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Standard cosmological model

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.
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Cosmic Microwave
Background:

WMAP 2001-10,
Planck 2010-15, ...
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Cosmic inflation

Dark Energy

Accelerated Expansion
Afterglow Light

Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.
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Cosmic inflation V(o)

* Inflaton field is homogeneous on average,
but has small quantum fluctuations

g
- Each Fourier mode of these fluctuations behaves as a quantum harmonic oscillator with
time dependent spring “constant” because of the expansion

k

1 initial potential w=——0 final potential

w > H - High frequency: vacuum I.C. w K H -+ Low frequency: fluctuations freeze-in



Cosmic inflation V(o)

* Inflaton field is homogeneous on average,
but has small quantum fluctuations

g
- Each Fourier mode of these fluctuations behaves as a quantum harmonic oscillator with
time dependent spring “constant” because of the expansion

k

1 initial potential w=——0 final potential

w > H - High frequency: vacuum I.C. w K H -+ Low frequency: fluctuations freeze-in

- Metric perturbations created from inflation: gij = a’ (t)QQC(f) 52.].



How Gaussian?

« Primordial fluctuations are very Gaussian (as expected from the ground state of harmonic

oscillator):
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Three-point function

(: Small departure from Gaussianity




The long mode

Hubble horizon  f—1 EL
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long-wavelength mode

In a universe where everything originates from the same field, a long-wavelength metric
perturbation redefines the background = to re-scaling of the coordinates:

gi;dx'dr’ = a’ (1)e>r @ g2 = a?(t)dd? = k=ke

rescaling of momenta

dIn{Cz C_z.)

(Crp G5 Sy ) = Gk, (CRsCRsree) B =7, i (CroC i Gz, 7, )

Maldacena ’02 kL L



How many fields”

« Primordial fluctuations are very Gaussian (as expected from the ground state of harmonic
oscillator):

Pr{¢]

< (€¢C) = fan(CE)?
Three-point function

(: Small departure from Gaussianity

fnL < 1

« Argument does not apply in multi-field models:

Multi-field models can generically predict larger non-Gaussianity ‘02
Sz 21



CMB non-Gaussianity

Non-Gaussianity is a discriminant between models

Single field prediction

> fNL
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CMB non-Gaussianity

Non-Gaussianity is a discriminant between models

Single field prediction - Excluded by CMB exp.
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Second-order effects ??
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Second-order effects ??

Nonlinearities in the CMB physics (metric and matter perturbations) can induce small non-
Gaussian effects. How small?



CMB non-Gaussianity

Non-Gaussianity is a discriminant between models

Single field prediction | - Excluded by CMB exp.
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Second-order effects ??
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Nonlinearities in the CMB physics (metric and matter perturbations) can induce small non-
Gaussian effects. How small?

e Solving coupled Boltzmann and Einstein equations up to 2nd order ’08:

% = Cilfr], IT=71,bCDM & Gij=81GY T,
I

Integration of the photon temperature along the line of sight



Hubble horizon at
recombination

H—l
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This relation can be used to test the consistency of Einstein-Boltzmann codes ‘11



>
Agreement between full calculation and analytic expression ’12

Planck params. without reion.
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This relation can be used to test the consistency of Einstein-Boltzmann codes
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L arge-scale structure

e Forthcoming LSS surveys will contain many more modes than the CMB
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L arge-scale structure

e Forthcoming LSS surveys will contain many more modes than the CMB

* Improve our understanding on initial conditions
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* Improve our understanding of the energy content of the Universe and of the gravitational

sector.



L arge-scale structure

e Forthcoming LSS surveys will contain many more modes than the CMB

o Euclid t,elescope, Iauhc’hed on 1 July 2023 |
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* Improve our understanding on initial conditions A N1 ~

* Improve our understanding of the energy content of the Universe and of the gravitational
sector.
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L arge-scale structure

e Forthcoming LSS surveys will contain many more modes than the CMB

o Euclid t,elescope, Iauhc’hed on 1 July 2023

104
N1/2

modes

* Improve our understanding on initial conditions AN, ~

* Improve our understanding of the energy content of the Universe and of the gravitational
sector.

* Challenges: nonlinearities, baryonic physics, bias, galaxy formation and merging, etc...
Much more difficult than CMB.



Precision tests with the LSS

 Modelling the observables (galaxy clustering, gravitational lensing, etc.) on linear and
nonlinear scales with high accuracy (long and strong tradition at IPhT)
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N-body simulations
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Precision tests with the LSS

 Modelling the observables (galaxy clustering, gravitational lensing, etc.) on linear and
nonlinear scales with high accuracy (long and strong tradition at IPhT)

V(o)
A &2
(]
¢
Initial Conditions Large-Scale Structure
_of- D .
C(ZB, 0) SPT, BT-of LS5 o 5(:3, 7‘) dark matter B > 59 ((9, Z) galaxies

N-body simulations

e Exploring theory space and modelling the phenomenology of new physics on cosmological
scales (long and strong tradition at IPhT)

Gravitational
theories

Ga(p, X)R + Go(¢, X) + Gs(¢, X)0ob
- ZG—I\'(O ‘Y) {(DO)Z - (@:/11/)2}
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The long mode, again

Locally, a gravitational field is indistinguishable from an acceleration (Equivalence Principle)

D b; =0

A W B




Consistency relations of the LSS

Locally, a gravitational field is indistinguishable from an acceleration (Equivalence Principle)

k- ks D(t1)<5#
k2 | D(t) ‘R

Valid for any tracers, hold nonlinearly in the short modes, after shell crossing, including
baryonic physics and bias ‘13 — 17



Test of the Equivalence Principle

The Equivalence Principle is very well tested on small scales.
One must wait a few seconds until two objects touch the ground.




Test of the Equivalence Principle

The Equivalence Principle is very well tested on small scales.
One must wait a few seconds until two objects touch the ground.

if Equivalence Principle holds



Test of the Equivalence Principle

The Equivalence Principle is very well tested on small scales.
One must wait a few seconds until two objects touch the ground.

if Equivalence Principle is violated ‘13
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Speed of gravity
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Modified gravitational wave propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where
gravitons are absorbed and dispersed. Effects accumulate on long time-scale.

Credit: APS/Alan




(Generalized scalar-tensor theories

L = Ga(¢, X)R + Go(¢, X) + Gs(¢p, X)06
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Self-acceleration and screening: large classical scalar field nonlinearities

« almost GR > <« scalar-tensor >
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(Generalized scalar-tensor theories

< almost GR > « scalar-tensor >
< O(107?) O(1)
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The tfuture

CMB: WMAP 2001-10,  LSS: SDSS 2010-,

Planck 2010-15, ... | GWs: LIGO/Virgo/Kagra

CMB polarisation >2030 Euclid: more to comel LISA 2034, E;EO4OS




