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My own story at the IPhT


• Arrived for a DEA (M2) internship in 1993, continued with a PhD with D. Bernard and 
V. Pasquier (and with J.-B. Zuber as official advisor)


• Joined the SPhT as a permanent researcher in 1998


• I work(ed) on quantum integrable models, 2dCFTs, quantum Hall effect, disordered 
systems, non-unitary models, quantum dimer models, 2d gravity, AdS/CFT 
integrability, etc


 2018, L. Godart / CEA 1994, F. David / IPhT



Integrability at the SPM/SPhT/IPhT


• The towering figure of integrability in our institute is M. Gaudin (1931-2023) who 
joined the SPM in 1958 and the SPhT in 1963 [fermion gas with spin with delta 
interaction; nested Bethe ansatz; norm of the Bethe wave functions - Gaudin 
determinant; thermodynamic Bethe ansatz for the Heisenberg model, Gaudin model, 
field theory in curved space]. His book, La fonction d’onde de Bethe is a classic 
reference for the field


• In the 80’s and the beginning of the 90’s (the orange preprint period) the matrix 
models and the 2dCFTs and were rapidly developing, in particular at the SPhT 
(M.L.Mehta, M. Gaudin, E. Brézin, F. David, C. Itzykson, J. Zinn-Justin, J.-M. 
Normand, J.-B. Zuber, M. Bauer, P. Di Francesco, V. Pasquier, H. Saleur, I. 
Kostov, B. Eynard, M. Bergère…). Integrability and quantum groups are closely 
related to these topics and were very active in the lab. Integrable field theories was 
one of the focal points of the activity of Al. Zamolodchikov, who was briefly member 
of the SPhT.


• Integrability is closely related to the description of geometrical objects (polymers, 
percolation), SLE, disordered systems, super-spin chains, non-unitary systems ( B. 
Duplantier, H. Saleur, I. Kostov, D. Bernard, D. Serban, V. Schomerus, J. 
Jacobsen, S. Ribault, M. Bauer,…)


[using infinite-dimensional symmetries to find exact solutions to problems in physics]




Integrability at the SPM/SPhT/IPhT


• Integrability is applied successfully to stochastic processes (B. Derrida, K. Mallik, V. 
Pasquier,… ), transport in low dimensional systems (H. Saleur) and out of 
equilibrium dynamics (V. Pasquier, G. Misguich, J.-M. Luck,…)


• Other important related fields are  combinatorics, random maps, quantum gravity 
(P. Di Francesco, E. Guitter, J. Bouttier, S. Ramassamy, F. David, B. Duplantier), 
topological recursion (B. Eynard), representation theory (P. Di Francesco, R. 
Kedem)


• In the mid-90’s integrability started to be applied to high energy QCD (G. 
Korchemsky; then at LPT Orsay, joined the IPhT in 2009) and since the beginning of 
00’s to gauge/string dualities (D. Serban, G. Korchemsky, I. Kostov), and 
computation of amplitudes  (D. Kosower, G. Korchemsky, P. Vanhove, M. von 
Hippel)


• Integrability is also important in string theory, also for the AdS/CFT correspondence 
(I. Bena, M. Guica, V. Schomerus), TTbar deformations (M. Guica)


• And last but not least, it has close connections with bootstrap in CFTs (S. Ribault, H. 
Saleur, J. Jacobsen, M. Guica, E. Perlmutter, D. Mazač,…)




• Correlation functions of gauge invariant operators in planar N=4 SYM theory from 
integrability

• Integrable long range models with extended symmetry
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Correlation functions in planar N=4 SYM from 
integrability
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Figure 1: Two equivalent ways of evaluating the partition function on a cylinder.

where the trace is in the Hilbert space of the mirror theory. In contrast, after a mirror transformation
the thermal partition function with open boundary conditions becomes the overlap of an initial state
hBa| and a final state |Bbi defined on a circle of circumference R after evolution at mirror time L [1].
Evaluated in the mirror theory, the partition function (2.3) reads

Zab(R,L) = hBa|e
�H̃(R)L

|Bbi. (2.9)

Although the partition function is the same, the physics is rather different in the two channels. In the
mirror theory, the g-function provides information about overlapping of the boundary states and the
ground state at finite volume. To see this, we write (2.9) as a sum over eigenstates | i of the periodic
Hamiltonian H̃(R)

hBa|e
�H̃(R)L

|Bbi =
X

| i

hBa| ip
h | i

e
�LẼ(| i) h |Bbip

h | i
.

In the large L limit, this sum is dominated by a single term corresponding to the ground state | 0i.
The g-function is then given by the overlap between this state and the boundary state

ga(R) =
hBa| 0ip
h 0| 0i

. (2.10)

An expression for g-function was conjectured in [5] and proven in [6]. Here we write down this result
for the case where the bulk scattering matrix is not of difference form. Let us denote respectively
by K,Ka and Kb the logarithmic derivatives of the bulk scattering phase and the boundary reflection
factors associated with the boundaries a and b

K(u, v) = �i@u logS(u, v), Ka(u) = �i@u logRa(u), Kb(u) = �i@u logRb(u).

It follows from (2.1) and (2.2) that

Ka(u) = Ka(�u), Kb(u) = Kb(�u), K(u,�v) = K(�u, v). (2.11)

Let us also define

⇥?(u) ⌘ K?(u)�K(u,�u)� ⇡�(u), ? = a, b. (2.12)
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�LẼ(| i) h |Bbip

h | i
.

In the large L limit, this sum is dominated by a single term corresponding to the ground state | 0i.
The g-function is then given by the overlap between this state and the boundary state

ga(R) =
hBa| 0ip
h 0| 0i

. (2.10)

An expression for g-function was conjectured in [5] and proven in [6]. Here we write down this result
for the case where the bulk scattering matrix is not of difference form. Let us denote respectively
by K,Ka and Kb the logarithmic derivatives of the bulk scattering phase and the boundary reflection
factors associated with the boundaries a and b

K(u, v) = �i@u logS(u, v), Ka(u) = �i@u logRa(u), Kb(u) = �i@u logRb(u).

It follows from (2.1) and (2.2) that

Ka(u) = Ka(�u), Kb(u) = Kb(�u), K(u,�v) = K(�u, v). (2.11)

Let us also define

⇥?(u) ⌘ K?(u)�K(u,�u)� ⇡�(u), ? = a, b. (2.12)

5

• The planar N=4 SYM theory is the ideal playground for testing ideas for dualities 
between gauge and string theories (     finding the appropriate degrees of freedom)


• The problem of finding the spectrum of conformal dimensions of N=4 SYM was 
reduced to a set of difference equations involving 8 complex functions (quantum 
spectral curve)


• This was achieved by mapping the problem to a long range spin chain/an integrable 
2d field theory and reformulating the Thermodynamic Bethe Ansatz (TBA). 
Considering the spectral problem amounts to putting the problem on an infinite 
cylinder with circumference L, with prescribed insertions at infinity




Correlation functions in planar N=4 SYM from 
integrability


• for more complicated objects (correlation functions, amplitudes, Wilson loops, form 
factors) “tailoring” procedures were devised 


data of the three operators, namely the charges of the global symmetry group PSU(2, 2|4)
and the charges of the infinite symmetry group associated to integrability. The latter ones,

dependent on the coupling constant g, can be encapsulated, at least in the regime of in the

small g, by three collections of rapidities u1,u2,u3, each associated to one of the operators

O1(x1), O2(x2), O3(x3). At g = 0 the three sets of rapidities are determined by Bethe

ansatz equations for three PSU(2, 2|4) spin chains with lengths L1, L2 and L3. At non-zero

values of the coupling constant g, the spin chains acquire long-range interaction and the

so-called asymptotic Bethe ansatz is not exact anymore. The long-range corrections can be

interpreted as coming from virtual particles circulating in the so-called mirror channel, where

time and space are interchanged. These virtual particles are called mirror particle. Their

contribution to the spectrum of conformal dimensions �(g) can be exactly determined via

a set of functional equations known under the name of Quantum Spectral Curve, equivalent

to a system of Thermodynamic Bethe Ansatz equations. In the large volume limit the

contribution of the virtual particles is exponentially small.

Through the AdS/CFT correspondence [23], the three-point function is dual to a three-

string interaction connecting three strings with energies �1, �2, �3. The rapidities can

be then associated to the momenta of excitation modes, or magnons, propagating on the

1+1 dimensional worldsheet. For a particular subset of the operators, the BPS operators,

the conformal dimensions do not depend on the coupling constant g and the associated

rapidities are trivial (i.e. infinite). We are going to use a bullet to symbolise a non-BPS

operator and an empty circle to denote the BPS one with the same global charges. To

remove some trivial combinatorial factors we are dividing the three-point function by the

three-point function of the corresponding BPS operators, e.g.

C••�
123 ⌘ C••�

123

C���
123

p
N1N2 (2.2)

denotes the three-point function of two non-BPS and one BPS operator. In the above

formula,
p
Ni are the normalisation of the three incoming states, which can be expressed

in terms of the Gaudin determinants. In this work we are not considering the explicit

expression of the norms, and prefer considering the unnormalised structure constants C123
defined in (2.2) instead of the normalised structure constants C123. The semiclassical limit

of the norms in the absence of mirror correction was taken in [7, 24].

