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• The SAW problem

• In modern parlance taking the limit N ! 1 is like following an RG flow from an unstable to a stable fixed
point

• DeGennes identified the problem with the limit n ! 0 of the O(n) (vector) Landau-Ginzburg universality
class

hR2i ⇠ N
2⌫

is in fact quite generic: Brownian walks with even very small repulsive interactions look like SAWs at
large distances

The physics is non-perturbative: in 2D ⌫ = 3
4

and can be described generally in the language of criticality
and phase transitions

(DeGennes, Duplantier Descloizeaux)

This can be understood using a simple lattice model (A✏eck, Nienhuis, Schwimmer)
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• Conformal loop ensembles or loop soups are connected with many other physics problems:

– Polymers at interfaces

– General Quantum Field Theory (Brydges, Fröhlich, Spencer, Sokal)

– Plateau transitions in the (2+1 D) integer quantum Hall e↵ect (class A, class C) (Chalker Coddington,
Gruzberg, Ludwig, Read)

– Properties of interfaces in classical spin systems

– Properties of (generalizations of) toric codes in topological quantum computation (Kitaev, Freedman,
Nayak, Wang)

• They have become central to modern probability theory (Werner, Smirnov, Dominil-Copin)

• Their study reveals an astonishing depth from a mathematical physics point of view as well

• Loops and clusters are related (Potts model)
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n-component vectors ~Si with O(n) symmetric
~Si.

~Sj couplings
Conformal loop ensembles or loop soups

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

• This suggests there might also be an interesting low temperature phase

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT, symmetry properties and phase diagrams remains challenging

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

• Only properties like the central charge and (some) critical exponents have

been known for a long time. E.g. (Dotsenko Fateev):

n 2 [�2, 2];n = 2 cos
⇡

x
, x 2 [1,1)

c = 1� 6

x(x+ 1)
2 [�2, 1]

In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

• The O(n) symmetry is global, not LR factorized so this is not a WZW model

• The symmetry is however enhanced (to a non-invertible topological symmetry)

1

Figure 1.2: Illustration of loops (red) formed from bonds on the honeycomb lattice (left)

and on the square lattice (right).

Next, we compute the the spin configuration sum over each term, and we find

X

{✏}

(✏i1✏i2)(✏i3✏i4) . . . (✏i2m�1✏i2m) =

8
>><

>>:

2N2
if {⇥} consists of only loops

0 otherwise

(1.11)

for the following reason. If the bonds in {⇥} do not form only loops, then the sum

will have the same number of +1 terms as �1 terms as a result of the ± symmetry, so

it equals zero. However, if the bonds in {⇥} form a loop (figure 1.2), then the indices

of the spins may be arranged so that ✏i2 = ✏i3 , ✏i4 = ✏i5 , etc., and ✏i2m = ✏i1 . With

this rearrangement, we see that each term in the sum is one, so with |{✏}| = 2N2

terms, we arrive with (1.11). Similar reasoning leads to the same result when the

collection of bonds {⇥} consists of several non-crossing loops. Therefore we can write

the partition function as

ZO(1)(K) = 2N2
cosh2N2

(K/2)
X

{⇤}

x�, x := tanh(K/2), (1.12)

where {⇤} is the collection of non-crossing loops, � is the total number of bonds that

comprise the loops of {⇤}, and the sum is taken over all collections of non-crossing

loops. This is the high-temperature expansion of the Ising model, so called because it

is a power series in x centered at zero, or equivalently, in the temperature centered

at infinity.

We momentarily digress to exploit the self-duality of the square lattice in order

12

|n⇤
| ⇡ 0.6180

A(5/2,2/5)N

leading to a finite four-point function with more logarithmic terms

2D CFTs with continuous symmetries are usually described by
Wess Zumino Witten (WZW) models

Charges Qa give rise to a pair of chiral and antichiral local currents Ja, J̄a

with Kac-Moody algebra commutations

⇥
Ja
n , J

b
m

⇤
= fab

c Jc +
1

2
kn�ab�m+n

where k is a (usually quantized) anomaly (level)

These theories are fully solvable, but not very relevant to condensed matter physics

where one typically wants instead continuations such as O(n), n ! 0 etc

(of courses WZW models on supergroups can also be studied such as OSp(2, 2),
but these are not particularly relevant either)

O(n) Landau-Ginzburg model in 2D
escapes the Mermin-Wagner theorem
:
has second-order phase transition for n < 2

Alternatively the NL�M
flows to weak coupling for n < 2
and admits a critical point

�(g2�) = (n� 2)g4� +O(g6�)

