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Abstract

Leptogenesis is a class of scenarios in which the cosmic baryon asymmetry originates from an initial
lepton asymmetry generated in the decays of heavy sterile neutrinos in the early Universe. We ex-
plain why leptogenesis is an appealing mechanism for baryogenesis. We review its motivations, the
basic ingredients, and describe subclasses of effects, like those of lepton flavours, spectator processes,
scatterings, finite temperature corrections, the role of the heavier sterile neutrinos and quantum cor-
rections. We then address leptogenesis in supersymmetric scenarios, as well as some other popular
variations of the basic leptogenesis framework.
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Neutrino Physics Leptogenesis in the Universe

1.1 The Baryon Asymmetry of the Universe

1.1.1 Observations

Up to date no traces of cosmological antimatter have been observed. The presence of a small amount
of antiprotons and positrons in cosmic rays can be consistently explained by their secondary origin
in cosmic particles collisions or in highly energetic astrophysical processes, but no antinuclei, even as
light as anti-deuterium or as tightly bounded as anti-α particles, has ever been detected.

The absence of annihilation radiation pp̄→ . . . π0 → . . . 2γ excludes significant matter-antimatter
admixtures in objects up to the size of galactic clusters ∼ 20 Mpc [1]. Observational limits on anoma-
lous contributions to the cosmic diffuse γ-ray background and the absence of distortions in the cosmic
microwave background (CMB) implies that little antimatter is to be found within ∼ 1 Gpc and that
within our horizon an equal amount of matter and antimatter can be excluded [2]. Of course, at larger
super-horizon scales the vanishing of the average asymmetry cannot be ruled out, and this would
indeed be the case if the fundamental Lagrangian is C and CP symmetric and charge invariance is
broken spontaneously [3].

Quantitatively, the value of baryon asymmetry of the Universe is inferred from observations in two
independent ways. The first way is by confronting the abundances of the light elements, D, 3He, 4He,
and 7Li, with the predictions of Big Bang nucleosynthesis (BBN) [4, 5, 6, 7, 8, 9]. The crucial time for
primordial nucleosynthesis is when the thermal bath temperature falls below T <∼ 1 MeV. With the
assumption of only three light neutrinos, these predictions depend on a single parameter, that is the
difference between the number of baryons and anti-baryons normalized to the number of photons:

η ≡ nB − nB̄
nγ

∣∣∣
0
, (1.1)

where the subscript 0 means “at present time”. By using only the abundance of deuterium, that is
particularly sensitive to η, Ref. [4] quotes:

1010 η = 5.7± 0.6 (95% c.l.) . (1.2)

In this same range there is also an acceptable agreement among the various abundances, once theo-
retical uncertainties as well as statistical and systematic errors are accounted for [6].

The second way is from measurements of the CMB anisotropies (for pedagogical reviews, see
Refs. [10, 11]). The crucial time for CMB is that of recombination, when the temperature dropped
down to T <∼ 1 eV and neutral hydrogen can be formed. CMB observations measure the relative
baryon contribution to the energy density of the Universe multiplied by the square of the (reduced)
Hubble constant h ≡ H0/(100 km sec−1 Mpc−1):

ΩBh
2 ≡ h2 ρB

ρcrit
, (1.3)

that is related to η through 1010η = 274 ΩB h
2. The physical effect of the baryons at the onset of matter

domination, which occurs quite close to the recombination epoch, is to provide extra gravity which
enhances the compression into potential wells. The consequence is enhancement of the compressional
phases which translates into enhancement of the odd peaks in the spectrum. Thus, a measurement of
the odd/even peak disparity constrains the baryon energy density. A fit to the most recent observations
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(WMAP7 data only, assuming a ΛCDM model with a scale-free power spectrum for the primordial
density fluctuations) gives at 68% c.l. [12]

102 ΩBh
2 = 2.258+0.057

−0.056 . (1.4)

There is a third way to express the baryon asymmetry of the Universe, that is by normalizing the
baryon asymmetry to the entropy density s = g∗(2π

2/45)T 3, where g∗ is the number of degrees of
freedom in the plasma, and T is the temperature:

Y∆B ≡
nB − nB̄

s

∣∣∣
0
. (1.5)

The relation with the previous definitions is given by the conversion factor s0/nγ0 = 7.04. Y∆B is a
convenient quantity in theoretical studies of the generation of the baryon asymmetry from very early
times, because it is conserved throughout the thermal evolution of the Universe. In terms of Y∆B the
BBN results eq. (1.2) and the CMB measurement eq. (1.4) (at 95%c.l.) read:

Y BBN
∆B = (8.10± 0.85)× 10−11, Y CMB

∆B = (8.79± 0.44)× 10−11. (1.6)

The impressive consistency between the determinations of the baryon density of the Universe from
BBN and CMB that, besides being completely independent, also refer to epochs with a six orders of
magnitude difference in temperature, provides a striking confirmation of the hot Big Bang cosmology.

1.1.2 Theory

From the theoretical point of view, the question is where the Universe baryon asymmetry comes from.
The inflationary cosmological model excludes the possibility of a fine tuned initial condition, and since
we do not know any other way to construct a consistent cosmology without inflation, this is a strong
veto.

The alternative possibility is that the Universe baryon asymmetry is generated dynamically, a
scenario that is known as baryogenesis. This requires that baryon number (B) is not conserved. More
precisely, as Sakharov pointed out [13], the ingredients required for baryogenesis are three:

1. B violation is required to evolve from an initial state with Y∆B = 0 to a state with Y∆B 6= 0.

2. C and CP violation: If either C or CP were conserved, then processes involving baryons would
proceed at the same rate as the C- or CP-conjugate processes involving antibaryons, with the
overall effect that no baryon asymmetry is generated.

3. Out of equilibrium dynamics: Equilibrium distribution functions neq are determined solely by
the particle energy E, chemical potential µ, and by its mass which, because of the CPT theorem,
is the same for particles and antiparticles. When charges (such as B) are not conserved, the

corresponding chemical potentials vanish, and thus nB =
∫ d3p

(2π3)
neq = nB̄.

Although these ingredients are all present in the Standard Model (SM), so far all attempts to reproduce
quantitatively the observed baryon asymmetry have failed.

1. In the SM B is violated by the triangle anomaly. Although at zero temperature B violating
processes are too suppressed to have any observable effect [14], at high temperatures they occur
with unsuppressed rates [15]. The first condition is then quantitatively realized in the early
Universe.
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2. SM weak interactions violate C maximally. However, the amount of CP violation from the
Kobayashi-Maskawa complex phase [16], as quantified by means of the Jarlskog invariant[17], is
only of order 10−20, and this renders impossible generating Y∆B ∼ 10−10 [18, 19, 20].

3. Departures from thermal equilibrium occur in the SM at the electroweak phase transition
(EWPT) [21, 22]. However, the experimental lower bound on the Higgs mass implies that
this transition is not sufficiently first order as required for successful baryogenesis [23].

This shows that baryogenesis requires new physics that extends the SM in at least two ways: It must
introduce new sources of CP violation and it must either provide a departure from thermal equilib-
rium in addition to the EWPT or modify the EWPT itself. In the past thirty years or so, several
new physics mechanisms for baryogenesis have been put forth. Some among the most studied are
GUT baryogenesis [24, 25, 26, 27, 28, 29, 30, 31, 32, 33], Electroweak baryogenesis [21, 34, 35], the
Affleck-Dine mechanism [36, 37], Spontaneous Baryogenesis [38, 39]. However, soon after the discov-
ery of neutrino masses, because of its connections with the seesaw model [40, 41, 42, 43, 44] and its
deep interrelations with neutrino physics in general, the mechanism of baryogenesis via Leptogene-
sis acquired a continuously increasing popularity. Leptogenesis was first proposed by Fukugita and
Yanagida in Ref. [45]. Its simplest and theoretically best motivated realization is precisely within the
seesaw mechanism. To implement the seesaw, new Majorana SU(2)L singlet neutrinos with a large
mass scale M are added to the SM particle spectrum. The complex Yukawa couplings of these new
particles provide new sources of CP violation, departure from thermal equilibrium can occur if their
lifetime is not much shorter than the age of the Universe when T ∼ M , and their Majorana masses
imply that lepton number is not conserved. A lepton asymmetry can then be generated dynamically,
and SM sphalerons will partially convert it into a baryon asymmetry [46]. A particularly interesting
possibility is “thermal leptogenesis” where the heavy Majorana neutrinos are produced by scatterings
in the thermal bath starting from a vanishing initial abundance, so that their number density can be
calculated solely in terms of the seesaw parameters and of the reheat temperature of the Universe.

This review is organized as follows: in Section 1.2 the basis of leptogenesis are reviewed in the
simple scenario of the one flavour regime, while the role of flavour effects is described in Section 1.3.
Theoretical improvements of the basic pictures, like spectator effects, scatterings and CP violation in
scatterings, thermal corrections, the possible role of the heavier singlet neutrinos, and quantum effects
are reviewed in Section 1.4. Leptogenesis in the supersymmetric seesaw is reviewed in Section 1.5,
while in Section 1.6 we mention possible leptogenesis realizations that go beyond the type-I seesaw.
Finally, in Section 1.7 we draw the conclusions.

1.2 N1 Leptogenesis in the Single Flavour Regime

The aim of this section is to give a pedagogical introduction to leptogenesis [45] and establish the
notations. We will consider the classic example of leptogenesis from the lightest right-handed (RH)
neutrino N1 (the so-called N1 leptogenesis) in the type-I seesaw model [40, 43, 41, 44] in the single
flavour regime. First in Section 1.2.1 we introduce the type-I seesaw Lagrangian and the relevant
parameters. In Section 1.2.2, we will review the CP violation in RH neutrino decays induced at 1-loop
level. Then in Section 1.2.3, we will write down the classical Boltzmann equations taking into account
of only decays and inverse decays of N1 and give a simple but rather accurate analytical estimate of
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the solution. In Section 1.2.4 we will relate the lepton asymmetry generated to the baryon asymmetry
of the Universe. Finally in Section 1.2.5, we will discuss the lower bound on N1 mass and the upper
bound on light neutrino mass scale from successful leptogenesis.

1.2.1 Type-I seesaw, neutrino masses and leptogenesis

With m (m ≥ 2)1 singlet RH neutrinos NRi (i = 1,m), we can add the following Standard Model (SM)
gauge invariant terms to the SM Lagrangian

LI = LSM + iNRi /∂NRi −
(

1

2
MiN c

Ri
NRi + εabYαiNRi`

a
αH

b + h.c.

)
, (1.7)

where Mi are the Majorana masses of the RH neutrinos, `α = (ναL, α
−
L ) with α = e, µ, τ and H =

(H+, H0) are respectively the left-handed (LH) lepton and Higgs SU(2)L doublets and εab = −εba with
ε12 = 1. Without loss of generality, we have chosen the basis where the Majorana mass term is diagonal.
The physical mass eigenstates of the RH neutrinos are the Majorana neutrinos Ni = NRi +N c

Ri
. Since

Ni are gauge singlets, the scale of Mi is naturally much larger than the electroweak (EW) scale
Mi � 〈Φ〉 ≡ v = 174 GeV. Hence after EW symmetry breaking, the light neutrino mass matrix is
given by the famous seesaw relation [40, 43, 41, 44]

mν ' −v2Y
1

M
Y T . (1.8)

Assuming Y ∼ O(1) and mν '
√

∆m2
atm ' 0.05 eV, we have M ∼ 1015 GeV not far below the GUT

scale.
Besides giving a natural explanation of the light neutrino masses, there is another bonus: the three

Sakharov’s conditions[13] for leptogenesis are implicit in eq. (1.7) with the lepton number violation
provided by Mi, the CP-violation from the complexity of Yiα and the departure from thermal equilib-
rium condition given by an additional requirement that Ni decay rate ΓNi is not very fast compared
to the Hubble expansion rate of the Universe H(T ) at temperature T = Mi with

ΓNi =
(Y †Y )iiMi

8π
, H(T ) =

2

3

√
g∗π3

5

T 2

Mpl
, (1.9)

where Mpl = 1.22× 1019 GeV is the Planck mass, g∗ (=106.75 for the SM excluding RH neutrinos) is
the total number of relativistic degrees of freedom contributing to the energy density of the Universe.

To quantify the departure from thermal equilibrium, we define the decay parameter as follows

Ki ≡
ΓNi

H(Mi)
=
m̃i

m∗
, (1.10)

where m̃i is the effective neutrino mass defined as[47]

m̃i ≡
(Y †Y )iiv

2

Mi
, (1.11)

with m∗ ≡ 16π2v2

3Mpl

√
g∗π
5 ' 1×10−3 eV. The regimes where Ki � 1, Ki ≈ 1 and Ki � 1 are respectively

known as weak, intermediate, and strong washout regimes.

1Neutrino oscillation data and leptogenesis both require m ≥ 2.
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1.2.2 CP asymmetry

The CP asymmetry in the decays of RH neutrinos Ni can be defined as

εiα =
γ (Ni → `αH)− γ

(
Ni → `αH

∗
)

∑
α γ (Ni → `αH) + γ

(
Ni → `αH∗

) ≡ ∆γαNi
γNi

, (1.12)

where γ(i→ f) is the thermally averaged decay rate defined as2

γ(i→ f) ≡
∫

d3pi
(2π)32Ei

d3pf
(2π)32Ef

(2π)4δ(4)(pi − pf )|A(i→ f)|2e−Ei/T , (1.13)

where A(i→ f) is the decay amplitude. Ignoring all thermal effects [48, 49], eq. (1.12) simplifies to

εiα =
|A0 (Ni → `αH) |2 − |A0

(
Ni → `αH

∗
)
|2∑

α |A0 (Ni → `αH) |2 + |A0

(
Ni → `αH∗

)
|2
, (1.14)

whereA0(i→ f) denotes the decay amplitude at zero temperature. Eq. (1.14) vanishes at tree level but
is induced at 1-loop level through the interference between tree and 1-loop diagrams shown in Figure
1.1. There are two types of contributions from the 1-loop diagrams: the self-energy or wave diagram
(middle) [50] and the vertex diagram (right) [45]. At leading order, we obtain the CP asymmetry [51]:

εiα =
1

8π

1

(Y †Y )ii

∑
j 6=i

Im
[
(Y †Y )jiYαiY

∗
αj

]
g

(
M2
j

M2
i

)

+
1

8π

1

(Y †Y )ii

∑
j 6=i

Im
[
(Y †Y )ijYαiY

∗
αj

] M2
i

M2
i −M2

j

, (1.15)

where the loop function is

g(x) =
√
x

[
1

1− x
+ 1− (1 + x) ln

(
1 + x

x

)]
. (1.16)

The first term in eq. (1.15) comes from L-violating wave and vertex diagrams, while the second term
is from the L-conserving wave diagram. The terms of the form (M2

i −M2
j )−1 in eq. (1.15) are from the

wave diagram contributions which can resonantly enhance the CP asymmetry if Mi ≈ Mj (resonant
leptogenesis scenario, see Section 1.6.1)3. Let us also note that at least two RH neutrinos are needed,
otherwise the CP asymmetry vanishes because the Yukawa couplings combination becomes real.

In the one flavour regime, we sum over the flavour index α in eq. (1.15) and obtain

εi ≡
∑
α

εiα =
1

8π

1

(Y †Y )ii

∑
j 6=i

Im
[
(Y †Y )2

ji

]
g

(
M2
j

M2
i

)
, (1.17)

where the second term in eq. (1.15) vanishes because the combination of the Yukawa couplings is real.

2Here the Pauli-blocking and Bose-enhancement statistical factors have been ignored and we also assume Maxwell-
Boltzmann distribution for the particle i i.e. fi = e−Ei/T . See Refs. [48, 49] for detailed studies of their effects.

3Notice that the resonant term becomes singular in the degenerate limit Mi = Mj . This singularity can be regulated
by using for example an effective field-theoretical approach based on resummation [52].
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+ +Ni
Nj

Nj
Ni Ni

H

ℓα ℓα

H H

ℓα

ℓ, ℓ

H

ℓ

H

Figure 1.1: The CP asymmetry in type-I seesaw leptogenesis results from the interference between tree
and 1-loop wave and vertex diagrams. For the 1-loop wave diagram, there is an additional contribution
from L-conserving diagram to the CP asymmetry which vanishes when summing over lepton flavours.

