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Quantum theory landscape around 1970
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Figure 1: A small isolated set of exceptional solvable cases.

Everything else has to rely on perturbative approaches: pick a cou-
pling constant g (with g = 0 describing one of the solvable cases), then

expand, e.g., an energy eigenvalue E(g), as ) E,)g".
0

Problem: those series typically diverge, resummation techniques (Padé,
Borel...) have to be attempted.

0-1



Semiclassical approaches

Quantum mechanics based on Planck’s constant h > 0 has to closely
follow classical mechanics (which has 7~ = 0) when A& can be considered
negligibly small (and &~ 10734 [SI]).

In first approximation, quantum mechanics may then be expressible
using classical-mechanical solutions.

In one perspective this gives but another perturbative scheme: clas-
sical mechanics is the known (solved) case, and h is the expansion pa-
rameter.

Still, it is more generic (not confined to isolated dynamical models)
and flerible (schemes tailored to the type of quantity under study).
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Early semiclassical successes at ‘SPh'T’

They initially focused on nuclear physics: atomic nuclei are many-
body systems, too complex for plain perturbative approaches.

Nuclear physicists at SPhT brought significant contributions in:

- Hartree—Fock methods (stationary and time-dependent)

- mean-field theories

- generating-coordinate methods

- coherent-state techniques

- Thomas—Fermi calculations,
all of which broadly qualify as generalized semiclassical schemes.

Then, in quantum mechanics and field theory, SPhT shone in:

- large-order perturbation theory and instanton calculus

- large- N limit in quantum field theories

- analytic study of amplitudes and Landau singularities,
all likewise relating to semiclassical philosophies (sometimes in the com-
plex domain).
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The WKB - Wentzel-Kramers—Brillouin - method
(the primary 1D semiclassical method):

from approximate to fully exact
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Figure 2: My walk to and from high school took me every day - unknowingly at
the time - alongside the house where L. Brillouin was born, in Sevres (France).

Starting point: [—h?d?/d¢*+V (q)]v(q, h) = E(q, k) (1D stationary
Schrodinger equation) has formal approximate small-A solutions

(g, h) ~ u(q, i) e D/ (g, h) ~ Zun(q)hn (WKB Ansatz).
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Toward making WKDB exact

Exact WKB analysis, assuming 1D potentials V(q) analytic in the
complex q-plane, deciphers the standard complex-WKB equations for the
Schrodinger wave function ¥ (q, h) as a code for its analytical continuation
in ¢ - with this being a fully exact operation.

It grew around 1980 upon important earlier works:

- microlocal analysis in the analytic category: ramified Cauchy prob-
lem (Leray 1957), analytic pseudodifferential operators (Boutet de Monvel-
Krée 1967), hyperfunctions and microfunctions (Sato—Kawai—Kashiwara,
Pham, Bros—Tagolnitzer ~ 1970);

- Borel-transform approaches to perturbative series (Bender—Wu 1973,
Zinn-Justin 1977—) and specially semiclassical ones (Balian—Bloch 1974);
- Dingle’s (1973) treatment of asymptotic series using terminants;

- Sibuya’s (1975) direct approach yielding exact functional equations
for Stokes multipliers.

First came partial analyticity results in the Borel plane for the pure
quartic potential (Balian—Parisi-AV 1978-1979), triggered by work of
Knoll-Schaeffer 1976.
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1D Schrodinger operators: Hy = —d2/dg® + |q|V, ¢e R, N=1,2,...

e Spectral zeta functions Z7 (s) (convergent for Re s > 4+ 4
©.@)