No “top-down” strategy (it is not a WZW!) - hence:

This means that a few four-point functions can still be determined using the BPZ strategy

But not these are the exception, not the rule

• We’ll use the bootstrap approach
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– Plateau transitions in the (2+1 D) integer quantum Hall e↵ect (class A, class C) (Chalker Coddington,

Gruzberg, Ludwig, Read)

– Properties of interfaces in classical spin systems

– Properties of (generalizations of) toric codes in topological quantum computation (Kitaev, Freedman,

Nayak, Wang)

• They have become central to modern probability theory (Werner, Smirnov, Dominil-Copin)

• Their study reveals an astonishing depth from a mathematical physics point of view as well

hR2i ⇠ N
2⌫

is in fact quite generic: Brownian walks with even very small repulsive interactions look like SAWs at

large distances

The physics is non-perturbative: in 2D ⌫ =
3
4

and can be described generally in the language of criticality

and phase transitions

(DeGennes, Duplantier Descloizeaux)

This can be understood using a simple lattice model (A✏eck, Nienhuis, Schwimmer)

giving rise to the loop soups

Z =

X

dilute loop gas

K
B
n
L

critical at K = Kc

General Quantum Field Theory (Brydges, Fröhlich, Spencer, Sokal)
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In what follows the length of the walk is usually thought of as the number of steps in

a discretized version. Because of the logarithmic dependence on l the various possible

definitions of l, all proportional to each other, are equivalent. This of course is compatible

with angles being dimensionless.

The law (1.1) is substantially modified when a cutoff is introduced so that the walk

cannot get arbitrarily close to O. One finds then [2]

P

[

x =
2θ

ln l

]

=
π

4

1

[coshπx/2]2
, l → ∞. (1.2)

The standards methods of approach to these problems are based on diffusion equations,

functional integrals or refined probability theory [3][4] [5].

More recently the same problem has been considered for self avoiding walks (SAW). By

applying methods derived from Coulomb Gas representations and conformal field theory

, the equivalent of (1.1) or (1.2) (for SAW there is no difference between the two cases as

the walk provides a natural UV cutoff, see figure 1) was determined [6]

P

[

x =
θ

(4 ln l)1/2

]

=
e−x2

√
π
, l → ∞. (1.3)

The purpose of this note is to study the relation between (1.2) , (1.1) and (1.3)

further, and to compute a related distribution for SAW that will also depend on the

variable θ/ log l. The analysis uses corner transfer matrix ideas and conformal field theory.

It can be considered as a follow up of [6] .

Indeed, the most striking difference between the Brownian and self avoiding cases

lies in the variable that is either θ/ log l or θ/(log l)1/2. The intuitive explanation of this

difference is that the distribution in the self avoiding case is mainly determined by the

excluded volume of the walk already wound around O (figure 1), while in the brownian

case, there is no such effect, and the distribution is determined fully by the entropy loss that

arises from the constraint of winding . To suppress this major difference and concentrate

on curvature related entropy we simply put the SAW on the multi sheeted Riemann surface

for the function ln z, discretized if necessary. For a walk of length l we define the probability

of winding angle θ by the relative number of configurations that sweep a total angle θ,

and for |θ| > 2π have end points on different sheets. It is important to realize that this

problem would be identical to the usual winding angle problem for the brownian case

(since there is no interaction between different parts of the walk one can just collapse the

staircase onto the plane).

To determine the probability distribution we can proceed in two ways.
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Figure 1.2: Illustration of loops (red) formed from bonds on the honeycomb lattice (left)

and on the square lattice (right).

Next, we compute the the spin configuration sum over each term, and we find

X

{✏}

(✏i1✏i2)(✏i3✏i4) . . . (✏i2m�1✏i2m) =

8
>><

>>:

2N2
if {⇥} consists of only loops

0 otherwise

(1.11)

for the following reason. If the bonds in {⇥} do not form only loops, then the sum

will have the same number of +1 terms as �1 terms as a result of the ± symmetry, so

it equals zero. However, if the bonds in {⇥} form a loop (figure 1.2), then the indices

of the spins may be arranged so that ✏i2 = ✏i3 , ✏i4 = ✏i5 , etc., and ✏i2m = ✏i1 . With

this rearrangement, we see that each term in the sum is one, so with |{✏}| = 2N2

terms, we arrive with (1.11). Similar reasoning leads to the same result when the

collection of bonds {⇥} consists of several non-crossing loops. Therefore we can write

the partition function as

ZO(1)(K) = 2N2
cosh2N2

(K/2)
X

{⇤}

x�, x := tanh(K/2), (1.12)

where {⇤} is the collection of non-crossing loops, � is the total number of bonds that

comprise the loops of {⇤}, and the sum is taken over all collections of non-crossing

loops. This is the high-temperature expansion of the Ising model, so called because it

is a power series in x centered at zero, or equivalently, in the temperature centered

at infinity.