An all-loop prescription to compute the three-point function was given in [1]. The

guiding principle of the proposal is to split the worldsheet of the three interacting strings

into two overlapping hexagons, and then sum over all possible ways of distributing the

magnon excitations between the two hexagons, u1 = ↵1 [ ↵̄1,u2 = ↵2 [ ↵̄2,u3 = ↵3 [ ↵̄3

as illustrated in figure 2.1. In the absence of the mirror corrections (asymptotic limit) the
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Comparison with the hexagon bootstap

�

� �

�

|V12i = exp�
LX

s=1

X

i=1,2

⇣
a(1)i,s a

(2)†
i,s � b(1)i,s b

(2)†
i,s + d(1)i,s d

(2)†
i,s � c(1)i,s c

(2)†
i,s

⌘
|0i(2) ⌦ |0̄i(1) (65)

|0i(2) ⌦ |0̄i(1) =
⇣
|0i(2)L ⌦ · · ·⌦ |0i(2)1

⌘
⌦

⇣
|0̄i(1)1 ⌦ . . .⌦ |0̄i(1)L

⌘
(66)

|O1i ' |O13i ⌦ |O12i , (67)

|O2i ' |O21i ⌦ |O23i ,

|O3i ' |O32i ⌦ |O31i .

L(1)
s (u)|V12i = �L(2)

s (�u)|V12i (68)

� = i�2

✓
A(u) B(u)
C(u) D(u)

◆(1)

|V12i =

✓
D(u) �B(u)
�C(u) A(u)

◆(2)

|V12i . (69)

T (1)(u)|V12i = �0T
(2),t0(u)��1

0 |V12i (70)

⇤ ! ⇤̄

T12(u)|V12i = f(u)|V12i . (71)

⇧2
01 = c+ (c� 1)⇧01 . (72)

R01(u)R01(i(c� 1)� u) ⇠ 1

R02(u)|V12i = �R01(�i� u)|V12i (73)

R01(u)R02(u� ic)|V12i ⇠ |V12i . (74)

⌦1(u)⌦2(u)⌦3(u) = 1 (75)

|V123i ⇠ |H1i ⌦ |H2i
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more precise meaning? 

translate the properties of the vertex into the scattering image? 
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answer is

1 11

22 33

Figure 2.1: A possible arrangement of excitations for the hexagon form factors.

[C•••
123 ]

asympt =
X

↵i[↵̄i=ui

3Y

i=1

(�1)|↵1|+|↵2|+|↵3| w`31(↵1, ↵̄1)w`12(↵2, ↵̄2)w`23(↵3, ↵̄3)

⇥ H(↵1|↵3|↵2)H(↵̄2|↵̄3|↵̄1) . (2.3)

Explicit expressions for transition factors w`i�1,i(↵i, ↵̄i) and hexagon form factors H(↵1|↵3|↵2)

were proposed in [1] and will be given later. The building blocks of the hexagon form factors

are the bi-local hexagon amplitudes h(u, v) proposed in [25] and the elements of the Beisert’s

scattering matrix [26]. Here we are going to consider only structure constants of operators

from the rank-one sectors su(2) and sl(2) and we are therefore not going to use the matrix

structure of the hexagon form factors.

Figure 2.2: Vacua and su(2) excitations in the reservoir picture of BKV [1].

To connect with the weak-coupling picture and the corresponding notations, it is useful

to represent the three-point function we consider in the reservoir picture of [1] represented
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p = q2/�

�k ⌘ �̄k + 1

N � 2M + 1 � �1 � . . . � �M � 1

si ⌘ Ki,i+1

Weierstrass elliptic function with periods N and !

T pol

i := �t�1/2 tzi � zi+1

(zi � zi+1)
(1�Ki,i+1) + t1/2

Rpol

i,i+1
:= t�1/2 T pol

i Ki,i+1

Ti zi Ti = zi+1 , Tj zi = zi Tj , if j 6= i, i+ 1
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Figure 2.3: The physical and bottom mirror excitations.

2.2 Results and comparison with strong coupling

In the case when the incoming operators correspond to semiclassical strings, the lengths

L1, L2, L3 of the three chains and the numbers of the magnon excitations M1, M2, M3 are

large.4 The semiclassical limit is controlled by a small parameter ✏ such that ✏Li and ✏Mi

remain finite when ✏ ! 0. This limit exists for any value of the ’t Hooft coupling g. In

addition to the semiclassical limit, one can take the strong coupling limit where the e↵ective

coupling g0 = ✏g remains finite when ✏ ! 0.

In general, we need to take into account the partitions of three sets of physical rapidities

and sum over all mirror excitations on the mirror edges, which is still open. Here we report

some modest progress, by taking the sum and the semiclassical limit in three particular

cases when the operators belong to the rank-one su(2) and sl(2) sectors:

• the expression of the asymptotic part of the structure constant for one non-BPS and

two BPS operators, [C•��
123 ]

asympt for any value of the coupling constant,

• the expression of the asymptotic part of the I-I-II structure constant5 for three non-

BPS operators belonging to two di↵erent su(2) or sl(2) sectors, [C•••
123 ]

asympt, for any

value of the coupling constant,

• the expression of the bottom mirror contribution for one non-BPS and two BPS

operators, [C•��
123 ]

bottom in the strong coupling limit.

4Based on the experience with the spectrum [36], we may expect that, for sl(2), the results for the

semiclassical strings can be applied safely to small values of ✏Li.
5 The I-I-I type structure constant remains out of reach of our method for the moment.
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• the elementary building blocks are non-local form factors with curvature 
excess

•  gluing involves summing over an infinite number of virtual particles


Space-time S-matrix and Flux-tube S-matrix at Finite Coupling

Benjamin BassoD, Amit SeverD,2 and Pedro VieiraD
D
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada2

School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

We propose a non-perturbative formulation of planar scattering amplitudes in N = 4 SYM or,
equivalently, polygonal Wilson loops. The construction is based on the OPE approach and introduces
a new decomposition of the Wilson loop in terms of fundamental building blocks named Pentagon

transitions. These transitions satisfy a simple relation to the worldsheet S-matrix on top of the so
called Gubser-Klebanov-Polyakov vacuum which allows us to bootstrap them at any value of the
coupling. In this letter we present a subsector of the full solution to scattering amplitudes which
we call the gluonic part. We match our results with both weak and strong coupling data available
in the literature. For example, the strong coupling Y-system can be understood in this approach.

I. INTRODUCTION

Computing the full S-matrix of a four dimensional
gauge theory at finite coupling might seem impossible.
Conventional techniques, based on perturbation theory,
soon become too cumbersome as the number of loops
increases. Besides, the final results are typically much
simpler than the intermediate steps would suggest. Both
observations beg for an alternative non-perturbative ap-
proach. In the large Nc expansion, a dual two dimen-
sional string theory of ’t Hooft surfaces emerges as such
an alternative description. In some cases, these ’t Hooft
surfaces are integrable and their dynamics can be stud-
ied exactly. This is what happens in N = 4 SYM theory
and has led to the full solution of the problem of com-
puting all two point correlation functions of local opera-
tors [1]. Higher point correlation functions, Wilson loops
(WL) and scattering amplitudes are considerably richer
objects that depend on several external kinematics and
probe string interactions. Since the string material is the
same we expect integrability to help us compute these
observables at any value of the coupling as well.

In this paper we consider planar Scattering Amplitudes
or Null Polygon WLs in N = 4 SYM (in this theory they
are the same [2–4]). We identify a new object, called
Pentagon transition, as the building block of these WLs.
The Pentagon transitions arise naturally in the OPE con-
struction [5] and completely determine the WL at any
coupling. Remarkably, these transitions are directly re-
lated to the dynamics of the Gubser-Klebanov-Polyakov
(GKP) flux tube [6, 7] and can be computed exactly using
Integrability! In this paper we present the most funda-
mental ones, describing the transition of gluonic degrees
of freedom.

II. FRAMING THE WILSON LOOP

Our construction is based on a decomposition of a
general polygon WL into simpler fundamental building
blocks which we will denote as square and pentagon tran-
sitions.

We decompose a polygon into a sequence of null

squares as in figure 1. Any two adjacent squares form
a pentagon.

(a) (b) (c)

 1

 2

 3

va
c

vac

FIG. 1. Decomposition of n-sided Null Polygons into se-
quences of n�3 null squares. Any two adjacent squares form a
pentagon and any middle square is shared by two pentagons.
There are n � 4 pentagons and n � 5 middle squares. Every
middle square in the decomposition shares two of its opposite
cusps with the big polygon; the positions of the other two
cusps (which are not cusps of the big polygon) are fixed by
the condition that they are null separated from their neigh-
bours. For example, in (a) we have an hexagon. It has a single
middle square whose symmetries ⌧,� and � parametrize its
three conformal cross-ratios [5].

Of particular importance are the middle squares that
arise as overlap of two consecutive pentagons. For an n-
edged polygon there are n � 5 middle squares. Each of
them has three symmetries parametrized by a GKP time
⌧i, space �i, and angle �i for rotations in the two dimen-
sional space transverse to this middle square. We coor-
dinatize all conformally inequivalent polygons by acting
with the symmetries of the i-th middle square on all cusps
to the bottom of that square [9]. The set {⌧i,�i,�i}

n�5
i=1

parametrizes the 3n � 15 independent conformal cross
ratios of a n-edge null polygon. An explicit definition is
given in figure 2.

