

- **Computational Quantum Many-Body Physics:** A few highlights
 - **Olivier Parcollet**
 - Center for Computational Quantum Physics Flatiron Institute, Simons Foundation, New York
 - &
 - IPhT, Saclay

The quantum many-body problem

- Many interacting quantum particles
- At low temperature. Collective effects.
- "More is different" Anderson, 73

Examples:

- Electrons in solids.
- Nano-electronics
- Quantum Chemistry.
- Quantum optics. Ultra-cold atoms
- Nuclear physics. QCD.

Quantum dot

Moiré systems

Interfaces

High Temperature superconductors

Ultra-cold atoms in optical lattices

Quantum Many-Body problem

- A central topic at IPhT, with many contributions e.g. C. De Dominicis, C. Bloch, J.P. Blaizot, H. Orland, G. Ripka, R. Balian, ...
- Very close to:
 - Quantum field theory.
 - Condensed matter theory.

Computational Quantum Many body physics

Develop concepts/methods/algorithms to solve quantum many body systems

Simplified Models

• e.g. Hubbard model

$$H = -\sum_{\langle ij \rangle, \sigma = \uparrow, \downarrow} t c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{i} U n_{i\uparrow} n_{i\downarrow}$$

Nearest neighbours

Ab initio / realistic

• From first principles

The Flatiron Institute / Simons Foundation

- Research institute of the Simons Foundation.
- 5 Centers.
 - Computational Astrophysics (CCA)
 - Computational Biology (CCB)
 - Computational Mathematics (CCM)
 - Computational Neurosciences (CCN)
 - Computational Quantum Physics (CCQ) \sim 15 faculty, 25 postdocs; students, visitors. Since fall 2017.

Junior position open between CCQ and IPhT ! (Deadline Nov 15th)

Mission: "to develop the concepts, theories, algorithms and codes needed to solve the quantum many-body problem and use the solutions to predict the behavior of materials and molecules of scientific and technological interest."

The CCQ Research Ecosystem

Parsimonious representations

- Compressed representation of wavefunctions $\psi(x_1, \ldots, x_N)$ / correlations functions
- Overcome the exponential scaling of the N-body problem.

Tensor Network

Machine learning

G. Carleo, M. Troyer Science (2017), J Robledo-Moreno et al. PNAS (2022)

- A *n*-dimensional array $T_{i_1i_2...i_n}$ with the indices $i_k \in \{1,...,d\}$
- Pictorial representation. Legs = indices. Contraction = connecting lines.

 $A_{i_1i_2}$

Low rank decomposition of tensors ?

Tensors

 $T_{i_1i_2\ldots i_n}$

Low rank matrix

Singular Value Decomposition (SVD) (or RRQR, RRLU ...)

$$A = UDV \qquad D =$$

- Precision ϵ : keep χ largest singular values λ_i
- $\chi = \epsilon$ -rank.

$$\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

Low rank: save memory and computing time

Low rank tensors

• Matrix product states (MPS) = Tensor Trains.

N-body wavefunctions

Amplitudes are a tensor.

$$|\Psi\rangle = \sum_{s_1s_2s_3\cdots s_n} \Psi(s_1, s_2, s_3,$$

$$\Psi(s_1, s_2, s_3, s_4, s_5, s_6)$$

- Variational Ansatz for ground state Ψ_{GS} in term of a low rank tensor network.
- Controlled by quantum entanglement.
- Excellent for 1d systems. Harder for 2d systems (PEPS, MERA).

- Efficient tensor network simulation of IBM's Eagle kicked Ising experiment.
- No "quantum supremacy"

nature

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > articles > article

Article Open access Published: 14 June 2023

Evidence for the utility of quantum computing before fault tolerance

Youngseok Kim [™], Andrew Eddins [™], Sajant Anand, Ken Xuan Wei, Ewout van den Berg, Sami Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme & Abhinav Kandala

Nature 618, 500–505 (2023) Cite this article

104k Accesses | 17 Citations | 947 Altmetric | Metrics

Simulating NISQ quantum computers

Joey Tindall

Matt Fishman

Dries Sels

Miles Stoudenmire

Tindall, Fishman, Stoudenmire, Sels arxiv:2306.14887 Tindall, Fishman, arxiv:2306.17837

Tensor Networks for high dimensional integration

Large dimension integrals

• Large dimension integral or sum ($n \ge 10$)

$$\int dx_1 \dots dx_n \ f(x_1, \dots, x_n)$$

- Curse of dimensionality : a priori $O(d^n)$.
- An ubiquitous problem e.g.
 - Partition functions.
 - Diagrammatics (real time, imaginary time).

