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Quantum theory landscape around 1970
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Figure 1: A small isolated set of exceptional solvable cases.

Everything else has to rely on perturbative approaches: pick a cou-
pling constant g (with g = 0 describing one of the solvable cases), then

expand, e.g., an energy eigenvalue E(g), as
∞∑
0
E(n)g

n.

Problem: those series typically diverge, resummation techniques (Padé,
Borel...) have to be attempted.
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Semiclassical approaches

Quantum mechanics based on Planck’s constant ~ > 0 has to closely
follow classical mechanics (which has ~ = 0) when ~ can be considered
negligibly small (and ~ ≈ 10−34 [SI]).

In first approximation, quantum mechanics may then be expressible
using classical-mechanical solutions.

In one perspective this gives but another perturbative scheme: clas-
sical mechanics is the known (solved) case, and ~ is the expansion pa-
rameter.

Still, it is more generic (not confined to isolated dynamical models)
and flexible (schemes tailored to the type of quantity under study).
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Early semiclassical successes at ‘SPhT’

They initially focused on nuclear physics: atomic nuclei are many-
body systems, too complex for plain perturbative approaches.

Nuclear physicists at SPhT brought significant contributions in:
- Hartree–Fock methods (stationary and time-dependent)
- mean-field theories
- generating-coordinate methods
- coherent-state techniques
- Thomas–Fermi calculations,

all of which broadly qualify as generalized semiclassical schemes.

Then, in quantum mechanics and field theory, SPhT shone in:
- large-order perturbation theory and instanton calculus
- large-N limit in quantum field theories
- analytic study of amplitudes and Landau singularities,

all likewise relating to semiclassical philosophies (sometimes in the com-
plex domain).
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The WKB - Wentzel–Kramers–Brillouin - method
(the primary 1D semiclassical method):

from approximate to fully exact

Figure 2: My walk to and from high school took me every day - unknowingly at
the time - alongside the house where L. Brillouin was born, in Sèvres (France).

Starting point: [−~2d2/dq2+V (q)]ψ(q, ~) = E ψ(q, ~) (1D stationary
Schrödinger equation) has formal approximate small-~ solutions

ψ(q, ~) ∼ u(q, ~) eiS(q)/~, u(q, ~) ∼
∑

n

un(q)~n (WKB Ansatz).
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Toward making WKB exact

Exact WKB analysis, assuming 1D potentials V (q) analytic in the
complex q-plane, deciphers the standard complex-WKB equations for the
Schrödinger wave function ψ(q, ~) as a code for its analytical continuation
in q - with this being a fully exact operation.

It grew around 1980 upon important earlier works:
- microlocal analysis in the analytic category: ramified Cauchy prob-

lem (Leray 1957), analytic pseudodifferential operators (Boutet de Monvel–
Krée 1967), hyperfunctions and microfunctions (Sato–Kawai–Kashiwara,
Pham, Bros–Iagolnitzer ∼ 1970);

- Borel-transform approaches to perturbative series (Bender–Wu 1973,
Zinn-Justin 1977–) and specially semiclassical ones (Balian–Bloch 1974);

- Dingle’s (1973) treatment of asymptotic series using terminants;
- Sibuya’s (1975) direct approach yielding exact functional equations

for Stokes multipliers.
First came partial analyticity results in the Borel plane for the pure

quartic potential (Balian–Parisi–AV 1978–1979), triggered by work of
Knoll–Schaeffer 1976.
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1D Schrödinger operators: ĤN = −d2/dq2 + |q|N , q ∈ R, N = 1, 2, . . .

• Spectral zeta functions Z#
N (s) (convergent for Re s > 1

2 + 1
N ):

ZN (s) =
∞∑

k=0

(E[N ]
k )

−s
, ZP

N (s) =
∞∑

k=0

(−1)k(E[N ]
k )

−s
.

• Spectral determinant DN (λ) def= det(ĤN + λ) (zeta-regularized):
defined through its logarithm:

log det(ĤN + λ) def= −∂sZN (s, λ)|s=0, ZN (s, λ) def=
∞∑

k=0

(E[N ]
k + λ)

−s
.

Fundamental (convergent) expansion:

logDN (λ) ≡ −ZN
′(0)−

∞∑
n=1

ZN (n)
n

(−λ)n.

