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Static Equilibrium Fluctuations

A system, at the molecular scale, keeps on evolving through various
microscopic configurations and a probabilistic description is required.
Thermodynamic observables x fluctuate around their average values.

Equilibrium fluctuations can be precisely quantified by inverting
Boltzmann formula (Einstein, 1906)

Ω ∼ e
S(x)
kB

Expanding the entropy around its maximum value leads to a definite
negative quadratic form. Small static fluctuations of the thermodynamic
variables x at a given time are Gaussian, governed by the 2nd derivatives
(Hessian) of the entropy.
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Dynamical Fluctuations: Brownian Motion

The macroscopic observable of a system at thermal equilibrium are
stationary. But, at molecular scale things constantly change: the system
keeps on evolving through various microscopic configurations.

Robert Brown (1773-1858)
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Langevin Dynamics

Paul Langevin understood that thermal fluctuations can be accounted for
by adding a random force to the dynamics:

m d2x
dt2 = −γ dx

dt −∇U(x) + ξ(t)

where ξ(t) is a white noise of amplitude Γ = γkT

Paul Langevin (1872-1946)
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Near equilibrium

Consider a Stationary System in contact with two reservoirs at
temperatures T1 and T2 (or chemical, or electric, potentials µ1, µ2).

R1

J

R2

When |T1 − T2| � T1 (slightly unbalanced reservoirs): A stationary
current, breaking time reversal invariance, sets in, proportional to the
temperature gradient.

This flow of the current implies that entropy is continuously generated
and keeps on increasing with time.

Conductivity determined by quadratic correlations at equilibrium
(Einstein-Kubo linear response theory): mobility = diffusivity/kT

Minimal Entropy Production Rate (Prigogine): an elegant way to
reformulate linear response theory.

K. Mallick Understanding Systems Far from Equilibrium



Systems far from equilibrium

Consider now a Stationary Driven System in contact with reservoirs at
different potentials: no microscopic theory is yet available.

R1

J

R2

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

In the steady state, a non-vanishing macroscopic current J flows.

What can we say about the non-equilibrium properties of
observables (e.g., current, temperature or density fields) from the
point of view of Statistical Physics?
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Density Fluctuations

For a gas in a room, at thermal equilibrium, the probability of observing
an arbitrary density profile ρ(x) takes a large-deviation form (rare events
are exponentially suppressed)

Pr{ρ(x)} ∼ e−βV F({ρ(x)})

where the large deviation functional F({ρ(x))} is given by

F({ρ(x)}) =

∫ 1

0

(f (ρ(x),T )− f (ρ̄,T )) d3x

Equilibrium free energy f (ρ,T ) is viewed as a large deviation function.

Out of equilibrium, what is the probability of observing an atypical
density profile in the steady state? What does the functional F({ρ(x)})
look like?

R1 R2
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Importance of Large Deviations

Equilibrium Thermodynamic potentials (Entropy, Free Energy) can
be constructed as large deviation functions.

Large deviations are defined far from equilibrium and are good
candidates for being non-equilibrium potentials.

Large deviation functions obey remarkable identities, valid far from
equilibrium (Gallavotti-Cohen Fluctuation Theorem; Jarzynski and
Crooks Relations).

These identities imply, in the vicinity of equilibrium, the fluctuation
dissipation relation (Einstein), Onsager’s relations and linear
response theory (Kubo).
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The General Large Deviations Problem

R1 R2

J

j

Assume the probability to observe an atypical local current j(x , t) and
density profile ρ(x , t) during 0 ≤ s ≤ L2 T (i.e. diffusive scaling, L is the
size of the system) satisfies a Large Deviation Principle:

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

Thus, knowing I(j , ρ), one could deduce the large deviations of the
current and of the density profile (by contraction).
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Macroscopic fluctuations

For a weakly-driven diffusive system, the large deviation form of the
probability to observe a current j(x , t) and a density profile ρ(x , t) during
a time T , is given by

Pr{j(x , t), ρ(x , t)} ∼ e− SMFT (j,ρ) ,

with

SMFT (j , ρ) =

∫ T

0

dt

∫ +∞

−∞

(j + D(ρ)∇ρ)2 dx

2σ(ρ)

under the constraint ∂tρ = −∇.j
The relevant information at macroscopic scale from the microscopic
dynamics is contained in the transport coefficients D and σ. Other
microscopic details are ‘blurred’ in this description.

This is the MACROSCOPIC FLUCTUATION THEORY (MFT),
developed by L. Bertini, D. Gabrielli, A. De Sole, G. Jona-Lasinio and C.
Landim, from 2000’s on.
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The MFT Equations

In the large time limit, T →∞, the MFT action will be dominated by its
saddle-points (instantons), found by optimizing it under
(problem-dependent) constraints.