1.2.3 Classical Boltzmann equations

We work in the one flavour regime and consider only the decays and inverse decays ofN1. If leptogenesis
occurs at T >∼ 1012 GeV, then the charged lepton Yukawa interactions are out of equilibrium, and this
defines the one flavour regime. The assumption that only the dynamics of N1 is relevant can be
realized if for example the reheating temperature after inflation is TRH � M2,3 such that N2,3 are
not produced. In order to scale out the effect of the expansion of the Universe, we will introduce the
abundances, i.e. the ratios of the particle densities ni =

∫
d3pfi to the entropy density s = 2π2

45 g∗T
3:

Yi ≡
ni
s
. (1.18)

The evolution of the N1 density and the lepton asymmetry Y∆L = 2Y∆` ≡ 2(Y`−Y¯̀) 4 can be described
by the following classical Boltzmann equations (BE)[53]

dYN1

dz
= −D1(YN1 − Y

eq
N1

), (1.19)

dY∆L

dz
= ε1D1(YN1 − Y

eq
N1

)−W1Y∆L, (1.20)

where z ≡M1/T and the decay and washout terms are respectively given by

D1(z) =
γN1z

sH(M1)
= K1z

K1(z)

K2(z)
, W1(z) =

1

2
D1(z)

Y eq
N1

(z)

Y eq
`

, (1.21)

with Kn the n-th order modified Bessel function of second kind. Y eq
N1

and Y eq
` read:5

Y eq
N (z) =

45

2π4g∗
z2K2(z), Y eq

` =
15

4π2g∗
. (1.22)

From eq. (1.19) and eq. (1.20), the solution for Y∆L can be written down as follows

Y∆L(z) = Y∆L(zi)e
−
∫ z
zi
dz′W1(z′) −

∫ z

zi

dz′ε1(z′)
dYN1

dz′
e−
∫ z
z′ dz

′′W1(z′′) (1.23)

where zi is some initial temperature when N1 leptogenesis begins, and we have assumed that any
preexisting lepton asymmetry vanishes Y 0

∆L(zi) = 0. Notice that ignoring thermal effects, the CP
asymmetry is independent of the temperature ε1(z) = ε1 (c.f. eq. (1.17)).

4The factor of 2 comes from the SU(2)L degrees of freedoms.
5To write down a simple analytic expression for the equilibrium density of N1, we assume Maxwell-Boltzmann distri-

bution. However, follwing [54], the normalization factor Y eq` is obtained from a Fermi-Dirac distribution.
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Weak washout regime

In the weak washout regime (K1 � 1), the initial condition on the N1 density YN1(zi) is important.
If we assume thermal initial abundance of N1 i.e. YN1(zi) = Y eq

N1
(0), we can ignore the washout when

N1 starts decaying at z � 1 and we have

Y t
∆L(∞) ' −ε1

∫ ∞
0

dz′
dY eq

N1

dz′
= ε1Y

eq
N1

(0). (1.24)

On the other hand, if we have zero initial N1 abundance i.e. YN1(zi) = 0, we have to consider the
opposite sign contributions to lepton asymmetry from the inverse decays when N1 is being populated
(YN1 < Y eq

N1
) and from the period when N1 starts decaying (YN1 > Y eq

N1
). Taking this into account the

term which survives the partial cancellations are given by [55] 6

Y 0
∆L(∞) ' 27

16
ε1K

2
1 Y

eq
N1

(0). (1.25)

Strong washout regime

In the strong washout regime (K1 � 1) any lepton asymmetry generated during the N1 creation phase
is efficiently washed out. Here we adopt the strong washout balance approximation[56] which states
that in the strong washout regime, the lepton asymmetry at each instant takes the value that enforces
a balance between the production and the destruction rates of the asymmetry. Equating the decay
and washout terms in eq. (1.20), we have

Y∆L(z) ≈ − 1

W (z)
ε1
dYN1

dz
' − 1

W (z)
ε1
dY eq

N1

dz
=

2

zK1
ε1Y

eq
` , (1.26)

where in the second approximation, we assume YN1 ' Y
eq
N1

. The approximation no longer holds when
Y∆L freezes and this happens when the washout decouples at zf i.e. W (zf ) < 1. Hence, the final
lepton asymmetry is given by7

Y∆L(∞) =
2

zfK1
ε1Y

eq
` =

π2

6zfK1
ε1Y

eq
N1

(0). (1.27)

The freeze out temperature zf depends mildly on K1. For K1 = 10 - 100 we have for example zf = 7 -
10. We also see that independently of initial conditions, in the strong regime Y∆L(∞) goes as K−1

1 .

1.2.4 Baryon asymmetry from EW sphaleron

The final lepton asymmetry Y∆L(∞) can be conveniently parametrized as follows

Y∆L(∞) = ε1η1Y
eq
N1

(0), (1.28)

where η1 is known as the efficiency factor. In the weak washout regime (K1 � 1) from eq. (1.24)
we have η1 = 1 (= 27

16K
2
1 < 1) for thermal (zero) initial N1 abundance. In the strong washout regime

(K1 � 1), from eq. (1.27), we have η1 = π2

6zfK1
< 1.

6This differs from the efficiency in Ref. [55] by the factor 12
π2 , which is due to the different normalization Y eq` eq. (1.22).

7Compare this to a more precise analytical approximation in Ref. [55].
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If leptogenesis ends before EW sphaleron processes become active (T >∼ 1012 GeV), the B − L
asymmetry Y∆B−L is simply given by

Y∆B−L = −Y∆L . (1.29)

At the later stage, the B−L asymmetry is partially transfered to a B asymmetry by the EW sphaleron
processes through the relation [57]

Y∆B(∞) =
28

79
Y∆B−L(∞) , (1.30)

that holds if sphalerons decouple before EWPT. This relation will change if the EW sphaleron processes
decouple after the EWPT [57, 58] or if threshold effects for heavy particles like the top quark and
Higgs are taken into account [58, 59].

1.2.5 Davidson-Ibarra bound

Assuming a hierarchical spectrum of the RH neutrinos (M1 �M2, M3) and that the dominant lepton
asymmetry is from the N1 decays, from eq. (1.17) the CP asymmetry from N1 decays can be written
as

ε1 = − 3

16π

1

(Y †Y )11

∑
j 6=1

Im
[
(Y †Y )2

j1

]M1

Mj
. (1.31)

Assuming three generations of RH neutrinos (n = 3) and using the Casas-Ibarra parametrization [60]
for the Yukawa couplings

Yαi =
1

v

(√
DmNR

√
DmνU

†
ν

)
αi
, (1.32)

where DmN = diag(M1,M2,M3), Dmν = diag(mν1 ,mν2 ,mν3) and R any complex orthogonal matrix
satisfying RTR = RRT = 1, eq. (1.31) becomes

ε1 = − 3

16π

M1

v2

∑
i

mνiIm(R2
1i)∑

i

mνi |R1i|2
. (1.33)

Using the orthogonality condition
∑
i

R2
1i = 1, we then obtain the Davidson-Ibarra (DI) bound [61]

|ε1| ≤ εDI =
3

16π

M1

v2
(mν3 −mν1) =

3

16π

M1

v2

∆m2
atm

mν1 +mν3

, (1.34)

where mν3 (mν1) is the heaviest (lightest) light neutrino mass. Applying the DI bound on eqs. (1.28)–
(1.30), and requiring that Y∆B(∞) ≥ Y CMB

B ' 10−10, we obtain

M1

(
0.1 eV

mν1 +mν3

)
ηmax1 (M1) >∼ 109 GeV, (1.35)

where the ηmax1 (M1) is the efficiency factor maximized with respect to K1 eq. (1.10) for a particular
value of M1. This allows us to make a plot of region which satisfies eq. (1.35) on the (M1,mν1)
plane and hence obtain bounds on M1 and mν1 . Many careful numerical studies have been carried
out and it was found that successful leptogenesis with a hierarchical spectrum of the RH neutrinos
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requires M1 >∼ 109 GeV [61, 62, 63] and mν1
<∼ 0.1 eV [64, 65, 55, 66]. This bound implies that the

RH neutrinos must be produced at temperatures T >∼ 109 GeV which in turn implies the reheating
temperature after inflation has to be TRH >∼ 109 GeV in order to have sufficient RH neutrinos in the
thermal bath. To conclude this section, let us note that the DI bound eq. (1.34) holds if and only if
all the following conditions apply:
(1) N1 dominates the contribution to leptogenesis.
(2) The mass spectrum of RH neutrinos are hierarchical M1 �M2,M3.
(3) Leptogenesis occurs in the unflavoured regime T >∼ 1012 GeV.
As we will see in the following sections, violation of one or more of the above conditions allows us to
lower somewhat the scale of leptogenesis.

1.3 Lepton Flavour Effects

1.3.1 When are lepton flavour effects relevant?

The first leptogenesis calculations were performed in the single lepton flavour regime. In short, this
amounts to assuming that the leptons and antileptons which couple to the lightest RH neutrino
N1 maintain their coherence as flavour superpositions throughout the leptogenesis era, that is `1 =∑
α cα1`α and `

′
1 =

∑
α c
′∗
α1`α. Note that at the tree-level the coefficients c and c′∗ are simply the

Yukawa couplings: cα1 = Yα1 and c′∗α1 = Y ∗α1. However it should be kept in mind that since CP is
violated by loops, beyond the tree level approximation the antilepton state `′1 is not the CP conjugate
of the `1, that is c′α1 6= cα1.

The single flavour regime is realized only at very high temperatures (T >∼ 1012 GeV) when both
`1 and `′1 remain coherent flavour superpositions, and thus are the correct states to describe the
dynamics of leptogenesis. However, at lower temperatures scatterings induced by the charged lepton
Yukawa couplings occur at a sufficiently fast pace to distinguish the different lepton flavours, `1 and
`′1 decohere in their flavour components, and the dynamics of leptogenesis must then be described
in terms of the flavour eigenstates `α. Of course, there is great interest to extend the validity of
quantitative leptogenesis studies also at lower scale T <∼ 1012 GeV, and this requires accounting for
flavour effects. The role of lepton flavour in leptogenesis was first discussed in Ref. [67], however
the authors did not highlight in what the results were significantly different from the single flavour
approximation. Therefore, until the importance of flavour effects was fully clarified in Refs. [68, 69, 70]
they had been included in leptogenesis studies only in a few cases [71, 72, 73, 74, 75]. Nowadays lepton
flavour effects have been investigated in full detail [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]
and are a mandatory ingredient of any reliable analysis of leptogenesis.

The specific temperature when leptogenesis becomes sensitive to lepton flavour dynamics can be
estimated by requiring that the rates of processes Γα (α = e, µ, τ) that are induced by the charged
lepton Yukawa couplings hα become faster than the Universe expansion rate H(T ). An approximate
relation gives [90, 91]

Γα(T ) ' 10−2h2
αT , (1.36)

which implies that8

Γα(T ) > H(T ) when T <∼ Tα , (1.37)

8In supersymmetric case, since hα = mα/(vu cosβ), we have T <∼ Tα (1 + tan2 β).
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where Te ' 4 × 104 GeV, Tµ ' 2 × 109 GeV, and Tτ ' 5 × 1011 GeV. Notice that to fully distinguish
the three flavours it is sufficient that the τ and µ Yukawa reactions attain thermal equilibrium. It
has been pointed out that besides being faster than the expansion of the Universe, the charged lepton
Yukawa interactions should also be faster than the N1 interactions [69, 83, 84]. In general whenever
Γτ (M1) > H(M1) we also have Γτ (M1) > ΓN1(M1). However, there exists parameter space where
Γτ (M1) > H(M1) but Γτ (M1) < ΓN1(M1). This scenario was studied in Ref. [83].

1.3.2 The effects on CP asymmetry and washout

The CP violation in Ni decays can manifest itself in two ways [69]:

(i) The leptons and antileptons are produced at different rates,

γi 6= γ̄i, (1.38)

where γi ≡ γ(Ni → `iH) and γ̄i ≡ γ(Ni → `′iH
∗).

(ii) The leptons and antileptons produced are not CP conjugate states,

CP (`′i) = `′i 6= `i, (1.39)

that is, due to loops effects they are slightly misaligned in flavour space.
We can rewrite the CP asymmetry for Ni decays from eq. (1.12) as follows

εiα =
Piαγi − P̄iαγ̄i

γi + γ̄i
=
Piα + P̄iα

2
εi +

Piα − P̄iα
2

' P 0
iαεi +

∆Piα
2

, (1.40)

where terms of order O(εi ∆Piα) and higher have been neglected. Piα is the projector from state `i
into flavour state `α and ∆Piα = Piα− P̄iα. At tree level, clearly, Piα = P̄iα ≡ P 0

iα where the tree level
flavour projector is given by

P 0
iα =

YαiY
∗
αi

(Y †Y )ii
. (1.41)

From eq. (1.40), we can identify the two types of CP violation, the first term being of type (i) eq. (1.38)
while the second being of type (ii) eq. (1.39). Since

∑
α Piα =

∑
α P̄iα = 1, when summing over flavour

indices α, the second term vanishes
∑
α ∆Piα = 0. Note that the lepton-flavour-violating but L-

conserving terms in the second line of eq. (1.15) is part of type (ii). In fact, they come from d = 6
L-conserving operators which have nothing to do with the unique d = 5 L-violating operator (the
Weinberg operator [92]) responsible for neutrino masses. However, in some cases they can still domi-
nate the CP asymmetries but, as we will see in Section 1.3.4, lepton flavour equilibration effects [93]
then impose important constraints on their overall effects. Note also that due to flavour misalignment,
the CP asymmetry in a particular flavour direction εiα can be much larger and even of opposite sign
from the total CP asymmetry εi. In fact the relevance of CP violation of type (ii) in the flavour regimes
is what allows to evade the DI bound eq. (1.34). As regards the washout of the lepton asymmetry of
flavour α, it is proportional to

Wiα ∝ Piαγi + P̄iαγ̄i ' P 0
iαWi, (1.42)

which results in a reduction of washout by a factor of P 0
iα ≤ 1 compared to unflavoured case. As we

will see next, the new CP-violating sources from flavour effects and the reduction in the washout could
result in great enhancement of the final lepton asymmetry and, as was first pointed out in Ref. [69],
leptogenesis with a vanishing total CP asymmetry εi = 0 also becomes possible.
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1.3.3 Classical flavoured Boltzmann equations

Here again we only consider leptogenesis from the decays and inverse decays of N1. In this approxi-
mation, the BE for YN1 is still given by eq. (1.19) while the BE for Y∆Lα the lepton asymmetry in the
flavour α is given by9

dY∆Lα

dz
= ε1αD1(YN1 − Y

eq
N1

)− P 0
1αW1Y∆Lα . (1.43)

Notice that as long as L violation from sphalerons is neglected (see section 1.4) the BE for Y∆Lα are
independent of each other, and hence the solutions for the weak and strong washout regimes are given
respectively by eq. (1.25)) and eq. (1.27), after replacing ε1 → ε1α and K1 → K1α ≡ P 0

1αK1.
As an example let us assume that leptogenesis occurs around T ∼ 1010 GeV, that is in the two-

flavour regime. Due to the fast τ Yukawa interactions `1(`′1) gets projected onto `τ (`′τ ) and a coherent
mixture of e+ µ eigenstate `e+µ(`′e+µ). For illustrative purpose, here we consider a scenario in which
lepton flavour effects are most prominent. We take both K1τ ,K1e+µ � 1, so that both Y∆Lτ and
Y∆Le+µ are in the strong regime. From eq. (1.27) we can write down the solution:

Y∆L(∞) = Y∆Lτ (∞) + Y∆Le+µ(∞)

=
π2

6zfK1
Y eq
N1

(0)

(
ε1τ
P 0

1τ

+
ε1e+µ
P 0

1e+µ

)

' π2

3zfK1
ε1Y

eq
N1

(0) +
π2

12zfK1
Y eq
N1

(0)

(
∆P1τ

P 0
1τ

+
∆P1e+µ

P 0
1e+µ

)
, (1.44)

where in the last line we have used eq. (1.40). If P 0
1τ ' P 0

1e+µ, then since ∆P1τ + ∆P1e+µ = 0 the
second term approximately cancels, and eq. (1.44) reduces to

Y∆L(∞) ' π2

3zfK1
ε1Y

eq
N1

(0) . (1.45)

We see that the final asymmetry is enhanced by a factor of 2 compared to the unflavoured case. If
there exists some hierarchy between the flavour projectors, then the second term in eq. (1.44) plays
an important role and can further enhance the asymmetry. For example we can have P 0

1τ > P 0
1e+µ

while ∆P1τ � ∆P1e+µ. In this case, the second term can dominate over the first term. Finally from
eq. (1.44) we also notice that leptogenesis with ε1 = 0, the so-called purely flavoured leptogenesis
(PFL)10, can indeed proceed [69, 95, 96, 97, 98]. In this scenario some symmetry has to be imposed
to realize the condition ε1 = 0, as for example an approximate global lepton number U(1)L. In the
limit of exact U(1)L the active neutrinos will be exactly massless. Instead of the seesaw mechanism,
the small neutrino masses is explained by U(1)L which is slightly broken by a small parameter µ
(the “inverse seesaw”) [99] which is technically natural since the Lagrangian exhibits an enhanced
symmetry when µ → 0 [100]. In the next section, we will discuss another aspect of flavour effects
which are in particular crucial for PFL.