Initial (1981) concrete outcomes of the exact WKB method were ex-
act identities on these spectral-zeta values at n = 0, 1, 2, . . ., themselves
following from exact functional equations for the spectral determinants.
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Perturbative WKB results (large variable: x ≡ λ
1
2+ 1

N ∝ 1/~→ +∞):

logDN (λ)− a0 x
def= log a(x) ∼

∞∑
m=1

am x1−2m

Then, with Borel transform specified as (x−α)B
def= τα/α! , exact WKB

analysis predicts (quartic example):

This exact structure falls into the very general framework of resurgent
functions (Écalle 1981). Exact-WKB analysis got further developed in
that direction by Pham et al. 1985–1997, Aoki–Kawai–Takei 1991–.
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Borel resummation: a(x) = x
∫∞
0
aB(τ) e−xτ dτ converts that informa-

tion forN = 4 into a functional equation forD4(λ) ≡ ea0x a(x), x ≡ λ3/4:

D4(λ)D4(jλ)D4(j2λ) ≡ D4(λ) +D4(jλ) +D4(j2λ) + 2, j def= e2πi/3,

later extended to a bilinear functional relation (with ν def= 1
N+2 ),

eiνπ D+
N (λ)D−N (e4iνπ λ)− e−iνπ D+

N (e4iνπ λ)D−N (λ) = 2i (N 6= 2).

Enforcing the compatibility of such functional relations with the above
expansions for logD#

N (λ) at λ = 0 generates polynomial identities on the
zeta-values Z ′N (0), Z#

N (n) (n = 1, 2, . . .): “exact-WKB sum rules”.
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Exact-WKB sum rules for the potentials |q|N (N = 1, 2, . . .):

countably many exact identities for the spectral zeta functions Z#
N (s),

specifically for the values at nonnegative integers Z ′N (0) and Z#
N (n) (n = 1, 2, . . .):

(n = 0 :) Z ′N (0) = log sin νπ
[
ν

def= 1
N + 2

]

− cot νπ sin 2νπ ZP
N (1) + cos 2νπ ZN (1) = 0 [indeterminacy for N = 2]

− cot νπ sin 4νπ ZP
N (2) + cos 4νπ ZN (2) = −4 cos2 νπ ZP

N (1)2

− cot νπ sin 6νπ ZP
N (3) + cos 6νπ ZN (3) = 4 cos2 νπ

[
2 cos2 νπ ZP

N (1)3

− 3 cos 2νπ ZP
N (1)ZP

N (2)
]

...
− cot νπ sin 2nνπ ZP

N (n) + cos 2nνπ ZN (n) = PN,n{ZP
N (m)}1≤m<n

...

with PN,n : homogeneous polynomials of degree n if deg[ZP
N (m)] def= m.
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Exceptionally explicit examples occur at n = 2:

cot νπ sin 4νπ ZP
N (2)− cos 4νπ ZN (2) =

π(2ν)4Nν

4

[
Γ(ν)Γ(3ν)

Γ(1−2ν)Γ(2ν+ 1
2 )

]2

(with ν def= 1
N+2 ).

Specially:

• harmonic oscillator q2 :
∞∑
0
E −2

k = π2/8 ⇐⇒ ζ(2) = π2/6 (Ek ≡ 2k+1)

• cubic oscillator |q|3 :
∞∑
0
E −2

2k = ( 2
5 )2/5 2√

5+1
π [Γ( 6

5 )/Γ( 9
10 )]2

• sextic oscillator q6 :
∞∑
0

(−1)kE −2
k = 1

8 [π Γ( 5
4 )]2/Γ( 7

8 )4.
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Subsequently, all by itself, the key functional equation reached above,

eiνπ D+
N (λ)D−N (e4iνπ λ)− e−iνπ D+

N (e4iνπ λ)D−N (λ) = 2i (N 6= 2)

gave rise to:
1) exact-WKB solutions for the eigen/values/functions (AV 1994–1999)
2) the ODE/IM correspondence, initiated by Dorey–Tateo 1999, linking
the exact-WKB method to the Bethe Ansatz for integrable models in 2D
statistical mechanics.

Ongoing applications of resurgent functions and exact WKB theory
appear to include:

- conformal field theories
- Chern–Simons theories
- topological quantum field theories
- SUSY gauge theories
- topological recursion
- Painlevé functions
- wall-crossing theory
- cluster algebras
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Quantum chaos

The semiclassical description of D > 1 strongly coupled (= far from
integrable) systems remains much less understood analytically.

Still, the SPhT has scored active contributions:
• to quantum maps (Balazs, Saraceno 1986–1994)
• and to phase-space descriptions of eigenvectors by the Husimi-

stellar representations (Leboeuf, Tualle, Nonnenmacher 1990–).
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