch cont x=2.8 y=0
etch done x=2.2 y=0
etch silicon start x=2.2 y=0
etch cont x=2.8 y=0
etch cont x=2.8 y=3
etch done x=2.2 y=3
```


Oxidation in only in some regions: LOCOS \rightarrow LOCal Oxidation of Silicon

Trench oxidation:

```
diffus time=150 temp=1000 dry
```

- Beak height depends on initial oxide and nitride thickness
- Higher beak ⇒ higher stress and dislocations
 - \Rightarrow worse device performance

Optimize!

Deposit more oxide

Low Gain Avalanche Detectors

- Silicon detectors with charge multiplication
- Gain \approx 10
- Gain layer provides high-field region
- Junction Termination Extension improves stability
- Improve SNR of the system (When the sensor shot noise is not dominating)
- Noise and power consumption \Rightarrow low gain

Double Sided LGADs

- $\bullet\,$ Continuous gain area in the active region \Rightarrow 100% fill factor
- Double sided process
- Active thickness is the wafer thickness
- Readout side is ohmic
- Design not optimal for timing applications
- Readout side separated from LGAD side \Rightarrow no restrictions on channel dimensions

[G.F. Dalla Betta et al. NIM A 796 (2015) 154]

Double Sided LGADs for X-rays

- Produced double sided LGADs dedicated to x-rays
- Several strip and pixel sensors geometries
- Different gain structure designs

Two examples: strip sensors signal, gain structure optimization

Matteo Centis Vignali

TCAD Simulations: Applications at FBK

Aim: determine signal shape and duration at different positions

- Make structure with 4 strips
- Bias it to 200 V
- Generate carriers using photogeneration
- Record signal on the strips
- Repeat at different positions
- Two "parts" of the signal:
 - Primary ionization
 - Multiplication holes

Aim: determine signal shape and duration at different positions

- Make structure with 4 strips
- Bias it to 200 V
- Generate carriers using photogeneration
- Record signal on the strips
- Repeat at different positions
- Two "parts" of the signal:
 - Primary ionization
 - Multiplication holes

Photogeneration close to left strip, 200 V bias Gain

Charge multiplication model turned off

- Same fields in both structures
- Shorter signals for sensor without gain
- With this it is possible to extract gain

Photogeneration close to left strip, 200 V bias

Gain

Charge multiplication model turned off

- Same fields in both structures
- Shorter signals for sensor without gain
- With this it is possible to extract gain

Device Simulation Example: Signal in Strip Sensor

- n-type bulk strip sensor
- Built for didactics \Rightarrow toy implants and geometry
- Similar idea (and code) as the double sided LGAD

Detector building (Devedit)

- make 1/2 strip, mesh and save structure
- Ioad structure
- mirror
- mesh
- save structure
- repeat until 4 strips are present
- assign electrodes names to AI regions
- refine mesh for photogeneration
- save structure

Realistic implant profiles used when needed

Preparation for device simulation (Atlas)

Always needed before starting:

- Ioad structure file
- define material properties (type of material, lifetimes)
- define physical models
- set all electrodes to 0V (neutral)
- define interface properties (charge and surface recombination velocities)

Bias the detector (Atlas)

- preparation steps
- select output variables
- define numerical methods
- initialize the solution
- first bias points in small steps (bias applied to backside)
- ramp up the bias and save solution files for interesting values

Bias the detector (Atlas)

• preparation steps

- select output variables
- define numerical methods
- initialize the solution
- first bias points in small steps (bias applied to backside)
- ramp up the bias and save solution files for interesting values

Transient simulation (Atlas)

preparation steps

- define numerical methods and specify maximum time interval (time discretization)
- load solution file for the bias point
- load photogeneration table
- start the transient simulation
- "flash the light" (beam on and off)
- run the simulation to capture the signal
- optional: save the solution files at various times

Charge injection close to backside (200V)

Strip Sensor Signals

What we will see:

- Concentration (log scale) of electrons and holes
- Drift
- Diffusion
- Signal current
- Effects of mesh
- Note: the signal start the moment the charge starts to move

Strip Sensor Signals

What we will see:

- Concentration (log scale) of electrons and holes
- Drift
- Diffusion
- Signal current
- Effects of mesh
- Note: the signal start the moment the charge starts to move

Strip Sensor Bottom Injection

- Bias 200 V
- $\bullet\,$ Charge generated in small volume \rightarrow Similar to x-ray, or red TCT
- Charge deposit \approx 275 eh-pairs \rightarrow \approx 1 keV

Extract the weigthing field and potential (Atlas + Tonyplot)

preparation steps

- load solution file for bias point
- raise the potential of the interested electrode by 1V (same steps as for biasing)
- save solution file
- difference in potential between files
 ⇒ weighting potential
- difference in electric field between files
 ⇒ weighting field
- Note: it is not necessary to use 1V, but other values need normalization afterwards

Weighting potential (200V, left strip)

Extract the weigthing field and potential (Atlas + Tonyplot)

preparation steps

- load solution file for bias point
- raise the potential of the interested electrode by 1V (same steps as for biasing)
- save solution file
- difference in potential between files
 ⇒ weighting potential
- difference in electric field between files
 ⇒ weighting field
- Note: it is not necessary to use 1V, but other values need normalization afterwards

Weighting potential (200V, left strip)

Extract the weigthing field and potential (Atlas + Tonyplot)

preparation steps

- load solution file for bias point
- raise the potential of the interested electrode by 1V (same steps as for biasing)
- save solution file
- difference in potential between files
 ⇒ weighting potential
- difference in electric field between files
 ⇒ weighting field

Note: it is not necessary to use 1V, but other values need normalization afterwards

Weighting field (200V, left strip)

Process & Device Simulation Example: Gain Layer Optimization

- Optimization for x-ray applications
- Gain dose to be adjusted for device thickness
- Implants dose and energy to be adjusted for different process splits
- Provide a starting point for the process split table

Double Sided LGADs for X-rays

- Optimization for x-rays
- One possibility: gain structure as narrow as possible
- Few variations in the batch

Gain Extraction

"Analitical"

- α, β from bias simulation
- Gain calculation using McIntyre 1966

$$M(x) = \frac{\exp\left[-\int_{x}^{w} \alpha - \beta \, dx'\right]}{1 - \int_{0}^{w} \alpha \exp\left[-\int_{x'}^{w} \alpha - \beta \, dx''\right] dx'}$$

- Ideal case, low injection
- Faster simulation \Rightarrow more attempts

Fully simulated

- Simulate same structure with and without gain
- Transient or steady state simulations with photogeneration
- Ratio of integrated signals / currents
- More realistic: diffusion, density effects...