9To study the transition between different flavour regimes (from one to two or from two to three flavours), a density
matrix formalism has to be used [68, 84, 94].

10This can also refer to the case where the total CP asymmetry is negligible ε1 ≈ 0.
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1.3.4 Lepton flavour equilibration

Another important effect is lepton flavour equilibration (LFE) [93]. LFE processes violate lepton
flavour but conserve total lepton number e.g. `αH → `βH, and can proceed e.g. via off-shell exchange
of N2,3. In thermal equilibrium, LFE processes can quickly equilibrate the asymmetries generated in
different flavours. In practice this would be equivalent to a situation where all the flavour projectors
eq. (1.41) are equal, in which case the flavoured BE eq. (1.43) can be summed up into a single BE:

dY∆L

dz
= ε1D1(YN1 − Y

eq
N1

)− P 0
1αW1Y∆L, (1.46)

where P 0
1α = 1/2 (1/3) in the two (three) flavours regime. In this case the BE is just like the unflavoured

case but with a reduced washout which, in the strong washout regime, would result in enhancement of
a factor of 2 (3) in the two (three) flavours regime (c.f. eq. (1.45)). Clearly, LFE can make PFL with
ε1 = 0 impotent [93, 56]. Since LFE N2,3 processes scale as T 3 while the Universe expansion scales
as T 2, in spite of the fact that PFL evades the DI bound, they eventually prevent the possibility of
lowering too much the leptogenesis scale. A generic study in PFL scenario taking into account LFE
effects concluded that successful leptogenesis still requires M1 >∼ 108 GeV [97]. A more accurate study
in the same direction recently carried out in Ref. [98], showed that in fact the leptogenesis scale can
be lowered down to M1 ∼ 106 GeV.

1.4 Beyond the Basic Boltzmann Equations

Within factors of a few, the amount of baryon asymmetry that is generated via leptogenesis in N1

decays is determined essentially by the size of the (flavoured) CP asymmetries and by the rates
of the (flavoured) washout reactions. However, to obtain more precise results (say, within an O(1)
uncertainty) several additional effects must be taken into account, and the formalism must be extended
well beyond the basic BE discussed in the previous Sections. In the following we review some of the
most important sources of corrections, namely spectator processes (Section 1.4.1), scatterings with top
quarks and gauge bosons (Section 1.4.2), thermal effects (Section 1.4.3), contributions from heavier
RH neutrinos (Section 1.4.4), and we also discuss the role of quantum corrections evaluated in the
quantum BE approach (Section 1.4.5). Throughout this review we use integrated BE, i.e. we assume
kinetic equilibrium for all particle species, and thus we use particles densities instead than particles
distribution functions. Corrections arising from using non-integrated BE have been studied for example
in Refs. [101, 102, 103, 104], and are generally subleading.

1.4.1 Spectator processes

Reactions that without involving violation of B−L can still affect the final amount of baryon asymme-
try are classified as “spectator processes” [105, 106]. The basic way through which they act is that of
redistributing the asymmetry generated in the lepton doublets among the other particle species. Since
the density asymmetries of the lepton doublets are what weights the rates of the washout processes, it
can be expected that spectator processes would render the washouts less effective and increase the effi-
ciency of leptogenesis. However, in most cases this is not true: proper inclusion of spectator processes
implies accounting for all the particle asymmetries, and in particular also for the density asymmetry
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of the Higgs Y∆H [106]. This was omitted in Section 1.2 but in fact has to be added to the density
asymmetry of the leptons Y∆` in weighting for example washouts from inverse decays. Eq. (1.20) would
then become:

dY∆L

dz
= ε1D1(YN1 − Y

eq
N1

)− 2 (Y∆` + Y∆H)W1 (1.47)

where the factor of two in front of the washout term counts the leptons and Higgs gauge multiplicity.
Clearly, in some regimes in which Y∆` and Y∆H are not sufficiently diluted by interacting with other
particles, this can have the effect of enhancing the washout rates and suppressing the efficiency.

In the study of spectator processes it is fundamental to specify the range of temperature in which
leptogenesis occurs. This is because at each specific temperature T , particle reactions must be treated
in a different way depending if their characteristic time scale τ (given by inverse of their thermally
averaged rates) is [89, 107]

(1) much shorter than the age of the Universe: τ � tU (T );

(2) much larger than the age of the Universe: τ � tU (T );

(3) comparable with the Universe age: τ ∼ tU (T ).

Spectator processes belong to the first type of reactions which occur very frequently during one expan-
sion time. Their effects can be accounted for by imposing on the thermodynamic system the chemical
equilibrium condition appropriate for each specific reaction, that is

∑
I µI =

∑
F µF , where µI denotes

the chemical potential of an initial state particle, and µF that of a final state particle11. The numerical
values of the parameters that are responsible for these reactions only determine the precise tempera-
ture T when chemical equilibrium is attained but, apart from this, have no other relevance, and do
not appear explicitly in the formulation of the problem. Reactions of type (2) cannot have any effect
on the system, since they basically do not occur. All physical processes are blind to the corresponding
parameters, that can be set to zero in the effective Lagrangian. In most cases this results in exact
global symmetries corresponding to conserved charges, and these conservation laws impose constraints
on the particle chemical potentials. Reactions of type (3) in general violate some symmetry, and thus
spoil the corresponding conservation conditions, but are not fast enough to enforce chemical equilib-
rium. These are the only reactions that need to be studied by means of BE, and for which the precise
value of the parameters that control their rates is of utmost importance.

A simple case to illustrate how to include spectator processes is the one flavour regime at partic-
ularly high temperatures (say T >∼ 1013 GeV). The Universe expansion is fast implying that except
for processes induced by the large Yukawa coupling of the top and for gauge interactions, all other
B−L-conserving reactions fall in class (ii). Then there are several conserved quantities as for example
the total number density asymmetries of the RH leptons as well as those of all the quarks except the
top. Since electroweak sphalerons are also out of equilibrium, B is conserved too (and vanishing, if
we assume that there is no preexisting asymmetry). B = 0 then translates in the condition:

2Y∆Q3 + Y∆t = 0 , (1.48)

where Y∆Q3 is the density asymmetries of one degree of freedom of the top SU(2)L doublet and color
triplet which, being gauge interactions in equilibrium, is the same for all the six gauge components,
and Y∆t is the density asymmetry of the SU(2)L singlet top. Hypercharge is always conserved, yielding

Y∆Q3 + 2Y∆t − Y∆` + Y∆H = 0 . (1.49)

11The relation between chemical potentials and particle density asymmetries is given in eq. (1.85).
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Finally, in terms of density asymmetries chemical equilibrium for the top-Yukawa related reactions
µQ3 + µH = µt translates into

Y∆Q3 +
1

2
Y∆H = Y∆t . (1.50)

We have three conditions for four density asymmetries, which allows to express the Higgs density
asymmetry in terms of the density asymmetry of the leptons as Y∆H = 2

3Y∆`. Moreover, given that
only the LH lepton degrees of freedom are populated, we have Y∆L = 2Y∆` so that the coefficient
weighting W1 in eq. (1.47) becomes 2 (Y∆` + Y∆H) = 5

3Y∆L and the washout is accordingly stronger.
With decreasing temperatures, more reactions attain chemical equilibrium, and accounting for

spectator processes becomes accordingly more complicated. When the temperature drops below T ∼
1012 GeV, EW sphalerons are in equilibrium, and baryon number is no more conserved. Then the
condition eq. (1.48) is no more satisfied and, more importantly, the BE eq. (1.47) is no more valid
since sphalerons violate also lepton number with in-equilibrium rates. However, sphalerons conserve
B − L, which is then violated only by slow reactions of type (3), and we should then write down a
BE for this quantity. Better said, since at T <∼ 1012 GeV all the third generation Yukawa reactions,
including the ones of the τ -lepton, are in equilibrium, the dynamical regime is that of two flavours
in which the relevant quasi-conserved charges are ∆τ = B/3 − Lτ and ∆eµ = B/3 − Leµ. The fact
that only two charges are relevant is because there is always a direction in e-µ space which remains
decoupled from N1. The corresponding third charge ∆′eµ is then exactly conserved, its value can be
set to zero and the corresponding BE dropped. In this regime, the BE corresponding to eq. (1.47)
becomes:

− dY∆α

dz
= εαD1(YN1 − Y

eq
N1

)− 2 (Y∆`α + Y∆H)W1 (α = τ, eµ) . (1.51)

To rewrite these equations in a solvable closed form, Y∆`τ , Y∆`eµ and Y∆H must be expressed in
terms of the two charge densities Y∆τ and Y∆eµ . This can be done by imposing the hypercharge
conservation condition eq. (1.49) and the chemical equilibrium conditions that, in addition to eq. (1.50),
are appropriate for the temperature regime we are considering. They are [106]: 1. QCD sphaleron
equilibrium; 2. EW sphaleron equilibrium; 3. b-quark and τ -lepton Yukawa equilibrium. The ‘rotation’
from the particle density asymmetries Y∆`α , Y∆H to the charge densities Y∆α can be expressed in
terms of the A matrix introduced in [67] Y∆`α = A`αβY∆β

(α, β = τ, eµ) and C-vector Y∆H = CHα Y∆α

introduced in [69]. For the present case, with the ordering (eµ, τ) they are [69]:

A` =
1

460

(
196 −24
−9 156

)
and CH =

1

230
(41, 56) . (1.52)

It is important to stress that in each temperature regime there are always enough constraints (conser-
vation laws and chemical equilibrium conditions) to allow to express all the relevant particle density
asymmetries in terms of the quasi-conserved charges Y∆α . This is because each time a conservation
law has to be dropped (like B conservation above) it gets replaced by a chemical equilibrium condi-
tion (like EW sphalerons equilibrium), and each time the chemical potential of a new particle species
becomes relevant, it is precisely because a new reaction involving that particle attains chemical equi-
librium, enforcing the corresponding condition. As regards the quantitative corrections ascribable to
spectator processes, several numerical studies have confirmed that they generally remain below order
one. Thus, differently from flavour effects, for order of magnitude estimates they can be neglected.
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Figure 1.2: Diagrams for various 2 ↔ 2 scattering processes: (a) scatterings with the top quarks,
(b), (c) scatterings with the gauge bosons (A = B,Wi with i = 1, 2, 3).

1.4.2 Scatterings and CP violation in scatterings

Scattering processes are relevant for the production of the N1 population, because decay and inverse
decay rates are suppressed by a time dilation factor ∝M1/T . The N1 = N̄1 particles can be produced
by scatterings with the top quark in s-channel H-exchange qtc → N`α and q̄t̄c → N ¯̀

α, by t-channel
H-exchange in q ¯̀

α → Nt̄c, q̄`α → Ntc and by u-channel H-exchange in `αt̄
c → Nq, tc ¯̀α → Nq̄, see

the diagrams labeled (a) in Figure 1.2. Several scattering channels with gauge bosons also contribute
to the production of N1. The corresponding diagrams are labeled (b) and (c) in the same figure.

When the effects of scatterings in populating the N1 degree of freedom are included, for consistency
CP violation in scatterings must also be included. In doing so some care has to be put in treating
properly also all the processes of higher order in the couplings (h2

tλ
4, g2λ4, where g is a gauge coupling)

with an on-shell intermediate state N1 subtracted out. This can be done by following the procedure
adopted in Ref. [108], and we refer to that paper for details.

In first approximation, the CP asymmetry in scattering processes is the same as in decays and
inverse decays [70, 109]. This result was first found in Refs. [110, 75, 111] for the case of resonant
leptogenesis, and was later derived in Ref. [70] for the case of hierarchical Nj . A full calculation of the
CP asymmetry in scatterings involving the top quark was carried out in Ref. [108], and the validity
of approximating it with the CP asymmetry in decays was analyzed, finding that the approximation
is generally good for sufficiently strong RH neutrino hierarchies, e.g. M2/M1 � 10. Corrections up to
several tens of percent can appear around temperatures of order T ∼M2/10, and can be numerically
relevant in case of milder hierarchies.

Regarding the scattering processes with gauge bosons such as N`α → AH̄ NH → A¯̀
α or NA →

`αH, their effects in leptogenesis were estimated in Ref. [108] under the assumption that it can also
be factorized in terms of the decay CP asymmetry. However, with respect to scatterings involving
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the top quark, there is a significant difference that now box diagrams in which the gauge boson is
attached to a lepton or Higgs in the loop of the vertex-type diagrams are also present, leading to more
complicated expressions that were explicitly calculated in Ref. [112]. There it was shown that the
presence of box diagrams implies that for scatterings with gauge bosons the CP asymmetry is different
from the decay CP asymmetry even for hierarchical RH neutrinos. Still, this difference remains within
a factor of two [112] so that related effects are in any case not very large. In general, it turns out that
CP asymmetry in scatterings is more relevant at high temperatures (T > M1) when the scattering
rates are larger than the decay rate. Hence, it can be of some relevance to the final value of the
baryon asymmetry when some of the lepton flavours are weakly washed out, and some memory of the
asymmetries generated at high temperature is preserved in the final result.

1.4.3 Thermal corrections

At the high temperatures at which leptogenesis occurs, the light particles involved in the leptogenesis
processes are in equilibrium with the hot plasma. Thermal effects give corrections to several ingredients
in the analysis: (i) coupling constants, (ii) particle propagators (leptons, quarks, gauge bosons and
the Higgs) and (iii) CP-violating asymmetries, which we briefly discuss below. A detailed study of
thermal corrections can be found in Ref. [49].

Coupling constants

Renormalization of gauge and Yukawa couplings in a thermal plasma is studied in Ref. [113]. In
practice, it is a good approximation to use the zero-temperature renormalization group equations for
the couplings, with a renormalization scale Λ ∼ 2πT [49]. The value Λ > T is related to the fact that
the average energy of the colliding particles in the plasma is larger than the temperature.

The renormalization effects for the neutrino couplings are also well known [114, 115]. In the non-
supersymmetric case, to a good approximation these effects can be described by a simple rescaling
of the low energy neutrino mass matrix m(µ) = r · m, where 1.2 <∼ r <∼ 1.3 for 108 GeV<∼ µ <∼
1016 GeV [49], and therefore can be accounted for by increasing the values of the neutrino mass
parameters (for example, m̃) as measured at low energy by ≈ 20%−30% (depending on the leptogenesis
scale). In the supersymmetric case one expects a milder enhancement, but uncertainties related with
the precise value of the top-Yukawa coupling can be rather large (see Figure 3 in Ref. [49]).

Decays and scatterings

In the thermal plasma, any particle with sizable couplings to the background acquires a thermal mass
which is proportional to the plasma temperature. Consequently, decay and scattering rates get mod-
ified. Particle thermal masses have been thoroughly studied in both the SM and the supersymmetric
SM [116, 117, 91, 118, 119, 120]. The singlet neutrinos have no gauge interactions, their Yukawa
couplings are generally small and, during the relevant era, their bare masses are of the order of the
temperature or larger. Consequently, to a good approximation, corrections to their masses can be
neglected. We thus need to account for the thermal masses of the leptons and Higgs doublets and,
when scatterings are included, also of the third generation quarks and of the gauge bosons (and of
their superpartners in the supersymmetric case). For a qualitative discussion, it is enough to keep
in mind that, within the leptogenesis temperature range, we have mH(T ) >∼ mq3,t(T ) � m`(T ). The
most important effects are related to four classes of leptogenesis processes:
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(i) Decays and inverse decays. Since thermal corrections to the Higgs mass are particularly large
(mH(T ) ≈ 0.4T ), decays and inverse decays become kinematically forbidden in the temperature range
in which mH(T ) − m`(T ) < MN1 < mH(T ) + m`(T ). For lower temperatures, the usual processes
N1 ↔ `H can occur. For higher temperatures, the Higgs is heavy enough that it can decay: H ↔ `N1.
A rough estimate of the kinematically forbidden region yields 2 <∼ T/M1 <∼ 5. The important point
is that these corrections are effective only at T > M1. In the parameter region m̃ > 10−3 eV, that is
favoured by the measurements of the neutrino mass-squared differences, the N1 number density and
its L-violating reactions attain thermal equilibrium at T ≈M1 and erase quite efficiently any memory
of the specific conditions at higher temperatures. Consequently, in the strong washout regime, these
corrections have practically no effect on the final value of the baryon asymmetry.