We regulate the well understood UV divergences of
the WL using pentagons and squares as defined in fig-
ure 3. These squares and pentagons have no conformal
cross ratios; their expectation values are fixed by con-
formal symmetry [10] and given by the BDS ansatz [11].
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Correlation functions in planar N=4 SYM from 
integrability


•  gluing involves summing over an infinite number of virtual particles: this was 
successfully done for the octagon        result in terms of Fredholm determinant 
(~fermions at finite temperature)


[Kostov, Petkova, D.S. 19; Belitsky, Korchemsky, 19-22]

•  but the resummation procedure is heavy and not efficient for e.g. the three point 
function; conjectures by 
 [Basso, Georgoudis, Klemenchuk-Sueiro, 22]

• idea: use/devise a formalism which is friendlier to the TBA and the spectral curve , 
namely the separation of variables; preliminary results by 
[Bercini, Homrich, Vieira, 22]

• work in progress with  
I. Kostov, G. Lefundes, F. Levkovich-Maslyuk

• the difficulty consists in working with long-range deformations of spin chains/higher 
rank and supersymmetric 




Long-range interacting models with extended symmetry


• We are studying a family of models based on  [Bernard, Gaudin, Haldane, Pasquier, 
93]


• They include the spin-Calogero-Sutherland model and the Haldane-Shastry model 
and their q-deformations (difference/anisotropic); 


• One of the features of these models is the existence of an extended symmetry: 
Yangian in the undeformed case and quantum affine symmetry for the 
deformations [the integrals of motion are generated by the quantum determinant of 
the monodromy matrix]


• One purpose is to understand separation of variables in long range spin chains 
solvable by Bethe Ansatz. We find extra integrals of motion inside the spin CS 
models [generated by the trace of the (twisted) monodromy matrix] which can be 
diagonalised by Bethe Ansatz [Ferrando, Lamers, Levkovich-Maslyuk, D.S., 23]


• On the side of the deformed models, of particular interest are the cases where q is a 
root of unity, when extra (super) symmetry may occur. We have looked in detail first 
at the case q=i [Ben Moussa, Lamers, D.S., Toufik, to appear].



Long-range interacting models with extended symmetry

  [Bernard, Gaudin, Haldane, Pasquier, 93]


[Uglov 95; Lamers 18; Lamers, Pasquier, D.S., 22]

We are studying a Heisenberg anisotropic (XXZ-type) spin chain with multi-spin interaction

The appropriate q-deformation has the same structure, cf. [HS96]. It is perhaps most clearly
defined using graphical notation:

(1.16) Sl
[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj

zj

zj

zj

zj

zj

zj−1

zj−1

zj−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi−1

zi−1

z1

z1

· · · · · · .

The little arrows at the top indicate that the diagrams are read from bottom to top (time
goes up). The coordinates, here in the role of inhomogeneity parameters, follow the lines as
indicated. The nearest-neighbour transport is accounted for by the R-matrix,

(1.17)

v

v

u

u

:= Ř(u/v) ,

while the nearest-neighbour exchange is deformed to the Temperley–Lieb generator 2

(1.18)

u

u

v

v

:= esp = −(q − q−1) Ř′(1) =





0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0



 .

This q-antisymmetriser (up to normalisation) is the local Hamiltonian of the quantum-sl2 in-
variant Heisenberg spin chain [PS90], see §2.2.3.

An example of the long-range spin interactions (1.16) is

(1.19)

Sl
[1,5] = Ř45(z5/z4) Ř34(z5/z3) Ř23(z5/z2)

× −(q − q−1) Ř′
12(1)

× Ř23(z2/z5) Ř34(z3/z5) Ř45(z4/z5) .

We stress that in the graphical notation the parameters follow the lines, but (unlike if one would
draw R = P Ř or Ř P ) the vector spaces do not, cf. the subscripts in (1.19). The notation ‘[i, j]’
as an interval in (1.16), which is borrowed from [HS96], reflects the fact that the intermediate
spins are affected by the transport via the R-matrix: the model involves multi-spin interactions
when q #= ±1. As a result the direct computation of the action of Hl on any vector is quite
complicated even for a single excited spin.

Remarks. i. If q ∈ R× the hermiticity of (1.18) is inherited by Hl [Lam18]. See the Corollary
on p. 11 for q ∈ S1. ii. The structure of Hl, with its multi-spin interactions, might be somewhat
involved, yet is precisely such that the key properties of (1.1) generalise to the q-case:

• it comes with a hierarchy of abelian symmetries (see below, §1.3.2 and Table 4 on p. 25),
• it has a large number of nonabelian symmetries (§1.2.5) and
• it admits an exact description of the exact energy spectrum (§1.2.3),
• including a closed-form expression for the (l-)highest weight vectors (§1.2.4).

iii. We’ll derive the formula for Hl in §3.2.1, as we will preview in §1.3.2. iv. Hl has a stochastic
version too: see §C.1. v. The Hamiltonian depends mildly on the sign of q: the eigenvalues of
Hl|q$→−q equal those of (−1)N Hl. We will prove this in §C.1, see (C.8).

2 Unlike the usual graphical notation for esp
i this does not represent the Temperley–Lieb relations (§2.2.1),

but it correctly accounts for the flow of inhomogeneity (spectral) parameters along the lines.
6
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zi

q zi

q≠1zi

zjq zj

q≠1zj

d≠

d+
zi

q zi

q≠1zi

zj

q zj

q≠1zj

d≠ d+

Figure 1. The potential (1.61.6) is a point splitting of the inverse square
in (1.11.1). Consider a little ‘dipole’ at each site, with length set by q≠q≠1.
Then evÊ V (zi, zj) = 1/d+ d≠, where d± are illustrated for q œ iR>1 (left)
and q œ R>1 (right). At q = 1 both d± reduce to the chord distance.

Finally, the operators S[i,j] in (1.51.5) deform the long-range exchange interactions of
(1.11.1). The deformation is accomplished via the spin-1/2 xxz (six-vertex) R-matrix

(1.7) Ř(u) :=

Q

cca

1 0 0 0
0 u g(u) f(u) 0
0 f(u) g(u) 0
0 0 0 1

R

ddb , f(u) := u ≠ 1
q u ≠ q≠1 , g(u) := q ≠ q≠1

q u ≠ q≠1 .

Here the 4◊4 matrix is with respect to the standard basis |øøÍ, |ø¿Í, |¿øÍ, |¿¿Í of C2 ¢C2.
The functions f and g can be recognised as the ratios b/a and c/a, respectively, of the
six-vertex model’s local weights. The properties of (1.71.7) will be reviewed in §2.2.22.2.2.

Note that the isotropic interactions can be decomposed into nearest-neighbour steps
consisting of transport, interaction, and transport back:
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zN

zN

zj+1

zj+1

zj

zj

zj

zj

zj

zj

zj

zj

zj≠1

zj≠1

zj≠1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi≠1

zi≠1

z1

z1

· · · · · · , i < j .

The little arrows at the top indicate that the diagrams are read from bottom to top (time
goes up). The coordinates, here in the role of inhomogeneity parameters, follow the lines
as indicated. The nearest-neighbour transport is accounted for by the R-matrix,
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· · · · · · .
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e�(u) = e�0(u) + (q � 1) � e�(u) +O(q � 1)2

q⇤ = (t⇤)1/2 = q2

Pjk =
1

2

�
�a
j �

a
k + 1

�

S[j,j+1] =
1

2

�
�x
j �

x
j+1

+ �y
j�

y
j+1

+��z
j�

z
j+1

��
�

HXXZ = J
NX

j=1

1

2

�
�x
j �

x
j+1

+ �y
j�

y
j+1

+��z
j�

z
j+1

��
�

HXXX = J
NX

j=1

(Pj,j+1 � 1)

[HXXX, S
a] = 0 , a = x, y, z

[HXXZ, S
z] = 0

Uqsl(2)

Sa =
1

2

NX

j=1

�a

ej = �h[j,j+1] �
q� q�1

4
(�z

j � �z
j+1

) , (106)

Hopen

XXZ
=

N�1X

j=1

h[j,j+1] +
q� q�1

4
(�z

1
� �z

N) = �
N�1X

j=1

ej (107)

� =
q + q�1

2
q ! 1 �! � ! 1

H =
X

1i<jN

Vij S[i,j]

:=

0

BB@

0 0 0 0
0 q�1 �1 0
0 �1 q 0
0 0 0 0

1

CCA = ei

KEK�1 = q2E , KFK�1 = q�2F , [E,F ] =
K �K�1

q� q�1

E =
NX

j=1

k1 . . . ki�1 �
+

j , F =
NX

j=1

��
i k�1

j+1
. . . k�1

N , K = k1 . . . kN

33

3 The long range spin chain

An integrable long-range version of the XXZ spin chain was proposed in [3] and studied
further in [4–6]. Its Hamiltonian can be written as

H
L

qHS =
[N ]

N

X

1i<jN
Vij S

L

[i,j] (3.1)

where the translationally invariant potential Vij is given by

Vij =
zizj

(qzi � q�1zj)(qzj � q�1zi)
, zj = !

j
, [N ] =

q
N � q

�N

q� q�1
, (3.2)

and

S
L

[i,j] =

  Y
i<k<j

Řk,k+1(zj/zk)

!
ei

 !Y
i<k<j

Řk,k+1(zk/zj)

!
, i < j , (3.3)

with

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

qu� q�1
. (3.4)

The relation

f(u) + f(u
�1

) = (q + q
�1

)f(u)f(u
�1

) (3.5)

together with the Temperley-Lieb relation (1.5) insures that Řk,k+1(u) Řk,k+1(u
�1

) = 1.
The interaction (3.3) is not symmetric by parity, i.e. by sending i ! N � i, instead

there exists another Hamiltonian

H
R

qHS =
[N ]

N

X

1i<jN
Vij S

R

[i,j] (3.6)

with

S
R

[i,j] =

 !Y
ik<j�1

Řk,k+1(zk/zi)

!
ej�1

  Y
ik<j�1

Řk,k+1(zi/zk)

!
, i < j , (3.7)

such that the two Hamiltonians commute,

[H
L

qHS,H
R

qHS] = 0 , (3.8)

and a parity invariant Hamiltonian can be defined by the half-sum of the two operators,

HqHS =
1

2

�
H

L

qHS +H
R

qHS

�
. (3.9)
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matrices. The (isotropic) Haldane–Shastry spin chain has Hamiltonian [Hal88Hal88,Sha88Sha88]

(1.1) Hhs = evÊ
ÂHhs , ÂHhs = ≠

Nÿ

i<j

evÊ
zi zj

(zi ≠ zj)2 (1 ≠ Pij) .

