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Linear Regression
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Empirical Risk Minimization

o 1 & i
Empirical Risk H[m,q] = 5 2 (y,u . mfﬂ _ q)
J7;
Minimize H via . oH o oH
gradient descent m = — % g=— a_q

This is a low dimensional (underparametrized) problem (many data, few parameters).



High dimension: Deep Learning

_ Cat — U
Dog
The rule: Yu = f(—é,u’ w)
Empirical Risk Minimization Gradient Descent
, . oH
Hlwl = — 2. 0 = fE ) W=-
u

High dimension

d>1 Complex data structures
P>1 Big datasets
dim(w) =N > 1 Huge number of

fitting parameters



A computational problem
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ow ow 2. We need to perform a huge sum over the dataset
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Stochastic gradient descent

oH 2 0v,(w)
W = —_—__— = —
— ow ow

Partition of the dataset in minibatches

Minibatches are shuffled at random and proposed
P avﬂ(LV) Z @Vﬂ(L\/) during training at random.

Vd

ow SGD is a noisy algorithm.

alv EAB(1) —
H There is “information flow” during the dynamics

p=1

In deep learning, architectures and tasks change.

However: all of them are trained with stochastic eradient descent & it works!!!
Unexpectedly...

Questions: why SGD works? is SGD noise helpful for optimization?



Understanding SGD

Understanding SGD is a crucial part of the program
aiming at understanding Deep Learning

How does SGD explore the loss landscape (=Empirical Risk)?
Is the SGD noise useful for optimization? To what extent?
How much SGD is similar to Langevin/Gradient descent?

RO

This talk: focus on the algorithm.
v/ Develop DMFT to study the performances of SGD in a

prototypical hard high-d optimization problem:

X Missing: interplay with the architecture/task/data structure




Statistical Physics of Learning

The space of interactions in neural network models 1987

E Gardner
Department of Physics, Edinburgh University, Mayfield Road, Edinburgh EH9 3JK, UK

Optimal storage properties of neural network models 1988

E Gardnert and B Derridat

+ Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

EG thanks the Service de Physique' Theorique for their hospitality whilst in Saclay.

Three unfinished works on the optimal storage capacity 1989
of networks

E Gardner and B Derrida

The Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusalem, Israel
and Service de Physique Théorique de Saclay®, F-91191 Gif-sur-Yvette Cedex, France




A teacher-student model

Still following Gardner and Derrida...

X =%l X5 | x* =N Signal/ground truth
” u=1,...,aN
JE~ N (0,1) o Randomness
Y i,j=1,...,.N
JHx
__Z ij ,* J* u=1,...,aN Labels: The Rule
i<j

{y,u’ J# }/,t=1,...,aN The dataset

Can we recover 2" given the dataset and knowing the structure of the rule?

We want to study the high-dimensional (= thermodynamic) limit
N — o



Empirical Loss (The Hamiltonian)
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Empirical Risk = Empirical Loss
= the Hamiltonian

This is an (i) high-dimensional, (ii) non-convex, loss function

There are two regimes

The overparametrized regime o < 1

Canyon landscape

H=0

Zero loss
manifold

Relevant for Deep Learning

Interpolation

The underparametrized regime o > 1

Rough landscape

Provides a prototypical hard high-d optimization
problem where to benchmark algorithms



Empirical Risk
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We now focus on the underparametrized phase: o > 1

Two settings:

1. Thermodynamics

Find the ground state of the loss ( ).
O the loss has only two global minima at zero energy.
O The two minima are “Replica Symmetric”

2. Dynamics: minimize the loss via SGD. We expect

o Hard high-d optimization problem.
O Generated by a glassy landscape.
o Only two good minima at zero energy => perfect generalization.

A



SGD minimization

Kamali, Urbani, arXiv:2306.06420

Kamali, Urbani, arXiv:2309.04788

H = Z v,(x) v,(X) = — —— Z nglx
U

z<]

1. Gradient Descent

oH Ovﬂ
x(t+1)=x(t) — n— = x.(t) — S—
(t+1) = x0) (Fw 10 ﬂ;ax

2. Stochastic Gradient Descent

av

. H Iz
e+ 1) =x(0 - %‘, (==
0 with prob. 1 -5 Selection variables
s, (1) = . .
1 with prob. b Batch size = baN

This is a discrete algorithm and does not have a continuous time limit



Dynamical mean field theory

To study dynamics one can use path integrals.