(ii) ∆L = 1 scatterings with top quark. A comparison between the corrected and uncorrected
rates of the top-quark scattering γtop

Hs
≡ γ(q3 t̄ ↔ `N1) with the Higgs exchanged in the s-channel,

and of the sum of the t- and u-channel scatterings γtop
Ht+u

≡ γ(q3N1 ↔ ` t) + γ(t̄ N1 ↔ ` q̄3) shows

that the only corrections appearing at low temperatures, and thus more relevant, are for γtop
Ht+u

(see
Figure 7.1 in Ref. [109]). They reduce the scattering rates and suppress the related washouts. This
peculiar situation arises from the fact that in the zero temperature limit there is a large enhancement
∼ ln(MN1/mH) from the quasi-massless Higgs exchanged in the t- and u-channels, which disappears
when the Higgs thermal mass mH(T ) ∼ T ∼MN1 is included.

(iii) ∆L = 1 scatterings with the gauge bosons. Here the inclusion of thermal masses is required to
avoid IR divergences that would arise when massless ` (and H) states are exchanged in the t- and u-
channels. A naive use of some cutoff for the phase space integrals to control the IR divergences can yield
incorrect estimates of the gauge bosons scattering rates [49]) and would be particularly problematic
at low temperatures, where gauge bosons scatterings dominate over top-quark scatterings.

CP asymmetries

CP asymmetries arise from the interference of tree level and one-loop amplitudes when the couplings
involved have complex phases and the loop diagrams have an absorptive part. This last requirement
is satisfied whenever the loop diagram can be cut in such a way that the particles in the cut lines can
be produced on shell. For the CP asymmetry in decay (at zero temperature) this is guaranteed by
the fact that the Higgs and the lepton final states coincide with the states circulating in the loops.
However, in the hot plasma in which N1 decays occur, the Higgs and the lepton doublets are in thermal
equilibrium and their interactions with the background introduce in the CP asymmetries a dependence
on the temperature ε→ ε(T ) that arises from various effects:

i) Absorption and re-emission of the loop particles by the medium require the use of finite temper-
ature propagators.

ii) Stimulation of decays into bosons and blocking of decays into fermions in the dense background
require proper modification of the final states density distributions.

iii) Thermal motion of the decayingN ’s with respect to the background breaks the Lorentz symmetry
and affects the evaluation of the CP asymmetries.

iv) Thermal masses should be included in the finite temperature resummed propagators, and they
also modify the fermion and boson dispersion relations. Their inclusion yields the most significant
modifications to the zero temperature results for the CP asymmetries.
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The first three effects were investigated in Ref. [48] while the effects of thermal masses was included
in Ref. [49]. In principle, at finite temperature, there are additional effects related to new cuts that
involve the heavy N2,3 neutrino lines. These new cuts appear because the heavy particles in the loops
may absorb energy from the plasma and go on-shell. However, for hierarchical spectrum, M2,3 �M1,
the related effects are Boltzmann suppressed by exp(−M2,3/T ) that at T ∼ M1 is a tiny factor. For
a non-hierarchical spectrum, the effect of these new cuts can however be sizable. A detail study can
be found in Ref. [121].

Propagators and statistical distributions

Particle propagators at finite temperature are computed in the real time formalism of thermal field the-
ory [122, 123]. In this formalism, ghost fields dual to each of the physical fields have to be introduced,
and consequently the thermal propagators have 2×2 matrix structures. For the one-loop computations
of the absorptive parts of the Feynman diagrams, the relevant propagator components are just those
of the physical lepton and Higgs fields. The usual zero temperature propagators −iS0

` (p,m`) = (p/
−m` + i0+)−1 and −iD0

H(p,mH) = (p2 −m2
H + i0+)−1 acquire an additive term that is proportional

to the particle density distribution n`,H = [exp(E`,H/T )± 1]−1:

δS`(T ) = −2π n` (p/−m`) δ(p
2 −m2

` ) , (1.53)

δDH(T ) = +2π nH δ(p
2 −m2

H) . (1.54)

For the fermionic thermal propagators, there are other higher order corrections (see Ref. [49]). Un-
like the case of bosons, the interactions of the fermions with the thermal bath lead to two different
types of excitations with different dispersion relations, that are generally referred to as ‘particles’ and
‘holes’ [49]. The contributions of these two fermionic modes were studied in Refs. [124, 125, 126] where
it was argued that in the strong washout regime they could give non-negligible effects [126]. The lead-
ing effects in i) are proportional to the factor −n` + nH − 2n` nH that vanishes when the final states
thermal masses are neglected, because the Bose-Einstein and Fermi-Dirac statistical distributions de-
pend on the same argument, E` = EH = M1/2. As a consequence, the thermal corrections to the
fermion and boson propagators (n` and nH) and the product of the two thermal corrections (n` nH)
cancel each other. This was interpreted as a complete compensation between stimulated emission and
Pauli blocking. As regards the effects in ii), they lead to overall factors that cancel between numerator
and denominator in the expression for the CP asymmetry12. More recently, on the basis of a first
principle derivation of the CP asymmetry within a quantum BE approach (see Section 1.4.5) it has
been claimed that the statistical factor induced by thermal loops is instead −n` +nH , which does not
vanish even in the massless approximation. This would result in a further enhancement in the CP
asymmetry from the thermal effects [127].

Particle motion

Given that the decaying particle N1 is moving with respect to the background (with velocity ~β) the
fermionic decay products are preferentially emitted in the direction anti-parallel to the plasma velocity
(for which the thermal distribution is less occupied), while the bosonic ones are emitted preferentially in

12 A similar cancellation holds also in the supersymmetric case. However, because of the presence of the superpartners
˜̀, H̃ both as final states and in the loops, the cancellation is more subtle and it involves a compensation between the
two types of corrections i) and ii). We refer to Ref. [48] for details.
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the forward direction (for which stimulated emission is more effective). Particle motion then induces
an angular dependence in the decay distribution at order O(β). In the total decay rate the O(β)
anisotropy effect is integrated out, and only O(β2) effects remain [48]. Therefore, while accounting
for thermal motion does modify the zero temperature results, these corrections are numerically small
[48, 49] and generally negligible.

Thermal masses

When the finite values of the light particle thermal masses are taken into account, the arguments of the
Bose-Einstein and Fermi-Dirac statistical distributions are different. It is a good approximation [49]
to use for the particle energies E`,H = M1/2 ∓ (m2

H −m2
` )/2M1. Since now E` 6= EH , the prefactor

−n` + nH − 2n`nH that multiplies the thermal corrections does not vanish anymore, and sizable
corrections become possible. The most relevant effect is that the CP asymmetry vanishes when, as the
temperature increases, the sum of the light particles thermal masses approaches M1 [49]. This is not
surprising, since the particles in the final state coincide with the particles in the loop, and therefore
when the decay becomes kinematically forbidden, also the particles in the loop cannot go on the mass
shell. When the temperature is large enough that mH(T ) > m`(T )+M1 the Higgs can decay, and then
there is a new source of lepton number asymmetry associated with H → `N1. The CP asymmetry in
Higgs decays εH can be up to one order of magnitude larger than the CP asymmetry in N1 decays [49].
While this could represent a dramatic enhancement of the CP asymmetry, εH is non-vanishing only at
temperatures T >∼ TH ∼ 5M1, when the kinematic condition for its decays is satisfied. Therefore, in
the strong washout regime, no trace of this effect survives. On the other hand, rather large couplings
are required in order that Higgs decays can occur before the phase space closes: the decay rate can
attain thermal equilibrium only when m̃ >∼ (TH/M1)2m∗ � m∗, and therefore, in the weak washout
regime (m̃ <∼ m∗), these decays always remain strongly out of equilibrium. This means that only a
small fraction of the Higgs particles have actually time to decay, and the lepton-asymmetry generated
in this way is accordingly suppressed.

In summary, while the corrections to the CP asymmetries can be significant at T >∼M1 (and quite
large at T �M1 for Higgs decays), in the low temperature regime, where the precise value of ε plays a
fundamental role in determining the final value of the baryon asymmetry, there are almost no effects,
and the zero temperature results still give a reliable approximation.

1.4.4 Decays of the heavier right-handed neutrinos

In leptogenesis studies, the effects of N2,3 are often neglected, which in many cases is not a good
approximation. This is obvious for example when N1 dynamics is irrelevant for leptogenesis: ε1 � 10−6

cannot provide enough CP asymmetry to account for baryogenesis, and m̃1 � m∗ implies that N1

washout effects are negligible. It is then clear that any asymmetry generated in N2,3 decays can
survive, and becomes crucial for the success of leptogenesis. Another case in which it is intuitively
clear that N2,3 effects can be important, is when the RH neutrino spectrum is compact, which means
that M2,3 have values within a factor of a few from M1. Then N1 and N2,3 contributions to leptogenesis
can be equally important and must be summed up. A model with compact RH neutrino spectrum in
which N2,3 dynamics is of crucial importance was recently discussed in Ref. [128].

It is less obvious that N2,3 effects can also be important for a hierarchical RH spectrum and when
N1 is strongly coupled. This can happen because decoherence effects related to N1-interactions can
project the asymmetry generated in N2,3 decays onto a flavour direction that remains protected against
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N1 washouts [67, 129, 130, 131]. Let us illustrate this with an example. Let us assume that a sizable
asymmetry is generated in N2 decays, while N1 leptogenesis is inefficient and fails, that is:

m̃2 6� m∗, m̃1 � m∗. (1.55)

Assuming also a strong hierarchy and that leptogenesis occurs thermally guarantees that [131]:

nN1(T ∼M2) ≈ 0, nN2(T ∼M1) ≈ 0. (1.56)

Thus, the dynamics ofN2 andN1 are decoupled: there are neitherN1-related washout effects duringN2

leptogenesis, nor N2-related washout effects during N1 leptogenesis. The N2 decays into a combination
of lepton doublets that we denote by `2:

|`2〉 = (Y †Y )
−1/2
22

∑
α

Yα2|`α〉. (1.57)

The second condition in eq. (1.55) implies that already at T >∼ M1 the N1-Yukawa interactions are
sufficiently fast to quickly destroy the coherence of `2. Then a statistical mixture of `1 and of the
state orthogonal to `1 builds up, and it can be described by a suitable diagonal density matrix. Let
us consider the simple case where both N2 and N1 decay at T >∼ 1012 GeV, so that flavour effects
are irrelevant. A convenient choice for an orthogonal basis for the lepton doublets is (`1, `0, `

′
0) where,

without loss of generality, `′0 satisfies 〈`′0|`2〉 = 0. Then the asymmetry ∆Y`2 produced in N2 decays
decomposes into two components:

∆Y`0 = c2 ∆Y`2 , ∆Y`1 = s2 ∆Y`2 , (1.58)

where c2 ≡ |〈`0|`2〉|2 and s2 = 1− c2. The crucial point here is that we expect, in general, c2 6= 0 and,
since 〈`0|`1〉 = 0, ∆Y`0 is protected against N1 washout. Consequently, a finite part of the asymmetry
∆Y`2 from N2 decays survives through N1 leptogenesis. A more detailed analysis [131] finds that ∆Y`1
is not entirely washed out, resulting in the final lepton asymmetry Y∆L = (3/2)∆Y`0 = (3/2)c2 ∆Y`2 .

For 109 GeV<∼ M1 <∼ 1012 GeV, flavour issues modify the quantitative details, but the qualitative
picture, and in particular the survival of a finite part of ∆Y`2 , still holds. In contrast, forM1 <∼ 109 GeV,
the full flavour basis (`e, `µ, `τ ) is resolved and thus there are no directions in flavour space where an
asymmetry is protected, so that Y`2 can be erased entirely. A dedicated study in which the various
flavour regimes for N1,2,3 decays are considered can be found in Ref. [132].

In conclusion N2,3 leptogenesis cannot be ignored, unless one of the following conditions holds:

1. The reheat temperature is below M2.

2. The asymmetries and/or the washout factors vanish, εN2η2 ≈ 0 and εN3η3 ≈ 0.

3. N1-related washout is still significant at T <∼ 109 GeV.

1.4.5 Quantum Boltzmann equations

So far we have analyzed the leptogenesis dynamics by adopting the classical BE of motion. An
interesting question which has attracted some attention recently [133, 85, 134, 135, 136, 127, 137, 94,
138, 121, 139] is under which circumstances the classical BE can be safely applied to get reliable results
and, conversely, when a more rigorous quantum approach is needed. Quantum BE are obtained starting
from the non-equilibrium quantum field theory based on the Closed Time-Path (CTP) formulation
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[140]. Both, CP violation from wave-function and vertex corrections are incorporated. Unitarity
issues are resolved and an accurate account of all quantum-statistical effects on the asymmetry is
made. Moreover, the formulation in terms of Green functions bears the potential of incorporating
corrections from Thermal Field Theory within the CTP formalism.

In the CTP formalism, particle number densities are replaced by Green’s functions obeying a set of
equations which, under some assumptions, can be reduced to a set of kinetic equations describing the
evolution of the lepton asymmetry and the RH neutrinos. These kinetic equations are non-Markovian
and present memory effects. In other words, differently from the classical approach where every
scattering in the plasma is independent from the previous one, the particle abundances at a given
time depend upon the history of the system. The more familiar energy-conserving delta functions are
replaced by retarded time integrals of time-dependent kernels and cosine functions whose arguments
are the energy involved in the various processes. Therefore, the non-Markovian kinetic equations
include the contribution of coherent processes throughout the history of the kernels and the relaxation
times are expected to be typically longer than the one dictated by the classical approach.

If the time range of the kernels are shorter than the relaxation time of the particles abundances,
the solutions to the quantum and the classical BE differ only by terms of the order of the ratio of the
timescale of the kernel to the relaxation timescale of the distribution. In thermal leptogenesis this is
typically the case. However, there are situations where this does not happen. For instance, in the case
of resonant leptogenesis, two RH (s)neutrinos N1 and N2 are almost degenerate in mass and the CP
asymmetry from the decay of the first RH neutrino N1 is resonantly enhanced if the mass difference
∆M = (M2 −M1) is of the order of the decay rate of the second RH neutrino ΓN2 . The typical
timescale to build up coherently the CP asymmetry is of the order of 1/∆M , which can be larger than
the timescale ∼ 1/ΓN1 for the change of the abundance of the N1’s.

Since we need the time evolution of the particle asymmetries with definite initial conditions and not
simply the transition amplitude of particle reactions, the ordinary equilibrium quantum field theory
at finite temperature is not the appropriate tool. The most appropriate extension of the field theory
to deal with non-equilibrium phenomena amounts to generalizing the time contour of integration
to a closed time-path. More precisely, the time integration contour is deformed to run from t0 to
+∞ and back to t0. The CTP formalism is a powerful Green’s function formulation for describing
non-equilibrium phenomena in field theory. It allows to describe phase-transition phenomena and
to obtain a self-consistent set of quantum BE. The formalism yields various quantum averages of
operators evaluated in the in-state without specifying the out-state. On the contrary, the ordinary
quantum field theory yields quantum averages of the operators evaluated with an in-state at one end
and an out-state at the other.

For example, because of the time-contour deformation, the partition function in the in-in formalism
for a complex scalar field is defined to be

Z
[
J, J†

]
= Tr

[
T
(

exp

[
i

∫
C

(
J(x)φ(x) + J†(x)φ†(x)

)
d4x

])
ρ

]
= Tr

[
T+

(
exp

[
i

∫ (
J+(x)φ+(x) + J†+(x)φ†+(x)

)
d4x

])
× T−

(
exp

[
−i

∫ (
J−(x)φ−(x) + J†−(x)φ†−(x)

)
d4x

])
ρ

]
, (1.59)

where C in the integral denotes that the time integration contour runs from t0 to plus infinity and
then back to t0 again. The symbol ρ represents the initial density matrix and the fields are in the
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Heisenberg picture and defined on this closed time-contour (plus and minus subscripts refer to the
positive and negative directional branches of the time path, respectively). The time-ordering operator
along the path is the standard one (T+) on the positive branch, and the anti-time-ordering (T−) on the
negative branch. As with the Euclidean-time formulation, scalar (fermionic) fields φ are still periodic
(anti-periodic) in time, but with φ(t, ~x) = φ(t − iβ, ~x), β = 1/T . The temperature T appears due to
boundary condition, and time is now explicitly present in the integration contour.