We momentarily digress to exploit the self-duality of the square lattice in order
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A summary, with references and additional comments, of a talk delivered at the Second
International Workshop on Pseudohermitian Hamiltonians in Quantum Physics (Prague,
14–16 June 2004). After explaining some general features of nonhermitian degeneracies
(‘exceptional points’), several applications are outlined: to multiple reflections in a pile of
plates, linewidths of unstable lasers, atom diffraction by light, and crystal optics.

PACS : 03.65.Yz
Key words: matrices, degeneracies, quantum

1 Introduction

Nonhermitian hamiltonians usually enter physics as a description of part of a
system, as a result of a decision not to incorporate all freedoms — for example
those describing dissipation. Examples are complex refractive indices in optics, and
complex potentials describing the scattering of electrons or X-rays, or by nuclei
(‘cloudy crystal ball’). Traditionally, the nonhermiticity has been regarded as a
perturbation, with the physics essentially unchanged from the hermitian case, ex-
cept for an exponential decay (for example during propagation through a crystal).
But nonhermitian physics differs radically from hermitian physics in the presence
of degeneracies, that is coalescences of eigenvalues. My aim here is to illustrate this
essentially nonhermitian behaviour with a series of examples, drawn from several
areas of physics, that I have encountered over the past decade (Sections 3–7), after
some general remarks (Section 2).

Professor Dieter Heiss and his colleagues have arrived at similar insights, and
this paper can be regarded as complementary to his [1]. A minor difference, of no
physical consequence, is that Heiss uses the term ‘exceptional points’, introduced
in an authoritative work by Kato [2] to denote what I call nonhermitian degen-
eracies. My opinion is that the term degeneracy is appropriate because it is well
established in mathematics as a label for any type of coalescence. Its applicability
to the nonhermitian case is further strengthened by the observation that here it is
not only the eigenvalues but also the eigenvectors that coalesce.

The examples I will give reflect my interests, so there is no attempt to be
comprehensive. And since all the work has been published already, I restrict myself
to a brief description of each case.

∗) Presented at the Second International Workshop on Pseudohermitian Hamiltonians in Quan-
tum Physics, Prague, Czech Republic, 14–16 June, 2004.
∗∗) http://www.physics.bristol.ac.uk/staff/berry mv.html
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di�cult can O(n) be since O(1) (Ising) is so “easy”?

• And indeed progress in this area was initially very fast, at least on the physics side

– Fractal dimension of the hull of percolating cluster Df = 7
4

(Duplantier Saleur 1987)

– Probability distribution of SAW winding angle

(Duplantier Saleur 1988)

• Then the field branched into two directions

• So why is it so di�cult to solve the loop models CFT?

– The geometrical definition is obviously non-local

– The non-locality can be avoided by introducing complex Boltzmann weights

Quantum gravity, KPZ (Knzihnik, Polyakov
and Zamolodchikov)
and SLE (Schramm Loewner)
(Duplantier, Kostov, Bauer, Bernard, David. . . )

Loop models as a genuine CFT

(Jacobsen, Ribault, HS)
(Dubail, Ikhlef, Grans-Samuelsson, Nivesvivat. Vasseur. . . )
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The correspondence 2D stat. mech. with 1+1D quantum field theory still holds but

Typically, the quantum processes have probabilities pi > or < 0 (but
P

pi = 1)

Orient loops and sum over orientations

• What happens when we lose unitarity?

– Most approaches are algebraic and thus rely on representation theory

which in this context becomes non semi-simple when unitarity is lost

Modules are not fully reducible. In terms of simple sub-modules they can take any shape

– Not only can norm-squares be negative, but zero norm-square states can be non-zero

(In fact, for SAW, all the physics is in the sector zero-norm square sector, and c = 0)

No BPZ equations
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Figure 5: Module structure over V(2) = V(2) ! V(2) for the vacuum sector H
+
0 (with zero s!(2)-

isospin) on the left diagram while the right one is for the doublet-sector H
−
1/2. Each node with a

coordinate (n̄, n′) is a simple subquotient over V(2) with the conformal weight (∆n′,1, ∆̄n,1). Vertical

arrows represent the action of the left Virasoro V(2) and horizontal arrows of the right Virasoro V(2).
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• The SAW problem
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point
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– General Quantum Field Theory (Brydges, Fröhlich, Spencer, Sokal)