The overall sign ensures that (1.11.1) is positive: (≠)Hhs is (anti)ferromagnetic. Let Ê :=
e2fii/N œ C◊ := C \ {0} be the primitive Nth root of unity. Following [Ugl95Ugl95] we write

(1.2) evÊ : zj ‘≠æ Êj = e2fiij/N

for the map evaluating z1, · · · , zN at the corresponding Nth roots of unity. On shell, i.e.
after evaluation, we can think of the zj as the position of site j of the chain, viewed as
being embedded in the unit circle S1 ™ C. We will refer to the zj as coordinates.

The many remarkable properties of this model include a particularly simple spectrum.
The energy and momentum are additive, with a quadratic dispersion relation:

(1.3) XMmaÁhs(n) = 1
2 n (N ≠ n) , phs(n) = 2fi

N
n .

The spectrum is highly degenerate [Hal88Hal88], partially [FGL15FGL15] due to an infinite-
dimensional symmetry algebra present already at for finite size [HHT+92HHT+92, BGHP93BGHP93].
There is one highest-weight eigenvector for each partition ⁄ with ⁄1 Æ N ≠ 2 ¸(⁄) + 1
(see §1.1.31.1.3), with wave function [Hal91bHal91b,BGHP93BGHP93]

(1.4) �(i1, · · · , iM ) = evÊ

MŸ

m<n

(zim ≠ zin)2 P (1/2)
⁄ (zi1 , · · · , ziM ) .

Here P (–)
⁄ is a Jack polynomial with parameter – = g≠1, where g (g ≠1) is the Calogero–

Sutherland coupling (§A.1A.1). The special case P (1/2)
⁄ is a zonal spherical polynomial. cf [Cherednik, Matsuo](To

compare: – = 1 gives Schur and – = 2 zonal polynomials; cf. Figure 44 on p. 2626.)
Refer to q = 1 sects/app. incl §A.2A.2

In this work we extend all of this to the partially isotropic case, building on [BGHP93BGHP93,
Ugl95Ugl95,Lam18Lam18]. do we have new results

for q = 1 too?

1.1.1. Hamiltonians. Fix an anisotropy parameter q œ C◊. The Hamiltonian of the
(chiral) q-deformed Haldane–Shastry spin chain [Ugl95Ugl95] can be expressed in a long-range
pairwise form too [Lam18Lam18]:

(1.5) H = ≠ [N ]
N

Nÿ

i<j

evÊ V (zi, zj) S[i,j] .

Appendix . . . contains a comparison with the conventions from [Ugl95Ugl95, Lam18Lam18]. The
prefactor involves the q-analogue of N œ N,

[N ] := qN ≠ q≠N

q ≠ q≠1 = qN≠1 + qN≠3 + · · · + q3≠N + q1≠N .

Next, the potential in (1.51.5) reads

(1.6) V (zi, zj) = zi zj

(q zi ≠ q≠1zj)(q≠1zi ≠ q zj) .

A geometric way to think about this quantity is shown in Figure 11.
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(q zi ≠ q≠1zj)(q≠1zi ≠ q zj) .

A geometric way to think about this quantity is shown in Figure 11.

• N spins 1/2 on a circle with positions given by the N-th root of unity 

• anisotropy controlled by a parameter  
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permutation

• Yangian and spinon description of su(2)k=1 CFT:  [Bernard, Pasquier, D.S. 94]

Long-range interacting models with extended symmetry


• At q=1 this becomes the Haldane-Shastry model 
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• The model is Yangian symmetric (huge degeneracy) and the spectrum is encoded by motifs: 
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Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 11

Recall that a partition ⁄ = (⁄1 Ø ⁄2 Ø · · · Ø 0) is a weakly decreasing sequence of
integers. The length ¸(⁄) of ⁄ is the number of nonzero parts of ⁄. Then2

⁄m = µM≠m+1 ≠ 2 (M ≠ m) , 1 Æ m Æ M = ¸(⁄) = ¸(µ) ,(1.27a)

gives a bijection between MN and the set of partitions with ⁄1 Æ N ≠ 2 ¸(⁄) + 1. If
”M := (M ≠ 1, M ≠ 2, · · · ) denotes the staircase partition of length M ≠ 1 and µ+ is the
partition obtained from µ œ MN by reversal then this relation takes the succinct form

⁄ + 2 ”¸(µ) = µ+ ,(1.27b)
where addition and scalar multiplication are pointwise. See also Figure 33.

µ1 µ2 · · · µM

1 3 · · · 2M≠1 N≠1

⁄̄M ⁄̄M≠1
· · · ⁄̄1

Figure 3. The correspondence (1.271.27) between a motif µ œ MN of length
M := ¸(µ) Ø 1 and a partition with ⁄1 Æ N ≠ 2 M + 1 and ¸(⁄) = M ,
given by ⁄m = ⁄̄m + 1, 1 Æ m Æ M . Here ⁄̄ characterises the extent by
which µ di�ers from the left-most filled motif of length M , as shown.

With this notation in place the (unnormalised) wave function of |µÍ is the following
q-deformation of (1.41.4). The component where all magnons sit on the left remains simple:

(1.28) �µ(1, · · · , M) = ÈÈ1, · · · , M |µÍ = evÊ
Â�⁄(µ)(z1, · · · , zM ) .

Here ⁄(µ) denotes the partition associated to µ via (1.271.27) and Â�⁄ is a symmetric poly-
nomial in the magnon coordinates:

(1.29) Â�⁄(z1, · · · , zM ) :=
A

MŸ

m<n

(q zm ≠ q≠1zn) (q≠1zm ≠ q zn)
B

P ı
⁄ (z1, · · · , zM ) .

Besides the ‘symmetric square’ of the q-Vandermonde product it features the special case
of a Macdonald polynomial (§2.1.22.1.2) with parameters pı = qı = q2. The dependence on
q2 reflects a sort of symmetry of the Hamiltonian under q ‘æ ≠q, see app. In the notation
of Macdonald [Mac95Mac95,Mac98Mac98] the parameters of P ı

⁄ are related as qı = tı – for – = 1/2:
P ı

⁄ is a quantum spherical zonal function. See also Figure 44 on p. 2626. cf [Nou96Nou96], . . . ,

Cher-Matsuo corresp

[Kasatani Pasquier,

Kasatani Takeyama,

Stokman]?

The other components are more involved than in the isotropic case (1.41.4). They are
obtained from (1.291.29) by moving the magnons via q-deformed permutations (the Hecke
algebra, §2.1.12.1.1) before evaluation. Namely, let si be the permutation zi ¡ zi+1 and set in terms of a, b, cf §2.12.1?

(1.30) T pol
i := f≠1

i,i+1(si ≠ gi,i+1) , fi,i+1 := f(zi/zi+1) , gi,i+1 := g(zi/zi+1) ,

2 Note that ⁄ defined in (1.271.27) is the conjugate of the partition associated to µ in [Ugl95Ugl95] follow-
ing [JKK+95aJKK+95a]. See §3.2.33.2.3 for the reason of the conjugation.

M magnon motif consisting of M integers

Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 8

1.1.2. Motifs and exact energy spectrum. The spectrum is conveniently described in
terms of the following patterns [HHT+92HHT+92]. For a spin chain with N spin-1/2 sites define

(1.18) MN :=
)
(1 Æ µ1 < · · · < µM Æ N ≠ 1)

-- µm+1 > µm + 1
*

.

An element µ œ MN , called a motif (though ‘N -motif’ would be more precise), thus is a
sequence in {1, · · · , N ≠1} increasing with steps of at least two. Denote the empty motif
by 0. For example, M2 = {0, (1)}, M3 = {0, (1), (2)} and M4 = {0, (1), (2), (3), (1, 3)}.
Let us define the length ¸(µ) of µ to be the number of parts µm. The motif conditio
thatn implies 0 Æ ¸(µ) Æ ÂN/2Ê for any µ œ MN . We will further write

|µ| :=
¸(µ)ÿ

m=1
µm .

Conditioning on whether N ≠ 1 œ µ yields a recursion MN
≥= MN≠1  MN≠2 (disjoint

union), so the number of motifs forms a Fibonacci sequence with o�set one in the system
size: #MN = FibN+1.

As we will demonstrate in §33 (see especially §3.2.33.2.3, 3.33.3, 3.53.5) these motifs label the
eigenspaces of the Hamiltonians,

(1.19) Hsp =
n

µ œ MN

Hsp,µ ,

with (strictly) additive q-momentum and energy eigenvalues

(1.20)

G |Hsp,µ = ei p(µ) , p(µ) := 2fi

N
|µ| mod 2fi ,

H |Hsp,µ = E(µ) =
Mÿ

m=1
Á(µm) ,

H̄ |Hsp,µ = Ē(µ) =
Mÿ

m=1
Á̄(µm) .

Note that the µm can be seen as the ‘Bethe quantum numbers’, or, up to a factor,
quasimomenta pm = 2fiµm/N . The energy is strictly additive: there is no interaction
(bound-state) energy. The physical picture is that of a gas of anyons: free quasiparticles
that interact through their statistics only, just as for the Haldane–Shastry model [Hal91bHal91b,
Hal91aHal91a].

The chiral quasienergy in (1.201.20) is given by Uglov’s dispersion relation [Ugl95Ugl95]

(1.21) XMmaÁ(n) = 1
q ≠ q≠1

3 q≠n

q≠N
[n] ≠ n

N
[N ]

4
.