We must now identify field variables with arguments on the positive or negative directional branches
of the time path. This doubling of field variables leads to six different real-time propagators on the
contour. These six propagators are not independent, but using all of them simplifies the notation. For
a generic charged scalar field φ they are defined as

G>φ (x, y) = −G−+
φ (x, y) = −i〈φ(x)φ†(y)〉,

G<φ (x, y) = −G+−
φ (x, y) = −i〈φ†(y)φ(x)〉,

Gtφ(x, y) = G++
φ (x, y) = θ(x, y)G>φ (x, y) + θ(y, x)G<φ (x, y),

Gtφ(x, y) = G−−φ (x, y) = θ(y, x)G>φ (x, y) + θ(x, y)G<φ (x, y),

Grφ(x, y) = Gtφ −G<φ = G>φ −G
t
φ, Gaφ(x, y) = Gtφ −G>φ = G<φ −G

t
φ, (1.60)

where the last two Green’s functions are the retarded and advanced Green’s functions respectively
and θ(x, y) ≡ θ(tx − ty) is the step function.

For a generic fermion field ψ the six different propagators are analogously defined as

G>ψ (x, y) = −G−+
ψ (x, y) = −i〈ψ(x)ψ(y)〉,

G<ψ (x, y) = −G+−
ψ (x, y) = +i〈ψ(y)ψ(x)〉,

Gtψ(x, y) = G++
ψ (x, y) = θ(x, y)G>ψ (x, y) + θ(y, x)G<ψ (x, y),

Gtψ(x, y) = G−−ψ (x, y) = θ(y, x)G>ψ (x, y) + θ(x, y)G<ψ (x, y),

Grψ(x, y) = Gtψ −G<ψ = G>ψ −G
t
ψ, Gaψ(x, y) = Gtψ −G>ψ = G<ψ −G

t
ψ. (1.61)

From the definitions of the Green’s functions, one can see that the hermiticity properties(
iγ0Gψ(x, y)

)†
= iγ0Gψ(y, x), (iGφ(x, y))† = iGφ(y, x), (1.62)

are satisfied. For interacting systems, whether in equilibrium or not, one must define and calculate
self-energy functions. Again, there are six of them: Σt, Σt, Σ<, Σ>, Σr and Σa. The same relationships
exist among them as for the Green’s functions in (1.60) and (1.61), such as

Σr = Σt − Σ< = Σ> − Σt, Σa = Σt − Σ> = Σ< − Σt. (1.63)

The self-energies are incorporated into the Green’s functions through the use of Dyson’s equations. A
useful notation may be introduced which expresses four of the six Green’s functions as the elements
of two-by-two matrices

G̃ =

(
Gt ±G<

G> −Gt

)
, Σ̃ =

(
Σt ±Σ<

Σ> −Σt

)
, (1.64)
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where the upper signs refer to the bosonic case and the lower signs to the fermionic case. For systems
either in equilibrium or in non-equilibrium, Dyson’s equation is most easily expressed by using the
matrix notation

G̃(x, y) = G̃0(x, y) +

∫
d4z1

∫
d4z2 G̃

0(x, z1)Σ̃(z1, z2)G̃(z2, y), (1.65)

where the superscript “0” on the Green’s functions means to use those for noninteracting system. It
is useful to notice that Dyson’s equation can be written in an alternative form, instead of (1.65), with
G̃0 on the right in the interaction terms,

G̃(x, y) = G̃0(x, y) +

∫
d4z3

∫
d4z4 G̃(x, z3)Σ̃(z3, z4)G̃0(z4, y). (1.66)

Eqs. (1.65) and (1.66) are the starting points to derive the quantum BE describing the time evolution
of the CP-violating particle density asymmetries.

To proceed, one has to choose a form for the propagators. For a generic fermion ψ (and similarly
for scalars) one may adopt the real-time propagator in the form Gtψ(k, tx− ty) in terms of the spectral
function ρψ(k, k0)

Gtψ(k, tx − ty) =

∫ +∞

−∞

dk0

2π
e−ik

0(tx−ty) ρψ(k, k0)

×
{[

1− fψ(k0)
]
θ(tx − ty)− fψ(k0)θ(ty − tx)

}
, (1.67)

where fψ(k0) represents the fermion distribution function. Again, particles must be substituted by
quasiparticles, dressed propagators are to be adopted and self-energy corrections to the propagator
modify the dispersion relations by introducing a finite width Γψ(k). For a fermion with chiral mass
mψ, one may safely choose

ρψ(k, k0) = i (6 k +mψ)

[
1

(k0 + iε+ iΓψ)2 − ω2
ψ(k)

− 1

(k0 − iε− iΓψ)2 − ω2
ψ(k)

]
, (1.68)

where ω2
ψ(k) = k2 +M2

ψ(T ) and Mψ(T ) is the effective thermal mass of the fermion in the plasma (not

a chiral mass). Performing the integration over k0 and picking up the poles of the spectral function
(which is valid for quasi-particles in equilibrium or very close to equilibrium), one gets

G>ψ (k, tx − ty) = − i

2ωψ

{
(6 k +mψ) [1− fψ(ωψ − iΓψ)] e−i(ωψ−iΓψ)(tx−ty)

+ γ0 ( 6 k −mψ) γ0fψ(ωψ + iΓψ) ei(ωψ+iΓψ)(tx−ty)
}
,

G<ψ (k, ty − tx) =
i

2ωψ

{
(6 k +mψ) fψ(ωψ + iΓψ) e−i(ωψ−iΓψ)(tx−ty)

+ γ0 ( 6 k −mψ) γ0
[
1− fψ(ωψ − iΓψ)

]
ei(ωψ+iΓψ)(tx−ty)

}
, (1.69)

where k0 = ωψ and fψ, fψ denote the distribution function of the fermion particles and antiparticles,
respectively. The expressions (1.69) are valid for tx − ty > 0.

The above definitions hold for the lepton doublets (after inserting the chiral LH projector PL), as
well as for the Majorana RH neutrinos, for which one has to assume identical particle and antiparticle
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distribution functions and insert the inverse of the charge conjugation matrix C in the dispersion
relation.

To elucidate further the impact of the CTP approach and to see under which conditions one can
obtain the classical BE from the quantum ones, one may consider the dynamics of the lightest RH
neutrino N1. To find its quantum BE we start from eq. (1.65) for the Green’s function G<N1

of the RH
neutrino N1

(
i
→
6 ∂x −M1

)
G<N1

(x, y) = −
∫
d4z

[
−Σt

N1
(x, z)G<N1

(z, y) + Σ<
N1

(x, z)GtN1
(z, y)

]
=

∫
d3z

∫ t

0
dtz

[
Σ>
N1

(x, z)G<N1
(z, y)− Σ<

N1
(x, z)G>N1

(z, y)
]
.

(1.70)

Adopting the corresponding form for the RH neutrino propagator and the center-of-mass coordinates

X ≡ (t, ~X) ≡ 1

2
(x+ y), (τ, ~r) ≡ x− y, (1.71)

one ends up with the following equation

∂fN1(k, t)

∂t
= −2

∫ t

0
dtz

∫
d3p

(2π)3

1

2ω`(p)

1

2ωH(k− p)

1

ωN1(k)
|M(N1 → `H)|2

× [fN1(k, t)(1− f`(p, t))(1 + fH(k− p, t))

−f`(p, t)fH(k− p, t)(1− fN1(k, t))]

× cos [(ωN1(k)− ω`(p)− ωH(k− p)) (t− tz)]

' −2

∫ t

0
dtz

∫
d3p

(2π)3

1

2ω`(p)

1

2ωH(k− p)

1

ωN1(k)
|M(N1 → `H)|2

×
(
fN1(k, t)− feq` (p)feqH (k− p)

)
× cos [(ωN1(k)− ω`(p)− ωH(k− p)) (t− tz)] . (1.72)

This equations holds under the assumption that the relaxation timescale for the distribution functions
are longer than the timescale of the non-local kernels so that they can be extracted out of the time
integral. This allows to think the distributions as functions of the center-of-mass time only. We have
set to zero the damping rates of the particles in eq. (1.69) and retained only those cosines giving rise to
energy delta functions that can be satisfied. Under these assumptions, the distribution function may
be taken out of the time integral, leading – at large times – to the so-called Markovian description.
The kinetic equation (1.72) has an obvious interpretation in terms of gain minus loss processes, but the
retarded time integral and the cosine function replace the familiar energy-conserving delta functions. In
the second passage, we have also made the usual assumption that all distribution functions are smaller
than unity and that those of the Higgs and lepton doublets are in equilibrium and much smaller than
unity, f`fH ' feq` f

eq
H . Elastic scatterings are typically fast enough to keep kinetic equilibrium. For

any distribution function we may write f = (n/neq)feq, where n denotes the total number density.
Therefore, eq. (1.72) can be re-written as
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∂nN1

∂t
= −〈ΓN1(t)〉nN1 + 〈Γ̃N1(t)〉neqN1

,

〈ΓN1(t)〉 =

∫ t

0
dtz

∫
d3k

(2π)3

feqN1

neqN1

ΓN1(t),

ΓN1(t) = 2

∫
d3p

(2π)3

|M(N1 → `H)|2

2ω`2ωHωN1

cos [(ωN1 − ω` − ωH) (t− tz)] ,

〈Γ̃N1(t)〉 =

∫ t

0
dtz

∫
d3k

(2π)3

feqN1

neqN1

Γ̃N1(t),

Γ̃N1(t) = 2

∫
d3p

(2π)3

feq` f
eq
H

feqN1

|M(N1 → `H)|2

2ω`2ωHωN1

cos [(ωN1 − ω` − ωH) (t− tz)] ,

(1.73)

where 〈ΓN1(t)〉 is the time-dependent thermal average of the Lorentz-dilated decay width. Integrating
over large times, t→∞, thereby replacing the cosines by energy-conserving delta functions∫ ∞

0
dtz cos [(ωN1 − ω` − ωH) (t− tz)] = πδ (ωN1 − ω` − ωH) , (1.74)

we find that the two averaged rates 〈ΓN1〉 and 〈Γ̃N1〉 coincide and we recover the usual classical BE
for the RH distribution function

∂nN1

∂t
= −〈ΓN1〉

(
nN1 − n

eq
N1

)
,

〈ΓN1〉 =

∫
d3k

(2π)3

feqN1

neqN1

∫
d3p

(2π)3

|M(N1 → `H)|2

2ω`2ωHωN1

(2π)δ (ωN1 − ω` − ωH) .

(1.75)

Taking the time interval to infinity, namely implementing Fermi’s golden rule, results in neglecting
memory effects, which in turn results only in on-shell processes contributing to the rate equation. The
main difference between the classical and the quantum BE can be traced to memory effects and to the
fact that the time evolution of the distribution function is non-Markovian. The memory of the past
time evolution translates into off-shell processes.

Similarly, one can show that the equation obeyed by the asymmetry reads

∂n∆Lα(X)

∂t
= −

∫
d3z

∫ t

0
dtz Tr

[
Σ>
`α

(X, z)G<`α(z,X)−G>`α(X, z)Σ<
`α

(z,X)

+ G<`α(X, z)Σ>
`α

(z,X)− Σ<
`α

(X, z)G>`α(z,X)
]
. (1.76)

Proceeding as for the RH neutrino equation one finds (including for the moment only the 1-loop wave
contribution to the CP asymmetry εαw)

∂n∆Lα

∂t
= εαw(t)〈ΓN1〉

(
nN1 − n

eq
N1

)
,
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εαw(t) = − 4

〈ΓN1〉

3∑
β=1

Im
(
Y1αY1βY

†
β2Y

†
α2

)

×
∫ t

0
dtz

∫ tz

0
dt2

∫ t2

0
dt1e

−ΓN2
(tz−t2)e

−
(

Γ`β+ΓH

)
(t2−t1)

∫
d3k

(2π)3

feqN1

neqN1

×
∫

d3p

(2π)3

1− feq`β (p) + feqH (k− p)

2ω`β (p)2ωH(k− p)ωN1(k)

∫
d3q

(2π)3

1− feq`α (q) + feqH (k− q)

2ω`α(q)2ωH(k− q)ωN2(k)

× sin
(
ωN1(t− t1) +

(
ω`β + ωH

)
(t1 − t2) + ωN2(t2 − tz) + (ω`α + ωH) (tz − t)

)
× Tr (M1PL 6 pM2 6 q) , (1.77)

where, to avoid double counting, we have not inserted the decay rates in the propagators of the initial
and final states and, for simplicity, we have assumed that the damping rates of the lepton doublets and
the Higgs field are constant in time. This should be a good approximation as the damping rate are to
be computed for momenta of order of the mass of the RH neutrinos. As expected from first principles,
we find that the CP asymmetry is a function of time and its value at a given instant depends upon
the previous history of the system.

Performing the time integrals and retaining only those pieces which eventually give rise to energy-
conserving delta functions in the Markovian limit, we obtain

εαw(t) = − 4

〈ΓN1〉

3∑
β=1

Im
(
Y1αY1βY

†
β2Y

†
α2

)
×

∫ t

0
dtz

cos [(ωN1 − ω`α − ωH) (t− tz)](
Γ2
N2

+ (ωN2 − ωN1)2
) (

(Γ`β + ΓH)2 + (ωN1 − ω`β − ωH)2
)

×
∫

d3k

(2π)3

feqN1

neqN1

(Γ`β + ΓH)

(
2 (ωN2 − ωN1) sin2

[
(ωN2 − ωN1)tz

2

]

− ΓN2 sin [(ωN2 − ωN1)tz]

)∫
d3p

(2π)3

1− feq`β (p) + feqH (k− p)

2ω`β (p)2ωH(k− p)ωN1(k)

×
∫

d3q

(2π)3

1− feq`α (q) + feqH (k− q)

2ω`α(q)2ωH(k− q)ωN2(k)
Tr (M1PL 6 pM2 6 q) . (1.78)

From this expression it is already manifest that the typical timescale for the building up of the coherent
CP asymmetry depends crucially on the difference in energy of the two RH neutrinos.

If we now let the upper limit of the time integral to take large values, we neglect the memory
effects, the CP asymmetry picks contribution only from the on-shell processes. Taking the damping
rates of the lepton doublets equal for all the flavours and the RH neutrinos nearly at rest with respect
to the thermal bath, the CP asymmetry reads (now summing over all flavour indices)

εw(t) ' −
Im
(
Y Y †

)2

12

(Y Y †)11 (Y Y †)22

M1

M2
ΓN2

1

(∆M)2 + Γ2
N2

×
(

2 ∆M sin2
[

∆Mt

2

]
− ΓN2 sin [∆Mt]

)
, (1.79)

where ∆M = (M2 −M1). The CP asymmetry (1.79) is resonantly enhanced when ∆M ' ΓN2 and at
the resonance point it is given by
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εw(t) ' −1

2

Im
(
Y Y †

)2

12

(Y Y †)11 (Y Y †)22

(1− sin [∆Mt]− cos [∆Mt]) , (1.80)

The timescale for the building up of the CP asymmetry is ∼ 1/∆M . The CP asymmetry grows
starting from a vanishing value and, for t � (∆M)−1, it averages to the constant standard value.
This is true if the timescale for the other processes relevant for leptogenesis is larger than ∼ 1/∆M .
In other words, one may define an “average” CP asymmetry

〈εw〉 =
1

τp

∫ t

t−τp
dt′ εWN1

(t′), (1.81)

where τp represents the typical timescale of the other processes relevant for leptogenesis, e.g. the
∆L = 1 scatterings. If τp � 1/∆M ∼ Γ−1

N2
, the oscillating functions in (1.80) are averaged to zero

and the average CP asymmetry is given by the value used in the literature. However, the expression
(1.79) should be used when τp <∼ 1/∆M ∼ Γ−1

N2
.

The fact that the CP asymmetry is a function of time is particularly relevant in the case in which
the asymmetry is generated by the decays of two heavy states which are nearly degenerate in mass
and oscillate into one another with a timescale given by the inverse of the mass difference and has
been studied in Refs. [86, 141]. From eq. (1.79) it is manifest that the CP asymmetry itself oscillates
with the very same timescale and such a dependence may or may not be neglected depending upon the
rates of the other processes in the plasma. If ΓN1

>∼ ΓN2 , the time dependence of the CP asymmetry
may not be neglected. The expression (1.79) can also be used, once it is divided by a factor 2 (because
in the wave diagram also the charged states of Higgs and lepton doublets may propagate) and the
limit M2 �M1 is taken, for the CP asymmetry contribution from the vertex diagram

εv(t) ' −
Im
(
Y Y †

)2

12

16π (Y Y †)11

M1

M2

(
2 sin2

[
M2t

2

]
− ΓN2

M2
sin [M2t]

)
. (1.82)

In this case, the timescale for this CP asymmetry is ∼M2 and much larger than any other timescale in
the dynamics. Therefore, one can safely average over many oscillations, getting the expression present
in the literature.