– Plateau transitions in the (2+1 D) integer quantum Hall e↵ect (class A, class C) (Chalker Coddington,
Gruzberg, Ludwig, Read)

– Properties of interfaces in classical spin systems

– Properties of (generalizations of) toric codes in topological quantum computation (Kitaev, Freedman,
Nayak, Wang)

• They have become central to modern probability theory (Werner, Smirnov, Dominil-Copin)

• Their study reveals an astonishing depth from a mathematical physics point of view as well

• Loops and clusters are related (Potts model)

Q = n
2, Q = 1 is percolation

hR2i ⇠ N
2⌫

is in fact quite generic: Brownian walks with even very small repulsive interactions look like SAWs at
large distances

The physics is non-perturbative: in 2D ⌫ = 3
4

and can be described generally in the language of criticality
and phase transitions

(DeGennes, Duplantier Descloizeaux)

This can be understood using a simple lattice model (A✏eck, Nienhuis, Schwimmer)

giving rise to the loop soups

Z =
X

dilute loop gas

K
B
n
L

critical at K = Kc

1

|#left�#right| turns = 6
(on the plane)
n = 2 cos 6↵ with weight e±i↵ per turn

The correspondence 2D stat. mech. with 1+1D quantum field theory still holds but

Typically, the quantum processes have probabilities pi > or < 0 (but
P

pi = 1)

Orient loops and sum over orientations

• What happens when we lose unitarity?

– Most approaches are algebraic and thus rely on representation theory

which becomes non semi-simple when unitarity is lost

Modules are not fully reducible. In terms of simple sub-modules they can take any shape

(wilderness)

– Not only can norm-squares be negative, but zero norm-square states can be non-zero

(In fact, for SAW, all the physics is in the sector zero-norm square sector, and c = 0)

No BPZ equations

• The four-point function of the one-leg operator
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– Its dimension is well known to be h1/2,0 (the two-point function decays like r
�4h)
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– It can be reinterpreted in terms of diagrams
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V
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2 ,0)
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OPE

(but the exponents for SAW are all rational)
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From the lattice model, the choice of bases in (5.3.20) computes the probability of how
each pair of points belong on each line in the following diagrams:

i1 i4

i2 i3

�i1i2�i3i4C1 �i2i3�i1i4C2 �i1i3�i2i4C3 (5.3.21)

One can also relate the two sets of solutions in (5.3.14) and (5.3.20) and finds the following
linear transformations:

C1 = A
(s)
[] � 2

n
A

(s)
[2] , C2 = A

(s)
[2] + A

(s)
[11] , C3 = A

(s)
[2] � A

(s)
[11] . (5.3.22)

Furthermore, while the degenerate-shift equation for the first Kac index of four-point
structure constants does not exist in the O(n) CFT since its spectrum does not contain
the degenerate fields V

D

hs,1i with s > 1, similarly to the four-point connectivities of the
Potts CFT [15], we find that the four-point function hV( 12 ,0)

V( 12 ,0)
V( 12 ,0)

V( 12 ,0)
i satisfies a

renormalized version of the degenerate-shift equation (4.3.10). From [15], we write

D(r+1,s)

D(r,s)
= E(r,s)(n)

(
2
� 4s+2

�2
�(1�r

2 + s

2�2 )

�(2�r

2 + s

2�2 )

�(�r2 � s

2�2 )

�(1+�r

2 � s

2�2 )

�(1�r

2 + s+1
2�2 )

�(�r

2 + s+1
2�2 )

�(2+�r

2 � s+1
2�2 )

�(1+�r

2 � s+1
2�2 )

)
.

(5.3.23)

One can check that the quantity in the curly brackets of (5.3.23) satisfies the relation
(4.6.11) and is controlled by the degenerate-shift equation (4.3.10). With our numerical
results, we deduce some examples of the functions E (s)

(r,s)(n) in the s-channel of solutions
in (5.3.22). For instance,

Solutions (r, s) E (s)
(r,s)(n)

C1

(1, 0) �n
2+3n+6
2(n+1)

(2, 0) �4(n�1)(2n3+4n2�n�8)
3n(n2�2)(n2+3n+6)

C2, C3

(1, 0) � n
2

2(n+2)

(2, 0)
2(n�1)(n4+4n3+n

2�8n+8)
3(n�2)n(n+1)(n+4)

(5.3.24)

It is interesting to see that rational functions in (5.3.24) do not have zeroes at rational n
in general. Using the spectra in (5.3.19), let us now write the fusion rules:

V( 12 ,0)
⇥ V( 12 ,0)

=
X

k2J []\J even

V
[]
k
+

X

k2J [11]\J odd

V
[11]
k

+
X

k2J [2]\J even

V
[2]
k

. (5.3.25)

Our approach of deduce fusion rules cannot yet extract multiplicity of each field on the
right-hand side of (5.3.25), as well as in other fusion rules. We hope to revisit this problem
in the near future.
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• What happens when we lose unitarity?