This technique takes the name of the
Martin-Siggia-Rose-Jannsen-De Dominicis formalism

TECHNIQUES DE RENORMALISATION
DE LA THEORIE DES CHAMPS
ET DYNAMIQUE DES PHENOMENES CRITIQUES

C. DE DOMINICIS
Service de Physique Théorique, CEN, Saclay, BP n° 2, 91190 Gif-sur-Yvette, France

Résumé. — La dynamique des phénoménes critiques telle qu’elle est décrite par les équations
stochastiques de type Ginzburg-Landau dépendant du temps, avec ou sans loi de conservation, est
étudiée par les techniques de renormalisation de la théorie des champs.

Le cas des systémes comportant un couplage mode-mode est brievement abordé.

Abstract. — The dynamics of critical phenomena as is described by stochastic equations of the
Landau-Ginzburg type with or without conservation law, is studied by the technique of field renor-
malization.

The case of mode coupling systems is briefly touched upon.

PHYSICAL REVIEW B VOLUME 18, NUMBER 9 1 NOVEMBER 1978

Dynamics as a substitute for replicas in systems with quenched random impurities

C. De Dominicis* .
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

*Permanent address: Service de Physique Theorique, CEA,
CEN Saclay, BP2, Gif Sur Yvette, France.



Dynamical order parameters

C(t,t) = % Z xl.(t)xi(t’) Correlation function
, 1 ox(1)
R(t, 1) = N Z SHA1) Response function
1
m(t) = N Z )cl-(l‘))cl.>X< Magnetization

A(f) = %Z () — x*)2 = 1 — 2m(t) + C(t, 1)

The mean square displacement is a measure
of the distance from the true signal



Dynamical mean field theory

m(t+1)=m(t)—n’a (Z(AR(t,s)C(t,s)+Ac(t,s)R(t,s))m(s)—m(t)ZAR(t,s))
s=0

s=0
C(t+1,t")=C(t,t")+nQ(¢,t) V' <t
t
R(t+1,t)=6ve—n’a > (Ar(t,5)C(t,s)+Ac(t,s)R(t,s))R(s,t)

s=t'+1
C(t+1,t+1)=C(t,t)+2nQ1 (t,t)+1°Qa(t)

Q4 (¢, t')—an[ ZAR (t,s) Z c(t,s Z (Ag(t,s)C(t,s)+Ac(t,s)R(t,s))C(t,s)

=0

Qs (t)=0a’n? Z (Ag(t,8)C(t,s)+Ac(t,s)R(t,s))C(s,s") (Ar(t,8)C(t,s")+Ac(t,s)R(t,s"))

—20%n*m(t) (ZAR (t,s) ) (Z AR(t,s)C(t,s)+Ac(t,s)R(t,s))m(s))
s=0

+2a2n222 (Ar(t,s)C(t,s)+Ac(t,s)R(t,s))Ac(t,s")C(t,s')R(s,s)

s=0s’=

—aAc(t,t)C(t,t)+ (anZAR(t,s)>

s=0

Seem complicated but actually can be integrated very efficiently




Dynamical mean field theory

SUSY formalism

Supel‘fields QUANTUM Quantum Field Theory
and Critical Phenomena
FIELD THEORY FOURTH EDITION

Q(a, b) = (x(a)x(D))
= C(t, 1)+ 0 R(1, 1)+ 0,R(1, 1)

J. Zinn-Justin

O (a,b) = H(a,b) + X(a,b)

Dyson Equation

C(t,t') = (x(0)x(t'))
R(1,1) = (x(tn(t))
a0 =|

The dynamical version has a causal structure
(unless one computes large deviations = instantons)

The coupling constant of the theory is the sample complexity.
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SGD is faster than GD.

[s it actually better? = Does SGD recover the signal at
smaller sample complexity than GD?
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Fit the relaxation time via power law 7(a) ~ 75| a — a*(b)

For GD a*(1) ~ 2.27

SGD is has a different and smaller recovery threshold than GD.




Conclusions

A theory of SGD can be developed and we just started (Plenty of
questions still unanswered. We constructed mainly the tools).

We can establish that SGD is significantly better than GD.

A theory for the recovery threshold is possible: we need to have

better understanding of the statistics of asymptotic configurations
visited by SGD.

SGD is a non-equilibrium algorithm. It drives the system
preventing fully relaxational dynamics.

=> the asymptotic behavior is a non-equilibrium stationary state with interrupted aging.
=> One needs to develop a macroscopic fluctuation theory around the typical trajectory.

The statistical physics approach to learning and optimization is seeing a revival
interest and it is shaping modern high-dimensional statistics and the theory of
deep learning.