What discussed here provides only one example for which a quantum Boltzmann approach is
needed. In general, the lesson is that quantum BE are relevant when the typical timescale in a quantum
physical process, such as the timescale for the unflavour-to-flavour transition or the timescale to build
up coherently the CP asymmetry (of the order of 1/∆M) is larger than the timescale for the change
of the abundances.

1.5 Supersymmetric Leptogenesis

1.5.1 What’s new?

Supersymmetric leptogenesis constitutes a theoretically appealing generalization of leptogenesis for
the following reason: while the SM equipped with the seesaw provides the simplest way to realize
leptogenesis, such a framework is plagued by an unpleasant fine-tuning problem. For a non degenerate

29



Neutrino Physics Leptogenesis in the Universe

spectrum of heavy Majorana neutrinos, successful leptogenesis requires generically a scale for the
singlet neutrino masses that is much larger than the EW scale [61] but at the quantum level the
gap between these two scales becomes unstable. Low-energy supersymmetry (SUSY) can naturally
stabilize the required hierarchy, and this provides a sound motivation for studying leptogenesis in the
framework of the supersymmetrized version of the seesaw mechanism. Supersymmetric leptogenesis,
however, introduces a certain conflict between the gravitino bound on the reheat temperature and the
thermal production of the heavy singlets neutrinos [142, 143, 144, 145]. In this section, we will not be
concerned with the gravitino problem, nor with its possible ways out but focus on the new features
SUSY brings in for leptogenesis.

The supersymmetric type-I seesaw model is described by the superpotential of the Minimal Su-
persymmetric SM (MSSM) with the additional terms:

W =
1

2
MpqN

c
pN

c
q + λαpN

c
p `αHu, (1.83)

where p, q = 1, 2, . . . label the heavy singlet states in order of increasing mass, and α = e, µ, τ labels the
lepton flavour. In eq. (1.83) `, Hu and N c, are respectively the chiral superfields for the lepton and the
up-type Higgs SU(2)L doublets and for the heavy SU(2)L singlet neutrinos defined according to usual
conventions in terms of their LH Weyl spinor components (for example the N c supermultiplet has
scalar component Ñ∗ and fermion component N c

L). Finally the SU(2)L index contraction is defined
as `αHu = ερσ`

ρ
αH

σ
u with ε12 = +1.

Originally, the issue of MSSM leptogenesis was approached in conjunction with SM leptogenesis [51,
49] as well as in dedicated studies [146, 147]. However in these first analysis, several features that
are specific of SUSY in the high temperature regime relevant for leptogenesis, in which soft SUSY
breaking parameters can be effectively set to zero, had been overlooked. In that case, in spite of the
large amount of new reactions, the differences between SM and MSSM leptogenesis can be resumed
by means of simple counting of a few numerical factors [148, 130, 109], like for example the number
of relativistic degrees of freedom in the thermal bath, the number of loop diagrams contributing to
the CP asymmetries, the multiplicities of the final states in the decays of the heavy neutrinos and
sneutrinos and one can estimate [109]

Y∆B (∞)MSSM

Y∆B (∞)SM
≈
{ √

2 (strong washout);

2
√

2 (weak washout).
(1.84)

Recently it was pointed out in Ref. [89] that in fact MSSM leptogenesis is rich of new and non-
trivial features, and genuinely different from the simpler realization within the SM. The two important
effects are:
(a) If the SUSY breaking scale does not exceed by much 1 TeV, above T ∼ 5 × 107 GeV the particle
and superparticle density asymmetries do not equilibrate [149], and it is mandatory to account in the
BE for the differences in the number density asymmetries of the boson and fermion degrees of freedom.
This can be given in terms of a non-vanishing gaugino chemical potential.
(b) When soft SUSY breaking parameters are neglected, additional anomalous global symmetries that
involve both SU(2)L and SU(3)C fermion representations emerge [150]. As a consequence, the EW
and QCD sphaleron equilibrium conditions are modified with respect to the SM, and this yields a
different pattern of sphaleron induced lepton-flavour mixing [67, 69, 70]. In addition, a new anomaly-
free exactly conserved R-symmetry provides an additional constraint that is not present in the SM and
a careful counting reveals that four independent quantities, rather than the three of the SM case, are
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required to give a complete description of the various particle asymmetries in the thermal bath, with
the additional quantity corresponding to the number density asymmetry of the heavy scalar neutrinos.

Although the modifications above are interesting from the theoretical point of view, a quantitative
comparison with the results obtained when the new effects are ignored shows that the corrections
remain below O(1) [89]13. Finally, it should be pointed out that in the supersymmetric case, the
temperature in which the lepton flavour effects (see Section 1.3) come into play is enhanced by a
factor of (1 + tan2 β) since the charged Yukawa couplings are given by hα = mα/(vu cosβ).

The purpose of the following sections is twofold. We describe the chemical equilibrium conditions
and conservation laws for MSSM in conjunction to SM. In Section 1.5.2 we list the constraints that
hold independently of assuming a regime in which particle and sparticle chemical potentials equilibrate
(superequilibration (SE) regime) or do not equilibrate (non-superequilibration (NSE) regime). In
Section 1.5.3 we list the constraints that hold only in the SE regime, and in Section 1.5.4 the ones that
hold in NSE regime. The question of NSE is irrelevant in the SM since there are no superparticles.
Hence the parts relevant for the SM are Section 1.5.2 and Section 1.5.3, with the chemical potential of
the gaugino set to zero, the chemical potential of the down-type higgsino replaced by the minus of the
up-type higgsino (see eqs. (1.95) and (1.96)), and all the quantities related to superparticles replaced
by the ones for particles.

1.5.2 General constraints

We first list in items (1), (2) and (3) below the conditions that hold in the whole temperature range
MW � T <∼ 1014 GeV. Conversely, some of the Yukawa coupling conditions given in items (4) and
(5) will have to be dropped as the temperature is increased and the corresponding reactions go out of
equilibrium. First we will relate the number density asymmetry of a particle ∆n ≡ n− n̄ for which a
chemical potential can be defined to its chemical potential. For both bosons (b) and fermions (f) this
relation acquires a particularly simple form in the relativistic limit mb,f � T , and at first order in the
chemical potential µb,f/T � 1:

∆nb =
gb
3
T 2µb, ∆nf =

gf
6
T 2µf . (1.85)

For simplicity of notations, in the following we denote the chemical potentials with the same notation
that labels the corresponding field: φ ≡ µφ.

(1) At scales much higher than MW , gauge fields have vanishing chemical potential W = B = g =
0 [57]. This also implies that all the particles belonging to the same SU(2)L or SU(3)C multiplets
have the same chemical potential. For example φ(I3 = +1

2) = φ(I3 = −1
2) for a field φ that is a

doublet of weak isospin ~I, and similarly for color.

(2) Denoting by W̃R, B̃R and g̃R the RH winos, binos and gluinos chemical potentials, and by
`, Q (˜̀, Q̃) the chemical potentials of the (s)lepton and (s)quarks LH doublets, the following
reactions: Q̃ + g̃R → Q, Q̃ + W̃R → Q, ˜̀+ W̃R → `, ˜̀+ B̃R → `, imply that all gauginos have
the same chemical potential: −g̃ = Q− Q̃ = −W̃ = `− ˜̀= −B̃, where W̃ , B̃ and g̃ denote the
chemical potentials of LH gauginos. It follows that the chemical potentials of the SM particles

13This modification would be important for certain supersymmetric leptogenesis scenarios which contain new sources
of CP violation e.g. soft leptogenesis (see Section 1.6.2).
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are related to those of their respective superpartners as

Q̃, ˜̀ = Q, `+ g̃ (1.86)

Hu,d = H̃u,d + g̃ (1.87)

ũ, d̃, ẽ = u, d, e− g̃. (1.88)

The last relation, in which u, d, e ≡ uR, dR, eR denote the RH SU(2)L singlets, follows e.g. from
ũcL = ucL + g̃ for the corresponding LH fields, together with ucL = −uR, and from the analogous
relation for the SU(2)L singlet squarks.

(3) Before EW symmetry breaking hypercharge is an exactly conserved quantity, and we can assume
a vanishing total hypercharge for the Universe:∑

i

(Y∆Qi + 2Y∆ui − Y∆di)−
∑
α

(Y∆`α + Y∆eα) + Y∆H̃u
− Y∆H̃d

= 0. (1.89)

(4) When the reactions mediated by the lepton Yukawa couplings are faster than the Universe
expansion rate14, the following chemical equilibrium conditions are enforced:

`α − eα + H̃d + g̃ = 0, (α = e, µ, τ). (1.90)

If the temperature is not too low lepton flavour equilibration (see Section 1.3.4) induced by
off-diagonal slepton soft masses will not occur. We assume that this is the case, and thus we
take the three `α to be independent quantities.

(5) Reactions mediated by the quark Yukawa couplings enforce the following six chemical equilibrium
conditions:

Qi − ui + H̃u + g̃ = 0, (ui = u, c, t), (1.91)

Qi − di + H̃d + g̃ = 0, (di = d, s, b) . (1.92)

The up-quark Yukawa coupling maintains chemical equilibrium between the LH and RH up-type
quarks up to T ∼ 2 · 106 GeV. Note that when the Yukawa reactions of at least two families of
quarks are in equilibrium, the mass basis is fixed for all the quarks and squarks. Intergeneration
mixing then implies that family-changing charged-current transitions are also in equilibrium:
bL → cL and tL → sL imply Q2 = Q3; sL → uL and cL → dL imply Q1 = Q2. Thus, up to
temperatures T <∼ 1011 GeV, that are of the order of the equilibration temperature for the charm
Yukawa coupling, the three quark doublets have the same chemical potential:

Q ≡ Q3 = Q2 = Q1. (1.93)

At higher temperatures, when only the third family is in equilibrium, we have instead Q ≡
Q3 = Q2 6= Q1. Above T ∼ 1013 when (for moderate values of tanβ) also b-quark (as well as
the τ -lepton) SU(2)L singlets decouple from their Yukawa reactions, all intergeneration mixing
becomes negligible and Q3 6= Q2 6= Q1.

14See Section 1.3.1 for the temperature regime when lepton Yukawa interactions are in thermal equilibrium.
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1.5.3 Superequilibration regime

At relatively low temperatures, additional conditions from reactions in chemical equilibrium hold.
Since the constraints below apply only in the SE regime, we number them including this label.

6SE. Equilibration of the particle-sparticle chemical potentials µφ = µφ̃ [149] is ensured when reactions

like ˜̀̀̃ → `` are faster than the Universe expansion rate. These reactions are induced by gaugino
interactions, but since they require a gaugino chirality flip they turn out to be proportional to
its mass mg̃, and can be neglected in the limit mg̃ → 0.

Furthermore, since the µ parameter of the HuHd superpotential term is expected to be of the
order of the soft gaugino masses, it is reasonable to consider in the same temperature range also
the effect of the higgsino mixing term, which implies that the sum of the up- and down- higgsino
chemical potentials vanishes. The rates of the corresponding reactions, given approximately by
Γg̃ ∼ m2

g̃/T and Γµ ∼ µ2/T , are faster than the Universe expansion rate up to temperatures

T <∼ 5 · 107
(

mg̃, µ

500 GeV

)2/3

GeV. (1.94)

The corresponding chemical equilibrium relations enforce the conditions:

g̃ = 0, (1.95)

H̃u + H̃d = 0. (1.96)

7SE. Up to temperatures given by eq. (1.94) the MSSM has the same global anomalies than the SM,
that are the EW SU(2)L-U(1)B+L mixed anomaly and the QCD chiral anomaly. They generate
the effective operators OEW = Πα(QQQ`α) [151] and OQCD = Πi(QQu

c
Lid

c
Li) [152, 153, 151].

Above the EW phase transition reactions induced by these operators are in thermal equilibrium,
and the corresponding conditions read:

9Q+
∑
α

`α = 0 (1.97)

6Q−
∑
i

(ui + di) = 0 , (1.98)

where we have used the same chemical potential for the three quark doublets (eq. (1.93)), which
is always appropriate in the SE regime below the limit eq. (1.94).

Eqs. (1.90) and (1.91)–(1.93), together with the SE conditions eqs. (1.95)–(1.96), the two anomaly
conditions eqs. (1.97)–(1.98) and the hypercharge neutrality condition eq. (1.89), give 11+2+2+1 = 16
constraints for the 18 chemical potentials. Note however that there is one redundant constraint, that
we take to be the QCD sphaleron condition, since by summing up eqs. (1.91) and (1.92) and taking
into account eqs. (1.93), (1.95), and (1.96) we obtain precisely eq. (1.98). Therefore, like in the
SM, we have three independent chemical potentials. We can define three linear combinations of the
chemical potentials corresponding to the SU(2)L anomaly-free flavour charges ∆α ≡ B/3 − Lα that
being anomaly-free and perturbatively conserved by the low energy MSSM Lagrangian, evolve slowly
because the corresponding symmetries are violated only by the heavy Majorana neutrino dynamics.
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Their evolution needs to be computed by means of three independent BE. In terms of the abundances
eq. (1.18) the density of the ∆α charges normalized to the entropy density can be written as:

Y∆α = 3

[
1

3

∑
i

(2Y∆Qi + Y∆ui + Y∆di)− (2Y∆`α + Y∆eα)− 2

3
Y∆g̃

]
. (1.99)

The expression above is completely general and holds in all temperature regimes, including the NSE
regime (see Section 1.5.4).

The density asymmetries of the doublet leptons and higgsinos, that weight the washout terms in
the BE, can now be expressed in terms of the anomaly-free charges by means of the A matrix and C
vectors introduced respectively in Ref. [67] and Ref. [69] that are defined as:

Y∆`α = A`αβ Y∆β
, Y∆H̃u,d

= C
H̃u,d
α Y∆α . (1.100)

Here and in the following we will give results for the A and C matrices for the fermion states. We
recall that in the SE regime the density asymmetry of a scalar boson that is in chemical equilibrium
with its fermionic partner is given simply by Y∆b = 2Y∆f with the factor of 2 from statistics.

First generation Yukawa reactions out of equilibrium (SE regime)

As an example let us now consider the temperatures T >∼ 4 · 106(1 + tan2 β) GeV, when the d-quark
Yukawa coupling can be set to zero (in order to remain within the SE regime we assume tanβ ∼ 1). In
this case the equilibrium dynamics is symmetric under the exchange u↔ d (both chemical potentials
enter only the QCD sphaleron condition eq. (1.98) with equal weights) and so must be any physical
solution of the set of constraints. Thus, the first condition in eq. (1.92) can be replaced by the
condition d = u, and again three independent quantities suffice to determine all the particle density
asymmetries. The corresponding result is:

A` =
1

3× 2148

 −906 120 120
75 −688 28
75 28 −688

 , CH̃u = −CH̃d =
−1

2148
(37, 52, 52) . (1.101)

Note that since in this regime the chemical potentials for the scalar and fermion degrees of freedom
of each chiral multiplet equilibrate, the analogous results for Y∆`α + Y∆˜̀

α
can be obtained by simply

multiplying the A matrix in eq. (1.101) by a factor of 3. This gives the same A matrix obtained
in the non-supersymmetric case in the same regime (see e.g. eq. (4.12) in Ref. [69]). The C matrix
(multiplied by the same factor of 3) differs from the non-supersymmetric result by a factor 1/2. This is
because after substituting H̃d = −H̃u (see eq. (1.96)) all the chemical potential conditions are formally
the same than in the SM with H̃u identified with the chemical potential of the scalar Higgs, but since
C expresses the result for number densities, in the SM a factor of 2 from boson statistics appears for
the SM Higgs. This agrees with the analysis in Ref. [58], and is a general result that holds for SUSY
within the SE regime.

1.5.4 Non-superequilibration regime

At temperatures above the limit given in eq. (1.94) the Universe expansion is fast enough that reactions
induced by mg̃ and µ do not occur. Setting to zero in the high temperature effective theory these two
parameters has the following consequences:
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• Condition eq. (1.95) has to be dropped, and gauginos acquire a non-vanishing chemical potential
g̃ 6= 0 (corresponding to the difference between the number of LH and RH helicity states).
The chemical potentials of the members of the same matter supermultiplets are no more equal
(non-superequilibration) but related as in eqs. (1.86)–(1.88).

• Condition eq. (1.96) also has to be dropped, and the chemical potentials of the up- and down-type
Higgs and higgsinos do not necessarily sum up to zero.