Zn@ =3 BN 2R =X )

e Spectral determinant Dy () L det(Hy + \) (zeta-regularized):
defined through its logarithm:

logdet(Hx +A) 2 —0,Zxn (s, Mlsco,  Zn(s,0) % S ENM 407
k=0
Fundamental (convergent) expansion:
X Zn((n
log Dy (V) = ~2'(0) — 53 25y

n=1

Initial (1981) concrete outcomes of the exact WKB method were ex-
act identities on these spectral-zeta values at n = 0,1,2, ..., themselves
following from exact functional equations for the spectral determinants.
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Perturbative WKB results (large variable: z = A2t~ « 1/h — +00):

log Dy (M) —agx L loga(x) ~ Z QA 12
m=1

Then, with Borel transform specified as (x~%)p L ra /ol exact WKB

analysis predicts (quartic example):

e N =4
\ h‘fzay
4-1_2 =]
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This exact structure falls into the very general framework of resurgent
functions (Ecalle 1981). Exact-WKB analysis got further developed in
that direction by Pham et al. 1985-1997, Aoki—-Kawai—Takei 1991—.
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Borel resummation: a(x) = x fooo ap(7) e~ "7 dr converts that informa-
tion for N = 4 into a functional equation for Dy(\) = €™ q(x), z = \3/4:

Dy(A)Da(GA)D4(A) = Da(A) + Da(A) + Da(iPA) +2,  j < &2m/3,

later extended to a bilinear functional relation (with v 1ot ﬁ),

e’ DE(N) Dy (et \) —e ™ DT (e \)Dv(\) = 2i N # 2).
N N N N

Enforcing the compatibility of such functional relations with the above
expansions for log Dﬁ()\) at A = 0 generates polynomzal identities on the

zeta-values Z;(0), Zﬁ(n) (n=1,2,...): “exact-WKB sum rules”.
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Exact-WKB sum rules for the potentials |¢|Y (N =1,2,...):

countably many exact identities for the spectral zeta functions Zﬁ(s),

specifically for the values at nonnegative integers Z4 (0) and Z7% (n) (n = 1,2,...):

(n=20:) Zn(0) = logsinvm [l/ L ﬁ}
— cot vmsin 2vum Zp (1) + cos2vm Zn(1) = 0 [indeterminacy for N = 2]
— cotvmsindvm Zx(2) + cosdvm Zn(2) = —4cos? v Zy(1)?
— cot vmsin 6um Zy (3) + cos6um Zn (3) = 4cos® vm[2cos® vm Zy(1)°
— 3cos2um Zn (1) Zn (2)]

— cot vmsin 2nvm Zy(n) + cos2nvm Zn(n) = PrniZn(m) H<men

with Py, : homogeneous polynomials of degree n if deg[Z} (m)] L om.
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Exceptionally explicit examples occur at n = 2:

7 (20) 4NV T'(v)[(3v) ’
4 [(1—2v)T(2v+3)

cot v sin 4vm Zn(2) — cosdvm Zy(2) =
(with v ot Na-2)'
Specially:

e harmonic oscillator ¢2 : . E; *=72/8 = ((2) =72/6 (E, =2k+1)
0

e cubic oscillator |g|? : ZE% = (%)2/5 \/52+1 ™ [F(g)/F(%)]Q

e sextic oscillator ¢° : Z( DEE,? = = [T D(2)12/T(L)*
0
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Subsequently, all by itself, the key functional equation reached above,
e”™ DE (A Dy (€™ \) — e DL (eM™ N Dy (N) = 2i (N # 2)

gave rise to:

1) exact-WKB solutions for the eigen/values/functions (AV 1994-1999)
2) the ODE/IM correspondence, initiated by Dorey—Tateo 1999, linking
the exact-WKB method to the Bethe Ansatz for integrable models in 2D
statistical mechanics.

Ongoing applications of resurgent functions and exact WKB theory
appear to include:

- conformal field theories

- Chern—Simons theories

- topological quantum field theories
- SUSY gauge theories

- topological recursion

- Painlevé functions

- wall-crossing theory

- cluster algebras
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Quantum chaos

The semiclassical description of D > 1 strongly coupled (= far from
integrable) systems remains much less understood analytically.

Still, the SPh'T has scored active contributions:

e to quantum maps (Balazs, Saraceno 1986-1994)

e and to phase-space descriptions of eigenvectors by the Husimsi-
stellar representations (Leboeuf, Tualle, Nonnenmacher 1990-).
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