- Computing intensive

The "analytical" path was choosen
Simulation Workflow

For each process variation:

Process Simulation (Athena)

- Make mesh
- Create substrate
- Backside implant (bulk contact)
- Screen oxide
- Implants
- Annealing
- Remove oxide
- Save structure file

Device Simulation (Atlas)

- Make mesh
- Create substrate
- Declare electrodes
- Import doping from structure file
- Preparation steps
- Bias
- Extract α, β at given bias values

Gain

Electrons gain

Quite sensitive to:

- Gain layer position
- Doping contentration (left: \approx 2% dose variation)
- Impact ionization model

Summary

Process Simluations

- Problem solving
- Process optimization

Device Simulations

- Estimation of detector properties
- Understanding the detector structure

TCAD is a useful tool in detector fabrication

- Reduce the number of splits and iterations during fabrication
 - \Rightarrow save time & money

Not everything can be simulated:

process variations are still necessary to explore the phase space

Backup Material

Weighting Field

- Math construct that relates charge movement to induced current on electrodes
 - Determines the signal shape
 - Depends on the sensor geometry
 - Concept from vacuum tubes
 - Shockley (1938)^d Ramo (1939)^d
 - Extensions in recent years to account for different effects

To calculate:

- Set all electrodes to 0V
- Set electrode of interest to 1V
- Solve equations (disregard space charge)

For the i-th electrode

$$i_i(t) = Nq_e \vec{E}_{w,i} \cdot \vec{v}$$

$$\begin{aligned} \boldsymbol{Q}_{i} &= \int_{t_{0}}^{t} i_{i}(t') dt' = \boldsymbol{N} \boldsymbol{q}_{\boldsymbol{e}}[\phi_{\boldsymbol{w},i}(\vec{r}(t)) - \phi_{\boldsymbol{w},i}(\vec{r}(t_{0}))] \\ \vec{E}_{\boldsymbol{w},i} &= -\vec{\nabla} \phi_{\boldsymbol{w},i} \qquad \vec{\boldsymbol{v}} = \frac{d\vec{r}}{dt} \end{aligned}$$

•
$$\vec{E}_{w,i}$$
 with \vec{v} determine signal shape

• $\Delta \phi_{w,i}$ determines the induced charge

•
$$[\vec{E}_{w,i}] = \mathrm{cm}^{-1}$$

• $[\phi_{w,i}] = \text{dimensionless}$

Note: these are NOT the fields determining carrier movement

Matteo Centis Vignali

TCAD Simulations: Applications at FBK

FONDAZIONE BRUNO KESSLER

Weighting Field Pad Diode (Top Electrode) Weighting Potential

- Simple geometry
- $\bullet\,$ Linear potential \Rightarrow Charge proportional to path
- Constant field \Rightarrow Current proportional to $|\vec{v}|$

Weighting Field Pad Diode (Top Electrode) Weighting Field

- Simple geometry
- Linear potential \Rightarrow Charge proportional to path
- Constant field \Rightarrow Current proportional to $|\vec{v}|$

Weighting Potential

- Weighting potential for strip L
- Asymmetry due to boundary conditions

- Peaked potential toward strip side \Rightarrow most of charge induced in the space closest to the strip
- Different sign of field \Rightarrow Different sign of signal possible \rightarrow Bipolar signals on some strips

Weighting Potential

- Peaked potential toward strip side ⇒ most of charge induced in the space closest to the strip
- Different sign of field \Rightarrow Different sign of signal possible \rightarrow Bipolar signals on some strips

Weighting Field

- Peaked potential toward strip side ⇒ most of charge induced in the space closest to the strip
- Different sign of field \Rightarrow Different sign of signal possible \rightarrow Bipolar signals on some strips

Weighting Field

- Peaked potential toward strip side ⇒ most of charge induced in the space closest to the strip
- Different sign of field \Rightarrow Different sign of signal possible \rightarrow Bipolar signals on some strips

X-ray Attenuation Length

http://henke.lbl.gov/optical_constants/atten2.html

Matteo Centis Vignali

TCAD Simulations: Applications at FBK

24.11.2023 5