• The MSSM gains two new global symmetries: mg̃ → 0 yields a global R-symmetry, while µ→ 0
corresponds to a global symmetry of the Peccei-Quinn (PQ) type.

Anomalous and non-anomalous symmetries

Two linear combinations R2 and R3 of R and PQ, having respectively only SU(2)L and SU(3)C mixed
anomalies have been identified in Ref. [150]

R2 = R− 2PQ, R3 = R− 3PQ . (1.102)

The authors of Ref. [150] have also constructed the effective multi-fermions operators generated by
the mixed anomalies:

ÕEW = Πα (QQQ`α) H̃uH̃d W̃
4 , (1.103)

ÕQCD = Πi (QQucdc)i g̃
6 . (1.104)

Given that three global symmetries B, L and R2 have mixed SU(2)L anomalies (but are free of
SU(3)C anomalies) we can construct two anomaly-free combinations, the first one being B −L which
is only violated perturbatively by N c `Hu and the second anomaly-free combination which is also an
exact symmetry of the MSSM+seesaw in the NSE regime [89]

R =
5

3
B − L+R2, (1.105)

and is exactly conserved. In the SU(3)C sector, besides the chiral anomaly we now have also R3 mixed
anomalies. Thus also in this case anomaly-free combinations can be constructed, and in particular
we can define one combination for each quark superfield. Assigning to the LH supermultiplets chiral
charge χ = −1 these combinations have the form [89]:

χqL + κqL R3, (1.106)

where, for example, κucL = κdcL = 1/3 and κQL = 2/3. Note that since R3 is perturbatively conserved
by the complete MSSM+seesaw Lagrangian, when the Yukawa coupling of one quark is set to zero the
corresponding charge eq. (1.106) will be exactly conserved.

Constraints in the non-superequilibration regime

In the NSE regime, the conditions listed in items 6SE and 7SE of the previous section have to be
dropped, but new conditions arise.
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6NSE . The conservation law for the R charge yields the following global neutrality condition:

Rtot =
∑
f

∆nfRf +
∑
b

∆nbRb + ∆nÑ1
RÑ1

=
T 2

6

(∑
i

(2Qi − 5ui + 4di) + 2
∑
α

(`α + eα) + 5H̃d − H̃u + 31 g̃

)
−∆nÑ1

= 0. (1.107)

The last terms in both lines of eq. (1.107) correspond to the contribution to R-neutrality from
the lightest sneutrino asymmetry ∆nÑ1

= nÑ1
− nÑ∗1 with charge RÑ1

= −RNc = −1. Note

that since in general Ñ1 is not in chemical equilibrium, no chemical potential can be associated
to it, and hence this constraint needs to be formulated in terms of its number density asymmetry
that has to be evaluated by solving a BE for Y∆Ñ

≡ YÑ1
− YÑ∗1 (see Section 1.5.5).

7NSE . The operators in eqs. (1.103)–(1.104) induce transitions that in the NSE regime are in chemical
equilibrium. This enforces the generalized EW and QCD sphaleron equilibrium conditions [150]:

3
∑
i

Qi +
∑
α

`α + H̃u + H̃d + 4 g̃ = 0, (1.108)

2
∑
i

Qi −
∑
i

(ui + di) + 6 g̃ = 0, (1.109)

that replace eqs. (1.97) and (1.98).

8NSE . The chiral-R3 charges in eq. (1.106) are anomaly-free, but clearly they are not conserved by the
quark Yukawa interactions. However, when a quark supermultiplet decouples from its Yukawa
interactions an exact conservation law arises15. The conservation laws corresponding to these
symmetries read:

T 2

6
[3qR + 6(qR − g̃)] +

1

3
R3 tot = 0 (1.110)

T 2

6
2 [3QL + 6(QL + g̃)]− 2

3
R3 tot = 0 (1.111)

and hold for qR = ui, di and QL = Qi in the regimes when the appropriate Yukawa reactions
are negligible. Note the factor of 2 for the QL chiral charge in front of the first square bracket in
eq. (1.111) that is due to SU(2)L gauge multiplicity. In terms of chemical potentials and ∆nÑ1

,
the total R3 charge in eqs. (1.110) and (1.111) reads:

R3 tot =
T 2

6

(
82 g̃ − 3

∑
i

(2Qi + 11ui − 4 di) +
∑
α

(16 `α + 13 eα) + 16 H̃d − 14 H̃u.

)
+∆nÑ1

R3Ñ1
, (1.112)

where R3Ñ1
= −1. As regards the leptons, since they do not couple to the QCD anomaly, by

setting he → 0 a symmetry under chiral supermultiplet rotations is directly gained for the RH
leptons implying ∆ne + ∆ñe = 0 and giving the condition:

e− 2

3
g̃ = 0. (1.113)

No analogous condition arises for the lepton doublets relevant for leptogenesis, since by assump-
tion they remain coupled via Yukawa couplings to the heavy N ’s.

15Note that hu,d → 0 implies u and d decoupling, but Q1 decoupling is ensured only if also hc,s → 0.
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In the NSE regime there are different flavour mixing matrices for the scalar and fermion components
of the leptons and Higgs supermultiplets. To express more concisely all the results, it is convenient to
introduce a new C vector to describe the gaugino number density asymmetry per degree of freedom
in terms of the relevant charges:

Y∆g̃ = C g̃a Y∆a , with ∆a =
(
∆α,∆Ñ

)
. (1.114)

First generation Yukawa reactions out of equilibrium (NSE regime)

As an example, in the temperature range between 108 and 1011 GeV, and for moderate values of tanβ,
all the first generation Yukawa couplings can be set to zero. Using for u, d conditions eq. (1.110) and
for e condition eq. (1.113) as are implied by hu,d, he → 0 we obtain:

A` =
1

9× 162332

 −198117 33987 33987 −8253
26634 −147571 14761 −8055
26634 14761 −147571 −8055

 ,
C g̃ =

−11

162332
(163, 165, 165, −255) ,

CH̃u =
−1

162332
(3918, 4713, 4713, 95) ,

CH̃d =
1

3× 162332
(5413, 9712, 9712, −252) , (1.115)

where the rows correspond to (Y∆e , Y∆µ , Y∆τ , Y∆Ñ
). For completeness, in eq. (1.115) we have

also given the results for CH̃d even if only the up-type Higgs density asymmetry is relevant for the
leptogenesis processes. Note that neglecting the contribution of ∆nÑ1

to the global charges Rtot in
eq. (1.107) and R3tot in eq. (1.112) corresponds precisely to setting to zero the fourth column in all the
previous matrices. Then, analogously with the SE and SM cases, within this ‘3-column approximation’
all particle density asymmetries can be expressed just in terms of the three Y∆α charge densities.

1.5.5 Supersymmetric Boltzmann equations

In order to illustrate how the new effects described above modify the structure of the BE, here we
write down a simpler expressions in which only decays and inverse decays are included16:

sHz
dYN1

dz
= −

(
YN1

Y eq
N1

− 1

)
γN1 , (1.116)

sHz
dYÑ+

dz
= −

(
YÑ+

Y eq

Ñ1

− 2

)
γÑ1

, (1.117)

sHz
dY∆Ñ

dz
= −

Y∆Ñ

Y eq

Ñ1

γÑ1
− 3

2
γÑ1

∑
a

C g̃a
Y∆a

Y eq
`

+ . . . , (1.118)

sHz
dY∆α

dz
= −εα

[(
YN1

Y eq
N1

− 1

)
γN1 +

(
YÑ+

Y eq

Ñ1

− 2

)
γÑ1

]
16The complete set of BE including decays, inverse decays and scatterings with top-quark is given in the Appendix of

Ref. [89].
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+P 0
1α

(
γN1 +

1

2
γÑ1

)∑
a

(
A`αa + CH̃ua + C g̃a

) Y∆a

Y eq
`

, (1.119)

where γÑ1
is the corresponding thermally averaged decay rate for RH sneutrino Ñ1. In eq. (1.117)

we have introduced the overall sneutrino abundance YÑ+
= YÑ1

+ YÑ∗1
, while Y∆Ñ

≡ YÑ1
− YÑ∗1 in

eq. (1.118) is the sneutrino density asymmetry that was already introduced in Section 1.5.4. In the
washout terms we have normalized the charge densities Y∆a = (Y∆α , Y∆Ñ

) to the equilibrium density
of a fermion with one degree of freedom Y eq

` . In eqs. (1.116) and (1.119) we have also neglected for
simplicity all finite temperature effects. Taking these effects into account would imply for example
that the CP asymmetry for Ñ decays into fermions is different from the one for decays into scalars [49],
while we describe both CP asymmetries with εα. A few remarks regarding eq. (1.118) are in order.
In the SE regime g̃ = 0 and thus it would seem that the sneutrino density asymmetry Y∆Ñ

vanishes.
However, this only happens for decays and inverse decays, and it is no more true when additional terms
related to scattering processes, that are represented in the equation by the dots, are also included (see
Ref. [147] and the Appendix of Ref. [89]). Therefore, also in the SE regime YÑ1

and YÑ∗1
in general

differ. However, in this case recasting their equations in terms of two equations for YÑ+
and Y∆Ñ

is
just a convenient parametrization. On the contrary, in the NSE regime this is mandatory, because
the sneutrinos carry a globally conserved R-charge and Y∆Ñ

is required to formulate properly the
corresponding conservation law. As we have seen, this eventually results in Y∆Ñ

contributing to the
expressions of the lepton flavour density asymmetries in terms of slowly varying quantities.

In Ref. [89] a complete numerical analysis was carried out and it was shown that numerical correc-
tions with respect to the case when NSE effects are neglected remain at the O(1) level. This is because
only spectator processes get affected, while the overall amount of CP violation driving leptogenesis
remains the same than in previous treatments.

1.6 Beyond Type-I Seesaw and Beyond the Seesaw

There exist many variants of leptogenesis models beyond the standard type-I seesaw. In this section,
we try to classify them into appropriate groups. Unavoidably there would be some overlap i.e. a
hybrid model of leptogenesis which can belong to more than one group, e.g. soft leptogenesis (Section
1.6.2) from resonantly enhanced CP asymmetry could rightly fall under resonant leptogenesis (Section
1.6.1). However we try our best to categorize them according to the main features of the model and,
when appropriate, they will be quoted in more than one place. Clearly, the number of beyond type-I
seesaw leptogenesis models is quite large. We have not attempted in any way to be exhaustive, and
we apologize in advance for the unavoidable several omissions.

1.6.1 Resonant leptogenesis

A resonant enhancement of the CP asymmetry in N1 decay occurs when the mass difference between
N1 and N2 is of the order of the decay widths. Such a scenario has been termed ‘resonant leptogenesis’,
and has benefited from many studies in different formalisms17 [50, 155, 52, 110, 156, 157, 158, 159, 75,
111, 160, 161, 162, 163, 85, 86, 164, 87, 165, 166, 167, 168] (see Ref. [169] for a recent review). The

17See Ref. [154] for a comparison of the different calculations.
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resonant effect is related to the self energy contribution to the CP asymmetry. Consider, for simplicity,
the case where only N2 is quasi-degenerate with N1. Then, the self-energy contribution involving the
intermediate N2, to the total CP asymmetry (we neglect important flavour effects [75]) is given by

ε1(self − energy) = −M1

M2

ΓN2

M2

M2
2 (M2

2 −M2
1 )

(M2
2 −M2

1 )2 +M2
1 Γ2

N2

Im[(λ†λ)2
12]

(λ†λ)11(λ†λ)22
. (1.120)

The resonance condition reads

|M2 −M1| =
ΓN2

2
. (1.121)

In this case

|ε1(resonance)| ' 1

2

|Im[(λ†λ)2
12]|

(λ†λ)11(λ†λ)22
. (1.122)

Thus, in the resonant case, the asymmetry is suppressed by neither the smallness of the light neutrino
masses, nor the smallness of their mass splitting, nor small ratios between the singlet neutrino masses.
Actually, the CP asymmetry could be of order one (more accurately, |ε1| ≤ 1/2).

With resonant leptogenesis, the BE are different. The densities of N1 and N2 are followed, since
both contribute to the asymmetry, and the relevant timescales are different. For instance, the typical
time-scale to build up coherently the CP asymmetry is unusually long, of order 1/∆M . In particular, it
can be larger than the time-scale for the change of the abundance of the sterile neutrinos. This situation
implies that for resonant leptogenesis quantum effects in the BE can be significant [85, 86, 170, 141]
(see Section 1.4.5).

The fact that the asymmetry could be large, independently of the singlet neutrino masses, opens
up the possibility of low scale resonant leptogenesis. Models along these lines have been constructed in
Refs. [156, 75, 161, 171]. It is a theoretical challenge to construct models where a mass splitting as small
as the decay width is naturally achieved. For attempts that utilize approximate flavour symmetries
see, for example, Refs. [157, 158, 160, 164, 172, 166], while studies of this issue in the framework of
minimal flavour violation can be found in Refs. [162, 163, 87]. The possibility of observing resonant
CP violation due to heavy RH neutrinos at the LHC was studied in Refs. [173, 174].

1.6.2 Soft leptogenesis

The modifications to standard type-I leptogenesis due to SUSY have been discussed in Section 1.5.
The important parameters there are the Yukawa couplings and the singlet neutrino parameters, which
appear in the superpotential eq. (1.83). SUSY must, however, be broken. In the framework of the
MSSM extended to include singlet neutrinos (MSSM+N), there are, in addition to the soft SUSY
breaking terms of the MSSM, terms that involve the singlet sneutrinos Ñi, in particular bilinear (B)
and trilinear (A) scalar couplings. These terms provide additional sources of lepton number violation
and of CP violation. Scenarios where these terms play a dominant role in leptogenesis have been
termed ‘soft leptogenesis’ [175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 102, 195, 196, 107] (see also Ref. [54] for a recent review).

Soft leptogenesis can take place even with a single RH neutrino because the presence of the B
term implies that Ñ and Ñ † states mix to form two mass eigenstates with mass splitting proportional
to B itself. Furthermore when B ∼ Γ

Ñ
, the CP asymmetry is resonantly enhanced realizing the

resonant leptogenesis scenario (see Section 1.6.1). In the following we will consider a single generation
MSSM+N. The relevant soft SUSY terms involving Ñ , the SU(2)L gauginos λ̃±,02 , the U(1)Y gauginos
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λ̃1 and the three sleptons ˜̀α in the basis in which charged lepton Yukawa couplings are diagonal are
given by

− Lsoft = M̃2Ñ∗Ñ +

(
AYαεabÑ ˜̀aαHb

u +
1

2
BMÑÑ + h.c.

)
+

1

2

(
m2λ̃

±,0
2 PLλ̃

±,0
2 +m1λ̃1PLλ̃1 + h.c.

)
, (1.123)

where for simplicity, proportionality of the bilinear and trilinear soft breaking terms to the corre-
sponding SUSY invariant couplings has been assumed: BM = BM and Aα = AYα. The Lagrangian
derived from eqs. (1.83) and (1.123) is characterized by only three independent physical phases:
φA ≡ arg (AB∗), φg2 ≡ 1

2 arg (Bm∗2) and φgY ≡ 1
2 arg (Bm∗1) which can be assigned to A, and to

the gaugino coupling operators g2, gY respectively. As mentioned earlier, a crucial role in soft lepto-
genesis is played by the Ñ − Ñ † mixing to form the mass eigenstates

Ñ+ =
1√
2

(
eiΦ/2Ñ + e−iΦ/2Ñ∗

)
, (1.124)

Ñ− = − i√
2

(eiΦ/2Ñ − e−iΦ/2Ñ∗), (1.125)

where Φ ≡ arg (BM) and the corresponding mass eigenvalues are M2
± = M2 + M̃2 ± |BM |. Without

loss of generality, we can set Φ = 0, which is equivalent to assigning the phases only to A and Yα.
It has been pointed out that the CP asymmetries for the decays of Ñ± into scalars and fermions

have opposite sign and cancel each other at the leading order [176, 177, 192], resulting in a strongly
suppressed total CP asymmetry ∼ O(m3

soft/M
3) where msoft is the scale of soft SUSY breaking terms.

There are two possibilities that can rescue leptogenesis: Firstly, thermal effects which break SUSY
can spoil this cancellation [176, 177, 192]. Secondly, non-superequilibration effects (see Section 1.5.4)
which imply that lepton and slepton asymmetries differ, can also spoil this cancellation [107]. The CP
asymmetries for the decays of Ñ± into scalars and fermions are respectively given by

εsα(T ) = ε̄α∆s(T ), (1.126)

εfα(T ) = −ε̄α∆f (T ), (1.127)

where ε̄α is the temperature independent term of ∼ O(msoft/M) which contains contributions from
the self-energy correction, vertex correction and the interference between the two. In the limit T → 0,
we have ∆s(T ),∆f (T )→ 1/2, and thus the inclusion of thermal effects and/or non-superequilibration
is mandatory to avoid the cancellation between the asymmetries into scalars and fermions.