As q æ 1 we retrieve the quadratic dispersion (1.31.3), as can be seen by writing q = e“

and expanding the part in parentheses to second order in “.
The antichiral dispersion relation di�ers from (1.211.21) by inverting q or, equivalently,

reflecting the motif:

(1.22) XMmaÁ̄(n) = 1
q ≠ q≠1

3 qn

qN
[n] ≠ n

N
[N ]

4
= Á(n)

--
q‘æq≠1 = Á(N ≠ n) .

statistical interaction; ideal magnons



Long-range interacting models with extended symmetry


The q-deformation (1.16) breaks left-right symmetry: the model described by (1.11) is chiral.
One of our new results is a Hamiltonian with the opposite chirality. It also q-deforms (1.1) and
is very similar to (1.11):

Theorem 1.1. The abelian symmetries of the q-deformed Haldane–Shastry spin chain include

Hr = evω H̃r , H̃r =
[N ]

N

N∑

i<j

V (zi, zj) Sr
[i,j] ,(1.20a)

now featuring long-range spin interactions where the interactions take place on the right,

Sr
[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj−1

zj−1

zj−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi

zi

zi

zi

zi

zi

zi−1

zi−1

z1

z1

· · · · · · .(1.20b)

Indeed, in §3.2.3 we will show that [Hl, Hr] = 0 is true by construction. In particular it makes
sense to define the full Hamiltonian of the q-deformed Haldane–Shastry spin chain as

(1.21) H full :=
1

2
(Hl + Hr) = evω H̃ full , H̃ full =

[N ]

2N

N∑

i<j

V (zi, zj)
(
Sl

[i,j] + Sr
[i,j]

)
.

As we will see in §1.2.3 it has real spectrum also when q ∈ S1.
To get some feeling for the q-deformed Hamiltonians let us investigate the boundary condi-

tions, focussing on Hl for definiteness. The q-deformation affects the periodicity of (1.1). One
might say that the deformed Hamiltonians are really defined on a strip rather than a circle.
The potential (1.13) is still periodic as it depends on the ratio zi/zj , i.e. on the distance i − j
in additive language. However, the long-range interactions (1.16) are certainly not periodic:
compare the highly non-local multispin operator Sl

[1,N ] with any genuine nearest-neighbour in-

teraction Sl
[i,i+1] = esp

i . Unlike for the Heisenberg xxz chain no particle ever really wraps around

the back of the chain. This periodicity breaking is required by the coproduct (§2.2.1) of the
nonabelian symmetries (§1.2.5), cf. [HS96]. As q → 1 the ‘wall’ between sites N and 1 becomes
transparent. For q → ∞ we instead get an open chain, as we will show soon (§1.2.2).

On the other hand the model is formally periodic:

Proposition 1.2. The q-deformed Haldane–Shastry is q-homogeneous: its abelian symmetries
include the (left) q-translation operator [Lam18]

(1.22) G := evω G̃ , G̃ := ŘN−1,N (z1/zN ) · · · Ř12(z1/z2) =

z2

z2 · · ·

· · · zN

zNz1

z1

z1

z1

z1

.

In [Lam18] it was conjectured that Hl is q-homogeneous. The stronger statement from Pro-
position 1.2 will be established in §3.2.3 (see Proposition 3.11). Observe that the Yang–Baxter
equation (§2.2.2) implies GN = 1, so G’s eigenvalues are of the form ei p, with q-momentum
p ∈ (2π/N)ZN quantised as usual for particles on a circle. In particular the (discrete) value
p cannot depend on q, which we can vary as we like. (The dependence on q is hidden in the
meaning of p, as eigenvalue of −i log G.) We will use this to compute p in the crystal limit
q → ∞ at the end of §1.2.2.
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The appropriate q-deformation has the same structure, cf. [HS96]. It is perhaps most clearly
defined using graphical notation:

(1.16) Sl
[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj

zj

zj

zj

zj

zj

zj−1

zj−1

zj−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi−1

zi−1

z1

z1

· · · · · · .

The little arrows at the top indicate that the diagrams are read from bottom to top (time
goes up). The coordinates, here in the role of inhomogeneity parameters, follow the lines as
indicated. The nearest-neighbour transport is accounted for by the R-matrix,

(1.17)

v

v

u

u

:= Ř(u/v) ,

while the nearest-neighbour exchange is deformed to the Temperley–Lieb generator 2

(1.18)

u

u

v

v

:= esp = −(q − q−1) Ř′(1) =





0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0



 .

This q-antisymmetriser (up to normalisation) is the local Hamiltonian of the quantum-sl2 in-
variant Heisenberg spin chain [PS90], see §2.2.3.

An example of the long-range spin interactions (1.16) is

(1.19)

Sl
[1,5] = Ř45(z5/z4) Ř34(z5/z3) Ř23(z5/z2)

× −(q − q−1) Ř′
12(1)

× Ř23(z2/z5) Ř34(z3/z5) Ř45(z4/z5) .

We stress that in the graphical notation the parameters follow the lines, but (unlike if one would
draw R = P Ř or Ř P ) the vector spaces do not, cf. the subscripts in (1.19). The notation ‘[i, j]’
as an interval in (1.16), which is borrowed from [HS96], reflects the fact that the intermediate
spins are affected by the transport via the R-matrix: the model involves multi-spin interactions
when q #= ±1. As a result the direct computation of the action of Hl on any vector is quite
complicated even for a single excited spin.

Remarks. i. If q ∈ R× the hermiticity of (1.18) is inherited by Hl [Lam18]. See the Corollary
on p. 11 for q ∈ S1. ii. The structure of Hl, with its multi-spin interactions, might be somewhat
involved, yet is precisely such that the key properties of (1.1) generalise to the q-case:

• it comes with a hierarchy of abelian symmetries (see below, §1.3.2 and Table 4 on p. 25),
• it has a large number of nonabelian symmetries (§1.2.5) and
• it admits an exact description of the exact energy spectrum (§1.2.3),
• including a closed-form expression for the (l-)highest weight vectors (§1.2.4).

iii. We’ll derive the formula for Hl in §3.2.1, as we will preview in §1.3.2. iv. Hl has a stochastic
version too: see §C.1. v. The Hamiltonian depends mildly on the sign of q: the eigenvalues of
Hl|q$→−q equal those of (−1)N Hl. We will prove this in §C.1, see (C.8).

2 Unlike the usual graphical notation for esp
i this does not represent the Temperley–Lieb relations (§2.2.1),

but it correctly accounts for the flow of inhomogeneity (spectral) parameters along the lines.
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- there exists another Hamiltonian with the opposite “chirality”

-at           the model is not translationally invariant (but there is a q-translation operator, G)


The q-deformation (1.16) breaks left-right symmetry: the model described by (1.11) is chiral.
One of our new results is a Hamiltonian with the opposite chirality. It also q-deforms (1.1) and
is very similar to (1.11):

Theorem 1.1. The abelian symmetries of the q-deformed Haldane–Shastry spin chain include

Hr = evω H̃r , H̃r =
[N ]

N

N∑

i<j

V (zi, zj) Sr
[i,j] ,(1.20a)

now featuring long-range spin interactions where the interactions take place on the right,

Sr
[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj−1

zj−1

zj−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi

zi

zi

zi

zi

zi

zi−1

zi−1

z1

z1

· · · · · · .(1.20b)

Indeed, in §3.2.3 we will show that [Hl, Hr] = 0 is true by construction. In particular it makes
sense to define the full Hamiltonian of the q-deformed Haldane–Shastry spin chain as

(1.21) H full :=
1

2
(Hl + Hr) = evω H̃ full , H̃ full =

[N ]

2N

N∑

i<j

V (zi, zj)
(
Sl

[i,j] + Sr
[i,j]

)
.

As we will see in §1.2.3 it has real spectrum also when q ∈ S1.
To get some feeling for the q-deformed Hamiltonians let us investigate the boundary condi-

tions, focussing on Hl for definiteness. The q-deformation affects the periodicity of (1.1). One
might say that the deformed Hamiltonians are really defined on a strip rather than a circle.
The potential (1.13) is still periodic as it depends on the ratio zi/zj , i.e. on the distance i − j
in additive language. However, the long-range interactions (1.16) are certainly not periodic:
compare the highly non-local multispin operator Sl

[1,N ] with any genuine nearest-neighbour in-

teraction Sl
[i,i+1] = esp

i . Unlike for the Heisenberg xxz chain no particle ever really wraps around

the back of the chain. This periodicity breaking is required by the coproduct (§2.2.1) of the
nonabelian symmetries (§1.2.5), cf. [HS96]. As q → 1 the ‘wall’ between sites N and 1 becomes
transparent. For q → ∞ we instead get an open chain, as we will show soon (§1.2.2).

On the other hand the model is formally periodic:

Proposition 1.2. The q-deformed Haldane–Shastry is q-homogeneous: its abelian symmetries
include the (left) q-translation operator [Lam18]

(1.22) G := evω G̃ , G̃ := ŘN−1,N (z1/zN ) · · · Ř12(z1/z2) =

z2

z2 · · ·

· · · zN

zNz1

z1

z1

z1

z1

.

In [Lam18] it was conjectured that Hl is q-homogeneous. The stronger statement from Pro-
position 1.2 will be established in §3.2.3 (see Proposition 3.11). Observe that the Yang–Baxter
equation (§2.2.2) implies GN = 1, so G’s eigenvalues are of the form ei p, with q-momentum
p ∈ (2π/N)ZN quantised as usual for particles on a circle. In particular the (discrete) value
p cannot depend on q, which we can vary as we like. (The dependence on q is hidden in the
meaning of p, as eigenvalue of −i log G.) We will use this to compute p in the crystal limit
q → ∞ at the end of §1.2.2.
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zi

q zi

q≠1zi

zjq zj

q≠1zj

d≠

d+
zi

q zi

q≠1zi

zj

q zj

q≠1zj

d≠ d+

Figure 1. The potential (1.61.6) is a point splitting of the inverse square
in (1.11.1). Consider a little ‘dipole’ at each site, with length set by q≠q≠1.
Then evÊ V (zi, zj) = 1/d+ d≠, where d± are illustrated for q œ iR>1 (left)
and q œ R>1 (right). At q = 1 both d± reduce to the chord distance.