– Most approaches are algebraic and thus rely on representation theory

which becomes non semi-simple when unitarity is lost

Modules are not fully reducible. In terms of simple sub-modules they can take any shape

(wilderness)

– Not only can norm-squares be negative, but zero norm-square states can be non-zero

(In fact, for SAW, all the physics is in the sector zero-norm square sector, and c = 0)
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(0, 0) = sum over all S

OPE

(but the exponents for SAW are all rational)
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z12z34

z13z24

D =

(Nolin, Qian, Sun, Zhuang, Sept. 2023)

Set

where
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Barnes double Gamma function

Liouville theory (Teschner)
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A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

�hr,si = q
hrs� c

24
1� q

rs

P (q)
⇥ h.c.

�
N

(r,s) =
q
hrs� c

24

P (q)
⇥ h.c.

The theory is not WZW

(O(n) �4 LG universality class )

(CP
m�1 (m ⌘

p
Q) at ✓ = ⇡)

2 [�2, 1]

Z = Tr qL0�c/24
q̄
L̄0�c/24

encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

Note the absence of �N

(0,1)

In particular all the �N

(0,s) for s even (and even only)

Pinched clusters

Should be similar in the O(n) model
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(DiFrancesco, HS, Zuber) Correlation functions require a mix of techniques
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we’re dealing with non rational non unitary non quasi-rational CFTs

• The four-point function of the one-leg operator

– The order operator ~S transforms in [1] and creates an extra open line in the lattice model

– Set

n 2 [�2, 2]; n = 2 cos
⇡

x
, x 2 [1,1]

c = 1� 6

x(x+ 1)

hr,s =
(x+ 1)r � xs)2 � 1

4x(x+ 1)

– Its dimension is well known to be h1/2,0 = (x�1)(x+3)
16x(x+1) (the two-point function decays like r

�4h)

– From [1]⌦2 = []� [11]� [2] we get the tensor structure

– It can be reinterpreted in terms of diagrams

or, geometrically

• The spectrum in the s-channel

(r, s)N : (h(rs), h(r,�s))

(1, 1 + 2n)D : (h(1,1+2n), h(1,1+2n))

V
[1]
( 1
2 ,0)

(z, z̄)V [1]
( 1
2 ,0)

(0, 0) = sum over all S
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– Numerical (exact results on lattice) (Jacobsen, HS)

– Bootstrap (Jacobsen, Grans-Samuelsson, He, Nivesvivat, Ribault, HS)

Compare with Ising:

Physically: r
2 = number of legs while s is conjugate to the winding

x(r,s) =
3
4r

2 + 1
3s

2 � 1
12

spin = rs

and then there’s the winding

appears as the two-leg (watermelon/fuseau) operator

appears as the four-leg operator

=

+

hSi1S
i2S

i3S
i4i

n = �2

loop soups

n 2 C. n = 0: SAW po

(Gainutdinov, Read, Saleur)

quite generic: Brownian walks + very small repulsive interactions = SAWs at
large distances

Df = 2� ⇠

(Cardy, Mussardo, Delfino, Viti, Santachiara)

(Den Nijs, Nienhuis, Belavin Polyakov Zamolodchikov,
Dotsenko Fateev. . . )

(Fortuin Kasteleyn, Baxter . . . )

• The SAW problem

• limit N ! 1 = follow an RG flow from an unstable to a stable fixed point

• DeGennes: SAW = n ! 0 in the O(n) (vector) Landau-Ginzburg

• Conformal loop ensembles $ many other physics problems:

– Polymers at interfaces

1

Let us now insert the OPE in a four-point function of primary fields:
〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆1,∆2,∆|z|
2(∆−∆1−∆2)

×
(〈

V∆(0)V∆3
(∞)V∆4

(1)
〉

+O(z)
)

, (3.12)

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
|z|2(∆−∆1−∆2)

(

1 +O(z)
)

. (3.13)

The contributions of descendents factorize into those of left-moving descendents, generated
by the operators Ln<0, and right-moving descendents, generated by L̄n<0. So the last
factor has a holomorphic factorization such that

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
F (s)

∆ (z)F (s)
∆ (z̄) . (3.14)

Definition 3.7 (Conformal block)
The four-point conformal block on the sphere,

F (s)
∆ (z) = z∆−∆1−∆2

(

1 +O(z)
)

, (3.15)

is the normalized contribution of the Verma module V∆ to a four-point function, obtained
by summing over left-moving descendents. Its dependence on c,∆1,∆2,∆3,∆4 are kept
implicit. The label (s) stands for for s-channel, we will soon see what this means.

