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Linear Regression

ξ

y

y = mξ + q

Dataset

The rule:

(yμ, ξμ)μ=1,…,P

Empirical Risk Minimization

H[m, q] =
1
2

P

∑
μ

(yμ − mξμ − q)2

Find  that fit at best your datasetm, q

Minimize  via 
gradient descent

H ·m = −
∂H
∂m

·q = −
∂H
∂q

This is a low dimensional (underparametrized) problem (many data, few parameters).

Empirical Risk



High dimension: Deep Learning

yμ = f(ξ
μ
, w)

Dataset

The rule:

(yμ, ξ
μ
)μ=1,…,P

Empirical Risk Minimization

H[w] =
1
2

P

∑
μ

(yμ − f(ξ
μ
, w))2

ξ
μ

∈ ℝd

·w = −
∂H
∂w

Gradient Descent

P ≫ 1

dim( w) = N ≫ 1

d ≫ 1 Complex data structures

Big datasets

Huge number of 

fitting parameters

High dimension

Cat
Dog=f( )



A computational problem

·w = −
∂H
∂w

= −
P

∑
μ=1

∂vμ( w)
∂w

H[w] =
1
2

P

∑
μ

(yμ − f(ξ
μ
, w))2 H[w] =

P

∑
μ

vμ( w)

1. Each term of the sum is costly to compute: inevitable

2. We need to perform a huge sum over the dataset



Stochastic gradient descent

Questions: why SGD works? is SGD noise helpful for optimization?

In deep learning, architectures and tasks change.


However: all of them are trained with stochastic gradient descent & it works!!! 
Unexpectedly…

·w = −
∂H
∂w

= −
P

∑
μ=1

∂vμ( w)
∂w

Partition of the dataset in minibatches
Minibatch

P

∑
μ=1

∂vμ( w)
∂w

→ ∑
μ∈ℬ(t)

∂vμ( w)
∂w

Minibatches are shuffled at random and proposed 
during training at random.


SGD is a noisy algorithm. 

There is “information flow” during the dynamics



Understanding SGD

This talk: focus on the algorithm. 

Develop DMFT to study the performances of SGD in a 
prototypical hard high-d optimization problem:

1. How does SGD explore the loss landscape (=Empirical Risk)?

2. Is the SGD noise useful for optimization? To what extent?

3. How much SGD is similar to Langevin/Gradient descent?

4. …

 Missing: interplay with the architecture/task/data structure

Understanding SGD is a crucial part of the program 

aiming at understanding Deep Learning



Statistical Physics of Learning

1988

1989

1987



A teacher-student model

yμ =
1
N ∑

i<j

Jμ
ij x*i x*j

x* = {x*1 , …, x*N} |x* |2 = N Signal/ground truth

Jμ
ij ∼ 𝒩(0,1)

i, j = 1,…, N
μ = 1,…, αN

Randomness

Labels: The Ruleμ = 1,…, αN

{yμ, Jμ}μ=1,…,αN The dataset

Can we recover  given the dataset and knowing the structure of the rule?x⇤

We want to study the high-dimensional (= thermodynamic) limit
N → ∞

Still following Gardner and Derrida…



Empirical Loss (The Hamiltonian)

H =
1
2 ∑

μ

yμ −
1
N ∑

i<j

Jμ
ij xixj

2

Empirical Risk = Empirical Loss 
= the Hamiltonian

This is an (i) high-dimensional, (ii) non-convex, loss function

The overparametrized regime ↵ < 1

Canyon landscape Rough landscape

The underparametrized regime ↵ > 1

There are two regimes

| x |2 = N

H = 0
In

te
rp

ol
at

io
n

Provides a prototypical hard high-d optimization 
problem where to benchmark algorithms

Zero loss 
manifold

Relevant for Deep Learning



Empirical Risk

H =
1
2 ∑

μ

yμ −
1
N ∑

i<j

Jμ
ij xixj

2

Two settings:

1. Thermodynamics


2. Dynamics: minimize the loss via SGD. We expect

We now focus on the underparametrized phase:  ↵ > 1

Find the ground state of the loss (Fyodorov 2018). 

the loss has only two global minima at zero energy. 

The two minima are “Replica Symmetric”

Hard high-d optimization problem. 

Generated by a glassy landscape.

Only two good minima at zero energy => perfect generalization. 

The landscape structure is an open problem!



SGD minimization

1. Gradient Descent


2. Stochastic Gradient Descent

xi(t + 1) = xi(t) − η
∂H
∂xi

= xi(t) − η∑
μ

∂vμ

∂xi

H = ∑
μ

vμ(x) vμ(x) =
1
2

yμ −
1
N ∑

i<j

Jμ
ij xixj

2

sμ(t) = {0 with prob. 1 − b
1 with prob. b

Selection variables

xi(t + 1) = xi(t) −
η
b ∑

μ

sμ(t)
∂vμ

∂xi

This is a discrete algorithm and does not have a continuous time limit

Batch size = b↵N

Kamali, Urbani, arXiv:2306.06420
Kamali, Urbani, arXiv:2309.04788



Dynamical mean field theory
To study dynamics one can use path integrals. 


This technique takes the name of the 

Martin-Siggia-Rose-Jannsen-De Dominicis formalism



Dynamical order parameters

C(t, t′￼) =
1
N ∑

i

xi(t)xi(t′￼)

R(t, t′￼) =
1
N ∑

i

δxi(t)
δHi(t′￼)

m(t) =
1
N ∑

i

xi(t)x*i

Correlation function

Response function

Magnetization

Δ(t) =
1
N ∑

i

(xi(t) − xi*)2 = 1 − 2m(t) + C(t, t)

The mean square displacement is a measure 
of the distance from the true signal



Dynamical mean field theory

Seem complicated but actually can be integrated very efficiently



J. Zinn-Justin

Dynamical mean field theory

Dyson Equation

a b
The dynamical version has a causal structure 


(unless one computes large deviations = instantons)

= +
C(t, t′￼) = ⟨x(t)x(t′￼)⟩

R(t, t′￼) = ⟨x(t)η(t′￼)⟩ [ ]−1𝒦(a, b)
Σ(a, b)

Q−1(a, b) = 𝒦(a, b) + Σ(a, b)

Superfields 

Q(a, b) = ⟨x(a)x(b)⟩
= C(ta, tb) + θaR(tb, ta) + θbR(tb, ta)

The coupling constant of the theory is the sample complexity. 

SUSY formalism



Results

SGD is faster than GD.


Is it actually better? = Does SGD recover the signal at 
smaller sample complexity than GD?

SGD

GD



Results

SGD is has a different and smaller recovery threshold than GD.

τ(α) ≃ τ0 |α − α*(b) |−νFit the relaxation time via power law

α*(1) ≃ 2.27For GD



Conclusions
A theory of SGD can be developed and we just started (Plenty of 
questions still unanswered. We constructed mainly the tools).


We can establish that SGD is significantly better than GD.


A theory for the recovery threshold is possible: we need to have 
better understanding of the statistics of asymptotic configurations 
visited by SGD.


SGD is a non-equilibrium algorithm. It drives the system 
preventing fully relaxational dynamics.

=> the asymptotic behavior is a non-equilibrium stationary state with interrupted aging. 

=> One needs to develop a macroscopic fluctuation theory around the typical trajectory.

The statistical physics approach to learning and optimization is seeing a revival 
interest and it is shaping modern high-dimensional statistics and the theory of 

deep learning. 