Finally, the operators S[i,j] in (1.51.5) deform the long-range exchange interactions of
(1.11.1). The deformation is accomplished via the spin-1/2 xxz (six-vertex) R-matrix

(1.7) Ř(u) :=

Q

cca

1 0 0 0
0 u g(u) f(u) 0
0 f(u) g(u) 0
0 0 0 1

R

ddb , f(u) := u ≠ 1
q u ≠ q≠1 , g(u) := q ≠ q≠1

q u ≠ q≠1 .

Here the 4◊4 matrix is with respect to the standard basis |øøÍ, |ø¿Í, |¿øÍ, |¿¿Í of C2 ¢C2.
The functions f and g can be recognised as the ratios b/a and c/a, respectively, of the
six-vertex model’s local weights. The properties of (1.71.7) will be reviewed in §2.2.22.2.2.

Note that the isotropic interactions can be decomposed into nearest-neighbour steps
consisting of transport, interaction, and transport back:

(1.8) 1 ≠ Pij = Pj≠1,j · · · Pi+1,i+2 (1 ≠ Pi,i+1) Pi+1,i+2 · · · Pj≠1,j .

The appropriate q-deformation has the same structure, cf. [HS96HS96]. It is perhaps most
clearly defined using graphical notation:

(1.9) S[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj

zj

zj

zj

zj

zj

zj≠1

zj≠1

zj≠1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi≠1

zi≠1

z1

z1

· · · · · · , i < j .

The little arrows at the top indicate that the diagrams are read from bottom to top (time
goes up). The coordinates, here in the role of inhomogeneity parameters, follow the lines
as indicated. The nearest-neighbour transport is accounted for by the R-matrix,

(1.10)
v

v

u

u

:= Ř(u/v) ,

The appropriate q-deformation has the same structure, cf. [HS96]. It is perhaps most clearly
defined using graphical notation:

(1.16) Sl
[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj

zj

zj

zj

zj

zj

zj−1

zj−1

zj−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi−1

zi−1

z1

z1

· · · · · · .

The little arrows at the top indicate that the diagrams are read from bottom to top (time
goes up). The coordinates, here in the role of inhomogeneity parameters, follow the lines as
indicated. The nearest-neighbour transport is accounted for by the R-matrix,

(1.17)

v

v

u

u

:= Ř(u/v) ,

while the nearest-neighbour exchange is deformed to the Temperley–Lieb generator 2

(1.18)

u

u

v

v

:= esp = −(q − q−1) Ř′(1) =





0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0



 .

This q-antisymmetriser (up to normalisation) is the local Hamiltonian of the quantum-sl2 in-
variant Heisenberg spin chain [PS90], see §2.2.3.

An example of the long-range spin interactions (1.16) is

(1.19)

Sl
[1,5] = Ř45(z5/z4) Ř34(z5/z3) Ř23(z5/z2)

× −(q − q−1) Ř′
12(1)

× Ř23(z2/z5) Ř34(z3/z5) Ř45(z4/z5) .

We stress that in the graphical notation the parameters follow the lines, but (unlike if one would
draw R = P Ř or Ř P ) the vector spaces do not, cf. the subscripts in (1.19). The notation ‘[i, j]’
as an interval in (1.16), which is borrowed from [HS96], reflects the fact that the intermediate
spins are affected by the transport via the R-matrix: the model involves multi-spin interactions
when q #= ±1. As a result the direct computation of the action of Hl on any vector is quite
complicated even for a single excited spin.

Remarks. i. If q ∈ R× the hermiticity of (1.18) is inherited by Hl [Lam18]. See the Corollary
on p. 11 for q ∈ S1. ii. The structure of Hl, with its multi-spin interactions, might be somewhat
involved, yet is precisely such that the key properties of (1.1) generalise to the q-case:

• it comes with a hierarchy of abelian symmetries (see below, §1.3.2 and Table 4 on p. 25),
• it has a large number of nonabelian symmetries (§1.2.5) and
• it admits an exact description of the exact energy spectrum (§1.2.3),
• including a closed-form expression for the (l-)highest weight vectors (§1.2.4).

iii. We’ll derive the formula for Hl in §3.2.1, as we will preview in §1.3.2. iv. Hl has a stochastic
version too: see §C.1. v. The Hamiltonian depends mildly on the sign of q: the eigenvalues of
Hl|q$→−q equal those of (−1)N Hl. We will prove this in §C.1, see (C.8).

2 Unlike the usual graphical notation for esp
i this does not represent the Temperley–Lieb relations (§2.2.1),

but it correctly accounts for the flow of inhomogeneity (spectral) parameters along the lines.
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Fermionic model with extended symmetry


where

S[j,j+1] =
1

2

⇣
�
x
j �

x
j+1 + �

y
j �

y
j+1

+��
z
j�

z
j+1 ��

⌘
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+

j �
�
j+1

+ �
�
j �

+

j+1
+

�

2

�
�
z
j�

z
j+1 � 1

�
. (1.2)

and we assume periodic boundary conditions, �a
j = �

a
j+N . A convenient parametrisation

for the spin isotropy is

� =
q + q

�1

2
. (1.3)

When q is real � � 1, while for q unimodular |q| = 1, �  1. The Hamiltonian density in
(1.1) is closely related to the generators of a Temperley-Lieb algebra,

ej = �S[j,j+1] �
q� q

�1

4
(�

z
j � �

z
j+1) , (1.4)

where the generator ej is q-anti-symmetriser on the sites j and j+1 satisfying the relations

e
2

j = (q + q
�1

) ej (1.5)

with matrix

ej =

0

BBBB@

0 0 0 0

0 q
�1 �1 0

0 �1 q 0

0 0 0 0

1

CCCCA
. (1.6)

Write down the other relations of TL generators. Upon summation, in the periodic case
the last term in (1.4) cancel such that the Hamiltonian becomes

HXXZ = �
NX

j=1

ej . (1.7)

Since the Temperley-Lieb generators belong to the centraliser of the Uq(sl2) algebra, for the
open case the Hamiltonian

H
open

XXZ
= �

N�1X

j=1

ej =

N�1X

j=1

S[j,j+1] +
q� q

�1

4
(�

z
1 � �

z
N ) . (1.8)

has quantum group symmetry [1].
The structure of the underlying quantum group Uq(sl2) at q root of unity is special,

and the case q = i is one of the simplest and most fascinating example of solvable model
in this class. In this particular case � = 0 and the periodic model is equivalent to free
fermions via the Jordan-Wigner transformation,

HXX =

NX

j=1

⇣
�
+

j+1
�
�
j + �

+

j �
�
j+1

⌘
=

NX

j=1

⇣
c
+

j cj+1 + c
+

j+1
cj

⌘
(1.9)

– 2 –

CHAPTER 3. TEMPERLEY-LIEB, VIRASORO, KOO-SALEUR

, ,

Figure 3.1: Three examples of a�ne diagrams for N = 4, with the left and right sides of the
framing rectangle identified. The first diagram represents e4, the second e2e4, and expressing
the last one is left as an exercise.

generators in terms of Temperley-Lieb generators introduced by Koo and Saleur in [17].

3.1 The Temperley-Lieb algebra in the periodic case

3.1.1 The algebra T
a

N
(m)

A basis for a�ne Temperley-Lieb algebra T
a
N is provided by particular diagrams, called a�ne

diagrams, drawn on an annulus with N sites on the inner and N on the outer boundary (we
henceforth assume N even), such that the sites are pairwise connected by simple curves inside
the annulus that do not cross. Some examples of a�ne diagrams are shown in Fig. 3.1; for
convenience we have here cut the annulus and transformed it into a rectangle, which we call
framing, with the sites labeled from left to right and periodic boundary conditions across.

We define a through-line as a simple curve connecting a site on the inner and a site on the
outer boundary of the annulus. Let the number of through-lines be 2j, and call the 2j sites on
the inner boundary attached to a through-line free or non-contractible. The inner (resp. outer)
boundary of the annulus corresponds to the bottom (resp. top) side of the framing rectangle.

The multiplication of two a�ne diagrams, a and b, is defined by joining the inner boundary
of the annulus containing a to the outer boundary of the annulus containing b, and removing
the interior sites. In other words, the product ab is obtained by joining the bottom side of
a’s framing rectangle to the top side of b’s framing rectangle, and removing the corresponding
joined sites. Any closed contractible loop formed in this process is replaced by its corresponding
weight m.

In abstract terms, the algebra Ta
N is generated by the ej’s together with the identity, subject

to the well-known Temperley-Lieb relations [58]

e2j = mej , (3.1.1a)

ejej±1ej = ej , (3.1.1b)

ejek = ekej (for j 6= k, k ± 1) , (3.1.1c)

where j = 1, . . . , N and the indices are interpreted modulo N . In addition, Ta
N contains the

elements u and u�1 generating translations by one site to the right and to the left, respectively.
They obey the following additional defining relations

ueju
�1 = ej+1 , (3.1.2a)

u2eN�1 = e1 · · · eN�1 , (3.1.2b)

and we note that u±N is a central element. The a�ne Temperley–Lieb algebra T
a
N is then

defined abstractly as the algebra generated by the ei and u±1 together with these relations.
We shall parametrize the loop weight as m = q+ q�1, with q the deformation parameter of

the quantum group Uqsl(2). Uqsl(2) that will be introduced in Section 3.4.
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• the model is formulated in terms of the generators of the Temperley-Lieb algebra : 

3 The long range spin chain

An integrable long-range version of the XXZ spin chain was proposed in [3] and studied
further in [4–6]. Its Hamiltonian can be written as

H
L

qHS =
[N ]

N

X

1i<jN
Vij S

L

[i,j] (3.1)

where the translationally invariant potential Vij is given by

Vij =
zizj

(qzi � q�1zj)(qzj � q�1zi)
, zj = !

j
, [N ] =

q
N � q

�N

q� q�1
, (3.2)

and

S
L

[i,j] =

  Y
i<k<j

Řk,k+1(zj/zk)