Conformal blocks are in principle known, as they are universal functions, entirely deter-
mined by conformal symmetry. This is analogous to characters of representations, also
known as zero-point conformal blocks on the torus.

Exercise 3.8 (Computing conformal blocks)

Compute the conformal block F (s)
∆ (z) up to the order O(z), and find

F (s)
∆ (z) = z∆−∆1−∆2

(

1 +
(∆ +∆1 −∆2)(∆+∆4 −∆3)

2∆
z +O(z2)

)

. (3.16)

Show that the first-order term has a pole when the Verma module V∆ has a null vector
at level one. Compute the residue of this pole. Compare the condition that this residue
vanishes with the condition (2.26) that three-point functions involving V〈1,1〉 exist.

Our axiom 2.7 on the commutativity of fields implies that the OPE is associative, and
that we can use the OPE of any two fields in a four-point function. In particular, using
the OPE of the first and fourth fields, we obtain

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆,∆1,∆4
C∆2,∆3,∆F

(t)
∆ (z)F (t)

∆ (z̄) , (3.17)

where F (t)
∆ (z) = (z−1)∆−∆1−∆4

(

1+O(z−1)
)

is a t-channel conformal block. The equality

of our two decompositions (3.14) and (3.17) of the four-point function is called crossing
symmetry, schematically

∑

∆s∈S

C12sCs34

2
s

3

1 4

=
∑

∆t∈S

C23tCt41

2

t

1

3

4

. (3.18)

13

– Set

n 2 [�2, 2]; n = 2 cos
⇡

x
, x 2 [1,1]

c = 1� 6

x(x+ 1)

hr,s =
(x+ 1)r � xs)2 � 1

4x(x+ 1)

– Its dimension is well known to be h1/2,0 (the two-point function decays like r
�4h)

– [1]⌦2 = []� [11]� [2]: (tensor) structure

– It can be reinterpreted in terms of diagrams

– OPEs are expected to be complicated

or, geometrically

• The spectrum in the s-channel for SAW (n = 0, c = 0)

(r, s)N : (h(rs), h(r,�s))

(1, 1 + 2n)D : (h(1,1+2n), h(1,1+2n))

V
[1]
( 1
2 ,0)

(z, z̄)V [1]
( 1
2 ,0)

(0, 0) = sum over all S

OPE

(but the exponents for SAW are all rational)

• The bootstrap is feasible thanks to the introduction of algebraic tools: interchiral algebra

(Gainutdinov, Read,HS) and a�ne Temperley-Lieb algebra representation theory

hr,s = P
2
(r,s) � P

2
(1,1)

=
X

S
D ⇥ G(⇠, ⇠̄), ⇠ =

z12z34

z13z24

D =

(Nolin, Qian, Sun, Zhuang, Sept. 2023)

Set

where

The G are conformal blocks
determined by general conformal symmetry

Barnes double Gamma function
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4

we now know D!!!
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General three-point structure constants

C(r1,s1)(r2,s2)(r3,s3) with ri ∈ 1
2N

∗, si ∈ 1
rZ?

Vd
〈1,2〉 shift equations =⇒ si → si + 2 [Estienne, Ikhlef 2015]

Reduces to CP1,P2,P3 if r1 = r2 = r3 = 0 (even though no Vd
〈2,1〉!)

[Delfino, Viti 2010]
Reference structure constant = one nice solution (not unique)

Cref
(r1,s1)(r2,s2)(r3,s3)

=
∏

ε1,ε2,ε3=±
Γ−1
β

(
β+β−1

2 + β
2 |
∑

iεiri|+ β−1

2
∑

iεisi
)

Conjecture: C
Cref is polynomial in n,w(Pi)

“loop weights” w(P) = 2 cos(2πβP)
“weight of contractible loops” n = w(P(1,1)) = −2 cos(πβ2)

Sylvain Ribault (IPhT Saclay) Exact solvability of loop models 6 / 15.
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Diagonal three-point structure constants