The optimal equations, in Hamiltonian form, where ρ(x , t) is the
density-field and H(x , t) is a conjugate (‘momentum’) field, are given by

∂tρ = ∂x [D(ρ)∂xρ]− ∂x [σ(ρ)∂xH]

∂tH = −D(ρ)∂xxH − 1
2σ
′(ρ)(∂xH)2

with Hamiltonian H = σ(ρ)(∂xH)2/2− D(ρ)∂xρ∂xH.

In principle, large deviations can be calculated at the macroscopic level
by solving the full, time-dependent, MFT equations.

K. Mallick Understanding Systems Far from Equilibrium



The macroscopic fluctuation theory generalizes the linear response
fluctuation theory of Onsager and Machlup (1953)

Unfortunately, solving these equations was not a straightforward task.
Exact results were first obtained at the microscopic level and, then,
coarse-grained.
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Driven lattice gases

Exact solutions of specific models (Ising, 6-vertex) have played a key role
in equilibrium statistical mechanics to understand phase transitions and
benchmarks for testing general theories or more versatile approximation
methods.

Driven lattice gases (Yves Pomeau, Katz-Lebowitz-Spohn, Henri
Cornille) are very useful systems to explore phenomena far from
equilibrium.
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Microscopic approach to classical Transport in 1d

A picture of a non-equilibrium system

R1

J

R2

A paradigm: the asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

A building block in many realistic models of 1d transport and studied
extensively in probability, combinatorics, condensed matter physics...
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The Kardar-Parisi-Zhang equation in 1d

The height of an interface h(x , t) satisfies the generic KPZ equation

∂h

∂t
= ν

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ ξ(x , t)

The ASEP is a discrete version of the KPZ equation in one-dimension.
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Single-file diffusion

SEP is a pristine model for single-file diffusion, an important phenomena
soft-condensed matter (for example, transport in chanels through cell
membranes).
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Stationary state of the open ASEP (DEHP, 1993)

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

The stationary probability of a configuration C is given by (Derrida,
Evans, Hakim and Pasquier, 1993)

P(C) =
1

ZL
〈W |

L∏
i=1

(τiD + (1− τi )E ) |V 〉

where τi = 1 (or 0) if the site i is occupied (or empty). The operators D
and E , the vectors 〈W | and |V 〉 satisfy a quadratic algebra

D E − qE D = (1− q) (D + E )

(β D − δ E ) |V 〉 = |V 〉
〈W |(αE − γ D) = 〈W |
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Interacting particle processes are complex enough to exhibit a rich
phenomenology that captures the physics involved.

On the other hand, some of these models have intricate mathematical
properties, in particular some (deformed) algebraic symmetries, that
allows us to solve them exactly: they are quantum integrable.

Some techniques involved:

Bethe Ansatz (coordinate, algebraic, functional).

Combinatorics (Young tableaux, RSK and special polynomials)

Integrable probabilities and determinantal processes.
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From microphysics...

During the last decades many groups of people have explored stochastic
lattices gases from various sides and scales and a huge amount of
knowledge has been acquired.

At the IPhT, with Olivier Golinelli, we learned apply the Bethe Ansatz to
the ASEP and derived some exact combinatorial finite-size formulas that
allowed us to classify states and degeneracies of the relaxation spectrum.

Then, the full large deviation function of the current in a periodic model
was obtained by Sylvain Prolhac, inspired by an IPhT Lecture by Olivier
Babelon.

Multicolor exclusion processes could be solved by using an (infinite)
tensor product extension of the Matrix Ansatz (P. Ferrari, M. Evans, S.
Prolhac, A. Ayyer, N. Rajewsky, S. Mallick, C. Boutillier, P. Francois, C.
Arita, E. Ragoucy, N. Crampé, M. Vanicat).

These tensor algebras yielded the full large deviation function of the
current in the open system with reservoirs (Alexandre Lazarescu and
Vincent Pasquier).
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...To macrophysics

With Paul (Krapivsky), we used the MFT to do some concrete
calculations building on some earlier work he had done with Baruch
Meerson. In particular, we could compute perturbatively some simple
quantities both at microscopic and macroscopic scale. The calculations
look totally different but the results agree.

_+
tSy

x+
Perturbative calculations at higher and higher orders are more and more
cumbersome but seem to remain possible, hinting towards some
classically integrable structure in the MFT.
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A chart of models
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Current fluctuations in the SEP on Z

Consider the Symmetric Exclusion Process on Z with two-sided Bernoulli
initial conditions ρ− on the left, ρ+ on the right at t = 0.

Time integrated current QT = total number of particles that have
jumped from 0 to 1 minus the total number of particles that have
jumped from 1 to 0 during the time interval (0,T ).