!
ei

 !Y
i<k<j

Řk,k+1(zk/zj)

!
, i < j , (3.3)

with

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

qu� q�1
. (3.4)

The relation

f(u) + f(u
�1

) = (q + q
�1

)f(u)f(u
�1

) (3.5)

together with the Temperley-Lieb relation (1.5) insures that Řk,k+1(u) Řk,k+1(u
�1

) = 1.
The interaction (3.3) is not symmetric by parity, i.e. by sending i ! N � i, instead

there exists another Hamiltonian

H
R

qHS =
[N ]

N

X

1i<jN
Vij S

R

[i,j] (3.6)

with

S
R

[i,j] =

 !Y
ik<j�1

Řk,k+1(zk/zi)

!
ej�1

  Y
ik<j�1

Řk,k+1(zi/zk)

!
, i < j , (3.7)

such that the two Hamiltonians commute,

[H
L

qHS,H
R

qHS] = 0 , (3.8)

and a parity invariant Hamiltonian can be defined by the half-sum of the two operators,

HqHS =
1

2

�
H

L

qHS +H
R

qHS

�
. (3.9)

– 5 –

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[ eHL, eHR] = 0

H =
1

2
( eHL + eHR)

f(u�1) = �f(u)

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}
[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

Kij zi = zj Kij , (110)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(111)

 ! 1
�i,j+1 + �i,j�1

 ! 0

HB,F =
NX

j=1

(zj@j)
2 +

X

j 6=k

�(� ⌥ Pjk)
zjzk

(zj � zk)(zk � zj)

34

• at q=i we have             and                                            great simplification  

B(u1) . . . B(uM 0) |k1, k2, . . . , kNi

B(u1) . . . B(uM 0) |k1, k2, . . . , kNiM

|k1, k2, . . . , kNiM =
X

i1<i2<...<lM

Y

m<n

(zim � zin)
2 P �

� (zi1 , . . . , ziM ) |i1, i2, . . . , iMii

t3 =
1

2

X

i<j<k

[Pij Pjk + Pjk Pij]

+
i

2

X

i<j<k


cot

✓
⇡(i� j)

N

◆
+ cot

✓
⇡(j � k)

N

◆
+ cot

✓
⇡(k � i)

N

◆�
(Pij Pjk � Pjk Pij) , ,

 ! 0,1

 = 1

e2j = 0
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Abstract

I. INTRODUCTION

II. THE HAMILTONIAN

The model we are proposing is defined on a one-
dimensional lattice of size N . In this paper we will con-
sider mainly the case when N is odd, N = 2L + 1, the
even site case having radically di�erent properties will be
studied elsewhere. The simplest definition can be given
in terms of fermions with anti-commutation relations

{f
+
j , fk} = (≠1)j

”jk , (1)

which are intrinsically non-unitary. It is technically and
conceptually useful to introduce two other types of ob-
jects. The first is the two-site fermionic operator

gj = fj + fj+1 , g
+
j = f

+
j + f

+
j+1 . (2)

The other object is quadratic in the two-site operator

ej = g
+
j gj , j = 1, . . . , N ≠ 1 (3)

representing the generators of the Temperley-Lieb (TL)
algebra for q = i, with e

2
j = 0, ejej±1ej = ej and

ejek = ekej if |k ≠ j| > 1. With the further notation
for the nested TL commutators I have slightly changed
the definition of the nested comm compared to iHS; I
think it’s simpler

e[j,j+m] © [[· · · [ej , ej+1], · · · ], ej+m] (4)
= (≠1)(m≠1)j+m(m≠1)/2 !

g
+
j+m gj + (≠1)m

g
+
j gj+m

"
,

with e[j,j] © ej . with these conventions, meaning of sub-
script [i, j] di�erent from one we use for qHS; potentially
confusing? (I’d prefer e[j,j+1] = ej)minor change, we can
decide later, but it’s shorter to write! The Hamiltonian
we consider is defined by not sure about the i; it makes
the ham real but H̃ will be naturally imaginary; also nor-
malisation to check with blue prefactor it matches H

l|q=i
(but I think we should normalise s.t. simple spectrum) I
prefer the simple spectrum, not yet written

Hl = i
4

ÿ

1Æp<q<N

h
l
p,q e[p,q] , (5)

h
l
p,q =

N≠qÿ

k=1
(tq≠p,0(k) ≠ (≠1)p

tq≠p,p(k)) ,

tp,q(n) =
p≠1Ÿ

i=0
tan fi(n + i)

N

p+q≠1Ÿ

j=p

tan2 fi(n + j)
N

.

I think the q is bound to be confusing sooner or later.
will change the summation indices; range corrected Al-
though the above Hamiltonian seems hopelessly compli-
cated given the expression of the hopping amplitudes
h

l
p,q, it is after all just a long-range hopping Hamiltonian

and as such it should be easily diagonalisable. The main
hurdle is that the interaction is not translationally in-
variant and the one-particle energies cannot be obtained
by Fourier transforming the hopping amplitudes. Let us
mention that the present model is a long-range generali-
sation of the XXZ model at � = 0, which can be diago-
nalised by the Jordan-Wigner transformation. However,
it is closer to the open chain with imaginary boundary
field which is known to possess quantum group symme-
try. We are going to be back to this point in the section
III.

The Hamiltonian (5) is integrable, and this means
there exists a set of higher conserved charges commut-
ing with it. In this case, we can explicitly write does the
next conserved charge, H̃ with [H̃, Hl] = 0. It can be
again written in terms of nested commutators and one
anti-commutator of TL generators,

e[k,l;m,n] = [ek, . . . , {el, [em, . . . , [en≠1, en] . . .} . . .]
= {e[k,l], e[m,n]} = (≠1)n+k≠m≠l

e[n,m;l,k] , (6)

with the indices ordered as k Ø l > m Ø n. Since
the anti-commutator of distant TL generators is non-
vanishing, the integers l and m do not have to be succes-
sive. This expression is quartic in the fermions. In these
terms normalisation? for those (= most) terms that work
out right now, the normalisation seems to be

H̃ = (≠1)(N+1)/2

16 N

N≠1ÿ

i=1

N≠iÿ

k=1
(1 + t0,1(k))

1
S̃l

[i,i+k] + S̃r
[i,i+k]

2

(7)

with
qN≠2

i=1
qN≠i

k=2 su�ces I think my limits are correct

S̃l
[i,i+k] =

ÿ

0ÆjÆl<mÆn<k

(≠1)n≠1
tn≠m,m≠l;l≠j,j(k ≠ n)

◊ e[i+n,i+m;i+l,i+j] ,

(8)

e[i+m,i+n;i+j,i+l]? and

S̃r
[i,i+k] =

ÿ

0ÆjÆl<mÆn<k

(≠1)k≠j
tl≠j,m≠l;n≠m,k≠n≠1(j + 1)

◊ e[i+j,i+l;i+m,i+n] , (9)

•  non-unitary fermions

|{n}i =
NX

k=1

!nk  +

k |0i

|{n1, n2}i =
NX

k1<k2

Pn1,n2(!
k1 ,!k2)  +

k2
 +

k1
|0i

V (zi, zj) =
zizj

(zi � zj)2
= � 4

sin2 ⇡(i� j)/N

q 6= 1

ek = (f+

k + f+

k+1
)(fk + fk+1)
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•  the interaction can be expressed in terms of nested commutators of TL generators, 
which are quadratic in fermions

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[ eHL, eHR] = 0

H =
1

2
( eHL + eHR)

f(u�1) = �f(u)

e[l,m+1] := [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em]

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

Kij zi = zj Kij , (110)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(111)

 ! 1

�i,j+1 + �i,j�1

 ! 0

34

Jacobi identity and TL algebra



Hl =
i

4

X

1p<q<N

hl
p,q e[p,q+1] = �Hr (131) Ham

hl
p,q =

N�qX

k=1

(tq�p,0(k)� (�1)ptq�p,p(k)) ,

tp,q(n) =
p�1Y

i=0

tan
⇡(n+ i)

N

p+q�1Y

j=p

tan2
⇡(n+ j)

N
.

"l(n) = �"r(n) =

(
�n , n = 2k

N � n , n = 2k + 1
. (132)
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The spectrum of the two left and right Hamiltonian is given in terms of a collection of
M = bN/2c integers µ1, . . . , µM with N � 1 � µ1 > . . . > µM � 1 and two consecutive
such integers are separated by a distance of at least two units, µk+1 > µk + 1,

"
L,R

(µ) =

MX

m=1

✏
L,R

(µm) (3.10)

with

"
L
(n) =

1

q� q�1

⇣
q
N�n

[n]� n

N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,

"(n) =
1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)

3.1 The long range spin chain at q = i

The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case

[2k] = 0 and [2k + 1] = (�1)
k
. (3.13)

The cases of even and odd length, N = 2L or N = 2L + 1 are qualitatively different and
will be treated separately.