Crossing symmetry of 4pt functions with Vd
〈2,1〉 or Vd

〈1,2〉

=⇒ Shift equations: CP1+β,P2,P3

CP1,P2,P3
= known ,

CP1+β−1,P2,P3

CP1,P2,P3
= known

for 3pt structure constants CP1,P2,P3 ∝ 〈VP1VP2VP3〉

=⇒ CP1,P2,P3 =
∏

ε1,ε2,ε3=±
Γ−1
β

(
β+β−1

2 +
∑

iεiPi
)

using the double Gamma function Γβ, which obeys

Γβ(x + β) =
√

2πβ
βx− 1

2

Γ(βx) Γβ(x) , Γβ(x + β−1) =
√

2πβ
−β−1x+ 1

2

Γ(β−1x) Γβ(x)

→ solution of Liouville theory [Teschner 1995]

Sylvain Ribault (IPhT Saclay) Exact solvability of loop models 5 / 15
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Numerical results for four-point structure constants

Reference 4pt structure constant assembled from 3pt:

D = Drefd = CrefCrefd

Conjecture =⇒ d is polynomial in n,w(Pi)

Numerically solving crossing symmetry
→ extrapolating exact expressions for d
in ∼ 20 cases including

〈∏4
i=1 VPi

〉
,
〈

V4
( 1

2 ,0)

〉
,
〈

V( 3
2 ,0)

V(1,1)V(1,0)V( 1
2 ,0)

〉

Sylvain Ribault (IPhT Saclay) Exact solvability of loop models 8 / 15

• The four-point function of the one-leg operator

– The order operator ~S transforms in [1] and creates an extra open line in the lattice model

– Set

n 2 [�2, 2]; n = 2 cos
⇡

x
, x 2 [1,1]

c = 1� 6

x(x+ 1)

hr,s =
(x+ 1)r � xs)2 � 1

4x(x+ 1)

– Its dimension is well known to be h1/2,0 (the two-point function decays like r
�4h)

– From [1]⌦2 = []� [11]� [2] we get the tensor structure

– It can be reinterpreted in terms of diagrams

or, geometrically

• The spectrum in the s-channel

(r, s)N : (h(rs), h(r,�s))

(1, 1 + 2n)D : (h(1,1+2n), h(1,1+2n))

V
[1]
( 1
2 ,0)

(z, z̄)V [1]
( 1
2 ,0)

(0, 0) = sum over all S

OPE

(but the exponents for SAW are all rational)

• The bootstrap is feasible thanks to the introduction of algebraic tools: interchiral algebra

(Gainutdinov, Read,HS) and a�ne Temperley-Lieb algebra representation theory
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where

The G are conformal blocks
determined by general conformal symmetry

Barnes double Gamma function

Liouville theory (Teschner)

Then the d are (still somewhat mysterious) polynomials in n

3

have a t-channel odd-spin solution i.e. d
(t)
even-spin = 0.

2110

d
(s)

( 12 ,0)
= 1 , (3.29a)

3d(s)
( 32 ,

2
3 )

= �2
p
3(w � n) , (3.29b)

5d(s)
( 52 ,

2
5 )

= 4 cos
�

⇡

10

�
'
�2('n+ 1)(n� w)

⇥
'w � n

2 + ('� 2)n+ 2'+ 1
⇤
, (3.29c)

5d(s)
( 52 ,

4
5 )

= 4 cos
�

⇡

10

�
(n� ')(w � n)

⇥
'
�1
w + n

2 + ('+ 1)n+ 2'� 3
⇤
. (3.29d)

d
(t)
(1,1) = �2 , (3.29e)

d
(t)

(2, 12 )
=

p
2n(w � n) , (3.29f)

3d(t)
(3, 13 )

= 2(n� 1)2(n+ 1)(w � n)[2w + (n+ 3)(n� 1)] , (3.29g)

3d(t)(3,1) = 2(n� 2)(n+ 2)2(w � n)(w + 2n2 � 5n) (3.29h)

3.4 Four-point functions of non-diagonal fields

Case of
D
V( 12 ,0)

V( 12 ,0)
V( 12 ,0)

V( 12 ,0)

E
with � = (0, 1, 1)

Parity d
(x)
(r,s) = d

(x)
(r,�s)

Permutation d
(s)
(r,s) = (�1)rsd(s)(r,s) , d

(t)
(r,s) = (�)rsd(u)(r,s)

Shift d
(x)
(r,s) = d

(x)
(r,s+2)

(3.30)

011

d
(s)
diag = 1 , (3.31a)

d
(s)
(2,0) = n

2 � 4 , (3.31b)

d
(s)
(2,1) = �(n2 � 4) , (3.31c)

3d(s)(3,0) = �8n2(n� 2)2(n+ 2) , (3.31d)

3d(s)
(3, 23 )