O

××× QT

An exact microscopic combinatorial solution of the problem is possible: it
yields the distribution of current and that of a tagged particle at any
position and at any finite time. This involves the technology of Integrable
Probabilities (Imamura, M. and Sasamoto, PRL 2017 and CMP 2021)).
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The characteristic function of the current N(x , t) is given by Fredholm
determinant, this is the exact statistics, at any finite-time:

〈eλN(x,t)〉 = det(1 + ωKt,x)W0(λ)

where

Kt,x(ξ1, ξ2) =
ξ
|x|
1 eε(ξ1)t

ξ1ξ2 + 1− 2ξ2
with ε(ξ) = ξ + ξ−1 − 2

W0(λ) =
(
1 + ρ±(e±λ − 1)

)|x|
with ± = sgn(x)

and ω = ρ+(eλ − 1) + ρ−(e−λ − 1) + ρ+ρ−(eλ − 1)(e−λ − 1).

Asymptotic analysis of these Fredholm determinants leads to exact expressions for all

the moments of N(x , t) to the large deviation function of the current at any position

and of the position of a tagged particle.

A macroscopic hydrodynamic picture, based on the MFT, would be
welcome.
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Current fluctuations at macroscopic scale

Q
T

ρ
+

x
0

ρ_

In the continuous limit: QT =
∫∞

0
[ρ(x ,T )− ρ(x , 0)]dx . And for large T ,

we have (LDP):

〈eλQT 〉 ' e
√
Tµ(λ)

How can we determine µ(λ), the cumulant generating function (CGF)
using a purely macroscopic approach (MFT)?

For SEP, we have D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)
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From MFT to NLS

With H. Moriya and T. Sasamoto (2022), we observed that MFT
equations for SEP can be mapped to the Ablowitz-Kaup-Newell-Segur
(AKNS) system:

∂tu(x , t) = ∂xxu(x , t)− 2u(x , t)2v(x , t)
∂tv(x , t) = −∂xxv(x , t) + 2u(x , t)v(x , t)2

These AKNS equations are an imaginary time version of the Non-Linear
Schrödinger equation.

The AKNS system is classically integrable by inverse scattering theory,
an extension of the Fourier transform, useful to study non-linear
dispersive wave equations.
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Formula for the density profile

Inverse scattering allows us to show that the half-Fourier transform of the
final profile

û±(k) =

∫
R∓

u(x ,T )e−2ikxdx

satisfies a scalar Riemann–Hilbert factorization problem:

(û+(k) + 1) (û−(k) + 1) = 1 + ωe−4k2T

where 1 + û± is analytic on the upper (respectively lower) complex plane,
with a given product along R.

This Riemann–Hilbert problem is solved by using the Cauchy Formula
(after taking logarithms) and we obtain:

û±(k) + 1 = exp

[
−1

2

∞∑
n=1

(−ωe−4k2T )n

n
erfc(∓i

√
4nT k)

]
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Fluctuations of the current

Calculating the total current QT from the optimal profiles at t = 0 and
t = T yields the Cumulant Generating Function (CGF) of the current.

In the long time limit, 〈eλQT 〉 ' e
√
Tµ(λ), with

µ(λ) =
1√
π

∞∑
n=1

(−1)n−1ωn

n3/2

where ω = (eλ − 1)ρ−(1− ρ+) + (e−λ − 1)ρ+(1− ρ−)

This formula for the CGF is identical to the one obtained in the
microscopic calculation: the MFT framework yields exact results and
provides us with a classical field theory for non-linear macroscopic
fluctuations far from equilibrium.
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Conclusions

Large deviations are considered to be relevant generalizations of the
thermodynamic potentials (Free Energy) far from equilibrium.

Interacting particle processes are ideal toy-models to investigate these
problems with a large variety of methods:

• Microscopic scale: Combinatorics, Matrix representation, Bethe Ansatz,
Integrable Probabilities.

• Coarse-grained level: fluctuating Langevin hydrodynamics, Macroscopic
Fluctuation Theory for optimal paths: Exact results are based on the
Inverse Scattering Method, originally developed to study non-linear
dispersive hydrodynamics.

The relation between microscopic and macroscopic scales (continuous, or
hydrodynamic, limit) and quantum vs classical integrability is very
intriguing.

Extensions of the MFT framework to non-equilibrium systems with long
range interactions, signal processing, turbulence, active matter, living
matter and (of course) quantum systems are largely open and very
promising.
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Le monde commença à lui apparâıtre sous un jour nouveau. Comme une
vaste entreprise dynamique, en fluctuation perpétuelle, modelée et
remodelée sans cesse, et non ainsi qu’elle l’avait cru inconsciemment
pendant des années, comme l’entité stable dans laquelle on pouvait
piocher sans effort.

Tarun J. TEJPAL (Loin de Chandigarh)
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