3.1.1 Even length N = 2L

In the case of even length, the matrix elements contain divergences. This is in particular
the case of the potential for site situated on opposite sites of the unit circle

Vj,j+L =
1

(q + q�1)2
, (3.14)

so that it contains a double pole when q ! i. Other potential divergences may occur from
the expressions (3.3) and (3.7) since

f(!
L
) = f(�1) =

2

q + q�1
. (3.15)

3.1.2 Odd length N = 2L+ 1

In the case of the odd length none of the above divergences occur and all the matrix elements
of the Hamiltonian are finite. In this case, the total energy "(µ) is always zero because either
[n] of [N � n] is zero. However, the left/right energies are not individually vanishing and
moreover they are purely imaginary and linear with the mode number n,

"
L
(n) = �"

R
(n) =

(�1)
L

2i

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.16)
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:• the total Hamiltonian is zero for odd number of sites

For higher sizes, the identities we have to check are more and more complicated. In
general, the total Hamiltonian is given by

H =
(�1)

L+1

8N

N�1X

j=1

N�jX

k=1

k�1X

l=0

k�1X

m=l

�
↵

l
k,l,m + ↵

r
k,l,m

�
e[j+l,j+m+1] , (3.42)

with

↵
l
k,l,m = (�1)

l
(1 + f

2
(!

k
))fm�l,l (!

k�m
) = (�1)

l
⇣
fm�l,l (!

k�m
) + fm�l,l+1 (!

k�m
)

⌘
,

↵
r
k,l,m = (�1)

k�l�1

⇣
fm�l,k�m�1 (!

l+1
) + fm�l,k�m (!

l+1
)

⌘
. (3.43)

The next step is to identify the coefficients of the generators e[p,q+1] in the total Hamiltonian,
for any integers p and q such that 1  p  q < N , by keeping track of the contribution
from the left and right Hamiltonians,

H =

X

1pq<N

�
h
l
p,q + h

r
p,q

�
e[p,q+1] , (3.44)

with

h
l,r
p,q =

pX

j=1

NX

k=q+1

↵
l,r
k�j,p�j,q�j (3.45)

A How to prove (3.35) and (3.35)

For the proof of (3.35) and (3.35) we introduce the slight generalisations

S
l
[i,j];n ⌘

 
(Y

j>k>i

Řk,k+1

�
!
n�k
�
!
ei

 
*Y

i<k<j

Řk,k+1

�
!
k�n
�
!
, i < j , (A.1)

and

S
r
[i,j];n =

 
(Y

j>k>i

Řk�1,k(!
k�n

)

!
ej�1

 
*Y

i<k<j

Řk�1,k(!
n�k

)

!
, i < j , (A.2)

so that

S
l
[i,j] = S

l
[i,j];j and S

r
[i,j] = S

r
[i,j];i . (A.3)

These operators obey the recursion relations

S
l
[i,j+1];n =

�
1� f(!

n�j
) ej
�
S
l
[i,j];n

�
1 + f(!

n�j
) ej
�
,

S
r
[i,j];n =

�
1� f(!

i�n
) ei
�
S
r
[i+1,j];n

�
1 + f(!

i�n
) ei
�
.

(A.4)

Given this structure, let us show that S
l
[i,j];n and S

r
[i,j];n is a linear combination of nested

commutators of Temperley–Lieb generators. We will use induction, starting with

S
l
[i,i+1];n = S

r
[i,i+1];n = ei . (A.5)
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For higher sizes, the identities we have to check are more and more complicated. In
general, the total Hamiltonian is given by

H =
(�1)

L+1

8N

N�1X

j=1

N�jX

k=1

k�1X

l=0

k�1X

m=l

�
↵

l
k,l,m + ↵

r
k,l,m

�
e[j+l,j+m+1] , (3.42)

with

↵
l
k,l,m = (�1)

l
(1 + f

2
(!

k
))fm�l,l (!

k�m
) = (�1)

l
⇣
fm�l,l (!

k�m
) + fm�l,l+1 (!

k�m
)

⌘
,

↵
r
k,l,m = (�1)

k�l�1

⇣
fm�l,k�m�1 (!

l+1
) + fm�l,k�m (!

l+1
)

⌘
. (3.43)

The next step is to identify the coefficients of the generators e[p,q+1] in the total Hamiltonian,
for any integers p and q such that 1  p  q < N , by keeping track of the contribution
from the left and right Hamiltonians,

H =

X

1pq<N

�
h
l
p,q + h

r
p,q

�
e[p,q+1] , (3.44)

with

h
l,r
p,q =

pX

j=1

NX

k=q+1

↵
l,r
k�j,p�j,q�j (3.45)

h
l
p,q = �h

r
p,q , 1  p  q < N (3.46)

A How to prove (3.34) and (3.34)

For the proof of (3.34) and (3.34) we introduce the slight generalisations

S
l
[i,j];n ⌘

 
(Y

j>k>i

Řk,k+1

�
!
n�k
�
!
ei

 
*Y

i<k<j

Řk,k+1

�
!
k�n
�
!
, i < j , (A.1)

and

S
r
[i,j];n =

 
(Y

j>k>i

Řk�1,k(!
k�n

)

!
ej�1

 
*Y

i<k<j

Řk�1,k(!
n�k

)

!
, i < j , (A.2)

so that

S
l
[i,j] = S

l
[i,j];j and S

r
[i,j] = S

r
[i,j];i . (A.3)

These operators obey the recursion relations

S
l
[i,j+1];n =

�
1� f(!

n�j
) ej
�
S
l
[i,j];n

�
1 + f(!

n�j
) ej
�
,

S
r
[i,j];n =

�
1� f(!

i�n
) ei
�
S
r
[i+1,j];n

�
1 + f(!

i�n
) ei
�
.

(A.4)
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explicit but tedious expressions/proof Hl =
i

4

X

1p<q<N

hl
p,q e[p,q+1] = �Hr (131) Ham

hl
p,q =

N�qX

k=1

(tq�p,0(k)� (�1)ptq�p,p(k)) ,

tp,q(n) =
p�1Y

i=0

tan
⇡(n+ i)

N

p+q�1Y

j=p

tan2
⇡(n+ j)

N
.
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Hl =
i

4

X

1p<q<N

hl
p,q e[p,q+1] = �Hr (131) Ham

hl
p,q =

N�qX

k=1

(tq�p,0(k)� (�1)ptq�p,p(k)) ,

tp,q(n) =
p�1Y

i=0

tan
⇡(n+ i)

N

p+q�1Y

j=p

tan2
⇡(n+ j)

N
.
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with

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[eHL, eHR] = 0

H =
1

2
(eHL + eHR)

f(u�1) = �f(u)

e[l,m+1] := [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em]

eH := lim
q!i

H

q + q�1

[eH, eHR] = �[eH, eHL] = 0

2H =
1

q + q�1
e1

2H(q + q�1) = e1

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)
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Fermionic model with extended symmetry


• free fermionic long-range Hamiltonian, not translationally invariant 



Fermionic model with extended symmetry


10 20 30 40

-20

-15

-10

-5A finite total energy can be defined if we rescale the spectrum by q + q
�1,

"̃(n) = lim
q!i

"(n)

q + q�1
= (�1)

L�1

8
<

:

n
2
, n = 2k

N�n
2

, n = 2k + 1

. (3.17)

The Hamiltonian becomes

Vj�k ⌘ Vjk = � 1

4 cos2 ⇡(j � k)/N
(3.18)

and

f(!
j
) = �f(!

�j
) = tan⇡j/N , (3.19)

so that

�4Vk = 1 + f
2
(!

k
) . (3.20)

Remark that, unlike for n even, for odd N these functions are never divergent for integer
values of j, k at exactly q = i. In order to simplify the expression for the spin interaction
operators S

L

[i,j] and S
R

[i,j] we define first a slight generalisation

S
L

[i,j;n] =

  Y
i<k<j

Řk,k+1(zn/zk)

!
ei

 !Y
i<k<j

Řk,k+1(zk/zn)

!
, i < j , (3.21)

and

S
R

[i,j;n] =

 !Y
ik<j�1

Řk,k+1(zk/zn)

!
ej�1

  Y
ik<j�1

Řk,k+1(zn/zk)

!
, i < j ,

(3.22)

so that

S
L

[i,j] = S
L

[i,j;j] and S
R

[i,j] = S
R

[i,j;i] . (3.23)

The two expressions defined above obey the recursion relations

S
L

[i,j+1;n] = (1� f(!
n�j

) ej) S
L

[i,j;n] (1 + f(!
n�j

) ej) ,

S
R

[i,j;n] = (1� f(!
i�n

) ei) S
R

[i+1,j;n] (1 + f(!
i�n

) ei) . (3.24)

Given this structure, we can show that S
L

[i,j;n] and S
R

[i,j;n] contain:

• terms proportional to ek with k = i, . . . , j � 1.

• nested commutators of successive generators [el, [el+1, . . . [em�1, em] . . .]] =

[[. . . [el, el+1], . . . em�1], em] ⌘ e[l,m+1] with i  l < m < j. Since the Temperley-Lieb
generators commute except if they are succesive, the order of commutators does not
matter. This property can be proved by induction using the Jacobi identity, and it
also implies that the nested commutators vanish if any ek with l  k  m is missing
from the string. The previous term can be included as e[k,k+1] ⌘ ek.

– 7 –

• result for the one-magnon dispersion relation:

Hl =
i

4

X

1p<q<N

hl
p,q e[p,q+1] = �Hr (131) Ham

hl
p,q =

N�qX

k=1

(tq�p,0(k)� (�1)ptq�p,p(k)) ,

hr
p,q =

pX

j=1

�
(�1)q�ptq�p,0(p� j)� (�1)N�ptq�p,p(k � q)

�

tp,q(n) =
p�1Y

i=0

tan
⇡(n+ i)

N

p+q�1Y

j=p

tan2
⇡(n+ j)

N
. (132)

"l(n) = �"r(n) =

(
�n , n = 2k

N � n , n = 2k + 1
. (133)

eH =
X

kl<mn

hk,l;m,n {e[k,l+1], e[m,n+1]} (134)

N = 5

References
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anti-commutators of nested commutators 
of TL generators, quartic in fermions

• Another conserved Hamiltonian for the odd number of sites, non-chiral:

• For even number of sites N=2L all the energies are zero but there are Jordan blocks of size 
up to L+1  



Conclusion


• Long range models show rich mathematical structure and they offer useful lattice 
regularisations of various field theories


• The use of integrability and symmetries allows to obtain non-perturbative results on 
a host of physical problems 


• The richer the integrable deformations the more useful and flexible they are, hence 
the necessity of expanding our pool of integrable models and of tools to constrain 
and solve them