= 4(n2 � 1)(n2 � 3)(n� 2) , (3.31e)

2d(s)(4,0) = n
2(n� 2)3(n+ 1)2(n+ 2)

⇥
⇥
ws(n+ 2)2(n� 1)2 + 2n4 � 6n2 � 8n+ 16

⇤
, (3.31f)

2d(s)
(4, 12 )

= �n
3(n2 � 2)(n2 � 3)

⇥
⇥
wsn(n

2 � 2)(n2 � 3)� 4n4 + 4n3 + 8n2 + 4n� 16
⇤
, (3.31g)

2d(s)(4,1) = n
2(n2 � 4)3(n� 1)2

⇥
ws(n+ 1)2 � 2n2 � 8n� 10

⇤
. (3.31h)

37

have a t-channel odd-spin solution i.e. d
(t)
even-spin = 0.
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Figure 1: Site percolation on the triangular lattice is often represented as a random coloring of the faces
of the dual hexagonal lattice. Left: The one-arm event corresponds to the existence of a black path
connecting the vertex 0 (indicated by a red hexagon) to distance n. Center: The four-arm event requests
the existence of four paths with alternating colors, i.e. two black ones and two white ones, each connecting
a neighbor of 0 to distance n. It can be interpreted as the event that two distinct connected components
“meet” in 0. Right: In this paper, we determine the exponent corresponding to the existence of two
disjoint black arms. This monochromatic two-arm exponent is most often called backbone exponent.

neighboring vertex of 0 to distance n (this limit was shown to exist in [BN11]). Our main result is the
exact evaluation of ⇠.

Theorem 1.1. The backbone exponent ⇠ is the unique solution in the interval ( 1
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) to the equation
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Using (1.2), we obtain the numerical value of ⇠:

⇠ = 0.35666683671288 . . . . (1.3)

The best numerical result obtained so far is ⇠ = 0.35661±0.00005 in [FKZD22], which is based on Monte
Carlo simulations. See also [Gra99, JZJ02, DBN04] for earlier numerical approximation results on ⇠.

As mentioned above, the one-arm exponent and the polychromatic j-arm exponents, j � 2, all have
rational values. In contrast, the backbone exponent is irrational. Recall that a complex number is said
to be algebraic if it belongs to the algebraic closure of Q, i.e. if it can be represented as one of the roots
of a polynomial with rational coe�cients, and it is called transcendental otherwise. Using Theorem 1.1
and standard results in transcendental number theory, we can show that the backbone exponent is not
only irrational, but in fact transcendental.

Theorem 1.2. The backbone exponent ⇠ in Theorem 1.1 is a transcendental number.

Given Theorem 1.1, the proof of Theorem 1.2 is quite short and we provide it here.

Proof. Let ⇢ =
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connecting the vertex 0 (indicated by a red hexagon) to distance n. Center: The four-arm event requests
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(Cardy, Mussardo, Delfino, Viti, Santachiara)

(Den Nijs, Nienhuis, Belavin Polyakov Zamolodchikov, Dotsenko Fateev. . . )

(Fortuin Kasteleyn, Baxter . . . )

• The SAW problem

• In modern parlance taking the limit N ! 1 is like following an RG flow from an unstable to a stable fixed
point

• DeGennes identified the problem with the limit n ! 0 of the O(n) (vector) Landau-Ginzburg universality
class

• Conformal loop ensembles or loop soups are connected with many other physics problems:

– Polymers at interfaces

– General Quantum Field Theory (Brydges, Fröhlich, Spencer, Sokal)

– Plateau transitions in the (2+1 D) integer quantum Hall e↵ect (class A, class C) (Chalker Coddington,
Gruzberg, Ludwig, Read)

– Properties of interfaces in classical spin systems

– Properties of (generalizations of) toric codes in topological quantum computation (Kitaev, Freedman,
Nayak, Wang)

• They have become central to modern probability theory (Werner, Smirnov, Dominil-Copin)

• Their study reveals an astonishing depth from a mathematical physics point of view as well

• Loops and clusters are related (Potts model)

Q = n
2, Q = 1 is percolation

hR2i ⇠ N
2⌫

is in fact quite generic: Brownian walks with even very small repulsive interactions look like SAWs at
large distances

The physics is non-perturbative: in 2D ⌫ = 3
4

and can be described generally in the language of criticality
and phase transitions

(DeGennes, Duplantier Descloizeaux)

This can be understood using a simple lattice model (A✏eck, Nienhuis, Schwimmer)

giving rise to the loop soups

Z =
X

dilute loop gas

K
B
n
L

critical at K = Kc

1
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and so the race goes on
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