We can make a rough estimate of the scale relevant for soft leptogenesis by requiring |ε̄| ∼
msoft/M >∼ 10−6 which gives M <∼ 109 GeV for msoft ∼ 1 TeV. Hence soft leptogenesis always
happens in the temperature regime where lepton flavour effects are relevant [190]. In general, the
CP asymmetry from self-energy contribution requires B � msoft to be resonantly enhanced. How-
ever it was shown in Ref. [195] that flavour effects can greatly enhance the efficiency and eventually
B ∼ msoft is allowed. The nice feature of soft leptogenesis is that the tension with the gravitino
problem gets generically relaxed and, in the lower temperature window, is completely avoided.

1.6.3 Dirac leptogenesis

The extension of the SM with singlet neutrinos allows for two different ways for generating tiny
neutrino masses. The first one is the seesaw mechanism which has at least three attractive features:
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• No extra symmetries (and, in particular, no global symmetries) have to be imposed.

• The extreme lightness of neutrino masses is linked to the existence of a high scale of new physics,
which is well motivated for various other reasons (e.g. gauge unification).

• Lepton number is violated, which opens the way to leptogenesis.

The second way is to impose lepton number and give to the neutrinos Dirac masses. A priori, one
might think that all three attractive features of the seesaw mechanism are lost. Indeed, one must
usually impose additional symmetries. But one can still construct natural models where the tiny
Yukawa couplings that are necessary for small Dirac masses are related to a small breaking of a
symmetry. What is perhaps most surprising is the fact that leptogenesis could proceed successfully
even if neutrinos are Dirac particles, and lepton number is not (perturbatively) broken [197, 198].
Such scenarios have been termed ‘Dirac leptogenesis’ [198, 199, 200, 201, 202, 203, 204, 205, 206, 207].

An implementation of the idea is the following. A CP-violating decay of a heavy particle can result
in a non-zero lepton number for LH particles, and an equal and opposite non-zero lepton number for
RH particles, so that the total lepton number is zero. For the charged fermions of the SM, the Yukawa
interactions are fast enough that they quickly equilibrate the LH and the RH particles, and the lepton
number stored in each chirality goes to zero. This is not true, however, for Dirac neutrinos. The size of
their Yukawa couplings is λ <∼ 10−11, which means that equilibrium between the lepton numbers stored
in LH and RH neutrinos will not be reached until the temperature falls well below the electroweak
breaking scale. To see this, note that the rate of the Yukawa interactions, given by Γλ ∼ λ2T , becomes
significant when it equals the expansion rate of the Universe, H ∼ T 2/mpl. Thus, the temperature
of equilibration between LH and RH neutrinos is T ∼ λ2mpl ∼ (λ/10−11)2 MeV, that is well below
the temperature when sphalerons, after having converted part of the LH lepton asymmetry into a net
baryon asymmetry, are switched off.

A specific example of a supersymmetric model where Dirac neutrinos arise naturally is presented in
Ref. [199]. The Majorana masses of the N -superfields are forbidden by U(1)L. The neutrino Yukawa
couplings are forbidden by a U(1)N symmetry where, among all the MSSM+N fields, only the N
superfields are charged. The symmetry is spontaneously broken by the vacuum expectation value of a
scalar field χ that can naturally be at the weak scale, 〈χ〉 ∼ vu. This breaking is communicated to the
MSSM+N via extra, vector-like lepton doublet fields, φ + φ̄, that have masses Mφ much larger than
vu. Consequently, the neutrino Yukawa couplings are suppressed by the small ratio 〈χ〉/Mφ. The CP
violation arises in the decays of the vector-like leptons, whereby Γ(φ → NHc

u) 6= Γ(φ̄ → N cHu) and
Γ(φ → Lχ) 6= Γ(φ̄ → Lcχc). The resulting asymmetries in N and in L are equal in magnitude and
opposite in sign. Finally note that the main phenomenological implication of Dirac leptogenesis is the
absence of any signal in neutrinoless double beta decays.

1.6.4 Triplet scalar (type-II) leptogenesis

One can generate seesaw masses for the light neutrinos by tree-level exchange of SU(2)L-triplet scalars
T [44, 208, 209, 210, 211]. The relevant new terms in the Lagrangian are

LT = −M2
T |T |2 +

1

2
([λL]αβ `α`βT +MTλφ φφT

∗ + h.c.) . (1.128)

Here, MT is a real mass parameter, λL is a symmetric 3× 3 matrix of dimensionless, complex Yukawa
couplings, and λφ is a dimensionless complex coupling. Since this mechanism necessarily involves
lepton number violation and allows for new CP-violating phases, it is interesting to examine it in the
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light of leptogenesis [212, 213, 214, 215, 216, 180, 217, 218, 219, 185, 220, 221, 222, 223, 224, 81, 225,
226, 227, 228, 229, 230, 231, 232, 233]. One obvious problem in this scenario is that, unlike singlet
fermions, the triplet scalars have gauge interactions that keep them close to thermal equilibrium at
temperatures T <∼ 1015 GeV. It turns out, however, that successful leptogenesis is possible even at a
much lower temperature. This subsection is based in large part on Ref. [220] where further details
and, in particular, an explicit presentation of the relevant BE can be found.

The CP asymmetry that is induced by the triplet scalar decays is defined as follows:

εT ≡ 2
Γ(T̄ → ``)− Γ(T → ¯̀̀̄ )

ΓT + ΓT̄
, (1.129)

where the overall factor of 2 comes because the triplet scalar decay produces two (anti)leptons.
To calculate εT , one should use the Lagrangian in eq. (1.128). While a single triplet is enough

to produce three light massive neutrinos, there is a problem in leptogenesis if indeed this is the only
source of neutrinos masses: The asymmetry is generated only at higher loops and in unacceptably
small. It is still possible to produce the required lepton asymmetry from a single triplet scalar decays
if there are additional sources for neutrino masses, such as type I, type III, or type II contributions
from additional triplet scalars. Define mII (mI) as the part of the light neutrino mass matrix that
comes (does not come) from the contributions of the triplet scalar responsible for εT :

m = mII +mI. (1.130)

Then, assuming that the particles exchanged to produce mI are all heavier than T , we obtain the the
CP asymmetry

εT =
1

4π

MT

v2
u

√
BLBH

Im[Tr(m†IImI)]

Tr(m†IImII)
, (1.131)

where BL (BH) is the tree-level branching ratio to leptons (Higgs doublets). If these are the only

decay modes, i.e. BL + BH = 1, then BL/BH = Tr(λLλ
†
L)/(λHλ

†
H), and there is an upper bound on

the asymmetry:

|εT | ≤
1

4π

MT

v2
u

√
BLBH

∑
i

m2
νi . (1.132)

Note that, unlike the singlet fermion case, |εT | increases with larger mνi .
As concerns the efficiency factor, it can be close to maximal, η ∼ 1, in spite of the fact that the

gauge interactions tend to maintain the triplet abundance very close to thermal equilibrium. There
are two necessary conditions that have to be fulfilled by the decay rates T → ¯̀̀̄ and T → φφ in order
that this will happen [220]:

1. One of the two decay rates is faster than the T T̄ annihilation rate.

2. The other decay mode is slower than the expansion rate of the Universe.

The first condition guarantees that gauge scatterings are ineffective: the triplets decay before anni-
hilating. The second condition guarantees that the fast decays do not washout strongly the lepton
asymmetry: lepton number is violated only by the simultaneous presence of T → ¯̀̀̄ and T → φφ.

Combining a calculation of η with the upper bound on the CP asymmetry (1.132), successful
leptogenesis implies a lower bound on the triplet mass MT varying between 109 GeV and 1012 GeV,
depending on the relative weight of mII and mI in the light neutrino mass.
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Interestingly, in the supersymmetric framework, “soft leptogenesis” (see Section 1.6.2) can be
successful even with the minimal set of extra fields – a single T + T̄ – that generates both neutrino
masses and the lepton asymmetry [180, 185].

1.6.5 Triplet fermion (type-III) leptogenesis

One can generate neutrino masses by the tree level exchange of SU(2)L-triplet fermions T ai [234, 235,
236] (i denotes a heavy mass eigenstate while a is an SU(2)L index) with the Lagrangian

LTa = [λT ]αkτ
a
ρσ`

ρ
αφ

σT ak −
1

2
MiT

a
i T

a
i + h.c.. (1.133)

Here τa are the Pauli matrices, Mi are real mass parameters and λT is a 3 × 3 matrix of complex
Yukawa couplings.

This mechanism necessarily involves lepton number violation, and allows for new CP-violating
phases so we should examine it as a possible source of leptogenesis [237, 238, 228, 239, 240, 241, 242,
243]. This subsection is based in large part on Ref. [238] where further details and the relevant BE
can be found.

As concerns neutrino masses, all the qualitative features are very similar to the singlet fermion case.
As concerns leptogenesis there are, however, qualitative and quantitative differences. With regard to
the CP asymmetry from the lightest triplet fermion decay, the relative sign between the vertex and
self-energy loop contributions is opposite to that of the singlet fermion case. Consequently, in the
limit of strong hierarchy in the heavy fermion masses, the asymmetry in triplet decays is three times
smaller than in the decays of the singlets. On the other hand, since the triplet has three components,
the ratio between the final baryon asymmetry and εη is three times bigger. The decay rate of the
heavy fermion is the same in both cases. This, however, means that the thermally averaged decay
rate is three times bigger for the triplet, as is the on-shell part of the ∆L = 2 scattering rate.

A significant qualitative difference arises from the fact that the triplet has gauge interactions. The
effect on the washout factor η is particularly significant for m̃� 10−3 eV, the so-called “weak washout
regime” (note that this name is inappropriate for triplet fermions). The gauge interactions still drive
the triplet abundance close to thermal equilibrium. A relic fraction of the triplet fermions survives.
The decays of these relic triplets produce a baryon asymmetry, with

η ≈M1/1013 GeV (for m̃� 10−3 eV). (1.134)

The strong dependence on M1 results from the fact that the expansion rate of the Universe is slower
at lower temperatures. On the other hand, for m̃� 10−3 eV, the Yukawa interactions keep the heavy
fermion abundance close to thermal equilibrium, so the difference in η between the singlet and triplet
case is only O(1). Ignoring flavour effects, and assuming strong hierarchy between the heavy fermions,
Ref. [216] obtained the lower bound

M1 >∼ 1.5× 1010 GeV . (1.135)

When the triplet fermion scenario is incorporated in a supersymmetric framework, and the soft break-
ing terms do not play a significant role, the modifications to the above analysis is by factors of O(1).

43



Neutrino Physics Leptogenesis in the Universe

1.7 Conclusions

During the last few decades, a large set of experiments involving solar, atmospheric, reactor and accel-
erator neutrinos have converged to establish that the neutrinos are massive. The seesaw mechanism
extends the Standard Model in a way that allows neutrino masses, and it provides a nice explanation
of the suppression of the neutrino masses with respect to the electroweak breaking scale. Furthermore,
without any addition or modification, it can also account for the observed baryon asymmetry of the
Universe. The possibility of giving an explanation of two apparently unrelated experimental facts –
neutrino masses and the baryon asymmetry – within a single framework that is a natural extension
of the Standard Model, together with the remarkable ‘coincidence’ that the same neutrino mass scale
suggested by neutrino oscillation data is also optimal for leptogenesis, make the idea that baryogenesis
occurs through leptogenesis a very attractive one.

Leptogenesis can be quantitatively successful without any fine-tuning of the seesaw parameters.
Yet, in the non-supersymmetric seesaw framework, a fine-tuning problem arises due to the large cor-
rections to the mass-squared parameter of the Higgs potential that are proportional to the heavy
Majorana neutrino masses. Supersymmetry can cure this problem, avoiding the necessity of fine tun-
ing; however, it brings in the gravitino problem [144] that requires a low reheat temperature after
inflation, in conflict with generic leptogenesis models. Thus, constructing a fully satisfactory theo-
retical framework that implements leptogenesis within the seesaw framework is not a straightforward
task.

From the experimental side, the obvious question to ask is if it is possible to test whether the
baryon asymmetry has been really produced through leptogenesis. Unfortunately it seems impossible
that any direct test can be performed. To establish leptogenesis experimentally, we need to produce
the heavy Majorana neutrinos and measure the CP asymmetry in their decays. However, in the most
natural seesaw scenarios, these states are simply too heavy to be produced, while if they are light,
then their Yukawa couplings must be very tiny, again preventing any chance of direct measurements.

Lacking the possibility of a direct proof, experiments can still provide circumstantial evidence
in support of leptogenesis by establishing that (some of) the Sakharov conditions for leptogenesis
are realized in nature. Planned neutrinoless double beta decay (0νββ) experiments (GERDA [244],
MAJORANA [245], CUORE [246]) aim at a sensitivity to the effective 0νββ neutrino mass in the
few × 10 meV range. If they succeed in establishing the Majorana nature of the light neutrinos,
this will strengthen our confidence that the seesaw mechanism is at the origin of the neutrino masses
and, most importantly, will establish that the first Sakharov condition for the dynamical generation
of a lepton asymmetry (L violation) is realized. Proposed SuperBeam facilities [247, 248] and second
generation off-axis SuperBeam experiments (T2HK [249], NOνA [250]) can discover CP violation in
the leptonic sector. These experiments can only probe the Dirac phase of the neutrino mixing matrix.
They cannot probe the Majorana low energy or the high energy phases, but the important point is
that they can establish that the second Sakharov condition for the dynamical generation of a lepton
asymmetry is satisfied. As regards the third condition, that is that the heavy neutrino decays occurred
out of thermal equilibrium, it might seem the most difficult one to test experimentally. In reality the
opposite is true, and in fact we already know that an absolute neutrino mass scale of the order of the
solar or atmospheric mass differences is perfectly compatible with sufficiently out of equilibrium heavy
neutrinos decays.

Given that we do not know how to prove that leptogenesis is the correct theory, we might ask if there
is any chance to falsify it. Indeed, future neutrino experiments could weaken the case for leptogenesis,
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or even falsify it, mainly by establishing that the seesaw mechanism is not responsible for the observed
neutrino masses. By itself, failure in revealing signals of 0νββ decays will not disprove leptogenesis.
Indeed, with normal neutrino mass hierarchy one expects that the rates of lepton-number-violating
processes are below experimental sensitivity. However, if neutrinos masses are quasi-degenerate or
inversely hierarchical, and future measurements of the oscillation parameters will not fluctuate too
much away from the present best fit values, the most sensitive 0νββ decay experiments scheduled for
the near future should be able to detect a signal [251]. If instead the limit on |mββ | is pushed below
∼ 10 meV (a quite challenging task), this would suggest that either the mass hierarchy is normal,
or neutrinos are not Majorana particles. The latter possibility would disprove the seesaw model
and standard leptogenesis. Thus, determining the order of the neutrino mass spectrum is extremely
important to shed light on the connection between 0νββ decay experiments and leptogenesis. In
summary, if it is established that the neutrino mass hierarchy is inverted and at the same time no
signal of 0νββ decays is detected at a level |mee| <∼ 10 meV, one could conclude that the seesaw is not
at the origin of the neutrino masses, and that (standard) leptogenesis is not the correct explanation
of the baryon asymmetry. As concerns CP violation, a failure in detecting leptonic CP violation will
not weaken the case for leptogenesis in a significant way. Instead, it would mean that the Dirac CP
phase is small enough to render L-conserving CP-violating effects unobservable.

Finally, the CERN LHC has the capability of providing information that is relevant to leptogenesis,
since it can play a fundamental role in establishing that the origin of the neutrino masses is not due
to the seesaw mechanism, thus leaving no strong motivation for leptogenesis. This may happen in
several different ways. For example (assuming that the related new physics is discovered), the LHC
will be able to test if the detailed phenomenology of any of the following models is compatible with
an explanation of the observed pattern of neutrino masses and mixing angles: supersymmetric R-
parity violating couplings and/or L-violating bilinear terms [252, 253]; leptoquarks [254, 255]; triplet
Higgses [256, 257]; new scalar particles of the type predicted in the Zee-Babu [258, 259] types of
models [260, 261, 262]. It is conceivable that such discoveries can eventually exclude the seesaw
mechanism and rule out leptogenesis.
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