 $\sum_{i_1=1}^{d} \dots \sum_{i_n=1}^{d} f_{i_1,\dots,i_n}$

Compress to integrate

$$\int dx_1 \dots dx_n f$$

If f can be written as a Matrix Product State (MPS) ...

$$f(x_1,\ldots,x_n) \approx M_1(x_1)\ldots M_n(x_n)$$

- with an error ε decreasing quickly with the rank χ (ε -factorizable) ...
- then integration is reduced to 1d integrals. Almost separated variables.

$$\int dx_1 \dots dx_n \ f(x_1, \dots, x_n) \approx \left(\int dx_1 M_1(x_1) \right) \dots \left(\int dx_n M_n(x_n) \right)$$

S. Dolgov and D. Savostyanov,

Computer Physics Communications 246, 106869 (2020)

 $f(x_1,\ldots,x_n)$

Tensor Cross Interpolation (TCI) algorithm

I. Oseledets and E. Tyrtyshnikov, Linear Algebra and its Applications 432, 70 (2010). S. Dolgov and D. Savostyanov, Computer Physics Communications 246, 106869 (2020)

- Builds MPS approximation for T_{i_1,i_2,\ldots,i_n} , with $i_k \in \{1,\ldots,d\}$
- Evaluating T on only $N \sim n d\chi^2 \ll d^n$ points.
- Error estimator $\epsilon(\chi)$, decreasing with rank/bond dimension χ
- Rank Revealing algorithm

 $\epsilon(\chi)$

Collaborators : Ph. Dumitrescu, Y. Nuñez-Fernandez, X. Waintal, J. Kaye

A concrete example

Perturbative series

Phys Rev X 12, 041018 (2022)

Perturbative series

In equilibrium ("Diagrammatic Quantum Monte Carlo")

Here, real time, out of equilibrium (Schwinger-Keldysh).

- Even in strong coupling regime (e.g. Kondo effect, pseudo gap in Hubbard model)
- Beyond the finite radius of convergence of the series, using resummation techniques.

From Prokofiev, Svistunov 98, Many works in equilibrium e.g. Hubbard model, pseudogap: Simkovic et al. arXiv:2209.09237

Profumo, Messio, Parcollet, Waintal PRB (2015) Bertrand, Florens, Parcollet, Waintal PRX 9, 041008 (2019)

 $K \approx 10 - 20$

Anderson model, 2 leads (L, R).

A concrete case: quantum dot

Hybridization

 $k\sigma$ $\alpha = L, R$

Q_n(t) : a n-dimensional integral

• Schwinger-Keldysh

$$Q_{n}(t) = \frac{1}{n!} \int_{t_{0}}^{\infty} du_{1} \dots du_{n} \left(\sum_{\substack{\alpha_{1} = \pm 1 \\ \alpha_{n} = \pm 1}} \left(\prod_{i=1}^{n} \alpha_{i} \right) \right) du_{i} = 0$$

$$Monte Carlo \equiv q_{n}(t)$$
or Tensor network ...

 q_n costs $O(2^n)$ to evaluate. We compute up to 30 orders.

qn is &-factorizable !

• In the time differences v_{i} (with time-ordered u_i)

$$v_1 = t - u_1$$

$$v_i = u_{i-1} - u_i \quad \text{for } 2 \le i$$

$$q_n(t, u_1, \ldots, u_n) \approx M_1(v_1) \ldots M_n$$

• Decompose q_n with TCI and integrate

Charge of the dot, q_{10} vs its MPS interpolation

$$\leq n$$
.

 $M_n(v_n)$

، ____

- High precision (9 digits) benchmark vs integrable case (equilibrium, flat bath).
- Number of evaluations of q_n : $N \sim \chi^2$
- χ does not grow with n
- Convergence rate : error $\sim 1/N^2$

G(T,0)(2e²/h)

0

 V_b

Computation

Experiment : T. Delattre et al. Nat. Phys. 208 (2009)

What about one (or few) variables functions ?

Quantics tensor trains (QTT)

Function of **one** continuous variable x as a tensor

$$0 \le x < 1 \qquad \qquad x = 0.d_1$$

- Many functions have low rank χ (e.g. e^{χ} has rank 1).
- Manipulate G in this representation, similar to orthogonal polynomials.
- Many potential applications e.g. PDE, turbulence, ...

(Usually use base 2 though, for example $1/3 \approx 0.01010101$)

 $d_2 d_3 d_4 d_5 d_6$

The CCQ Research Ecosystem

Auxiliary field QMC

Hubbard model has high-Tc d-SC superconductivity

- With second neighbor hopping
- AFQMC & DMRG

arXiv:2303.0837 March 15, 2023

Coexistence of superconductivity with partially filled stripes in the Hubbard model

Hao Xu,^{1,*} Chia-Min Chung,^{2,3,4,*} Mingpu Qin,⁵ Ulrich Schollwöck,^{6,7} Steven R. White,⁸ and Shiwei Zhang⁹

Shiwei Zhang (CCQ)

Quantum Embeddings

Quantum Embeddings

Dynamical Mean Field Theory (DMFT) and beyond, A. Georges, G. Kotliar 92.

Auxiliary "Quantum impurity" model

A few degrees of freedoms (d/f-shell) coupled to a non-interacting self-consistently bath of fermions

Sr₂RuO₄, a correlated Hund's metal

Normal phase. Great comparison with experiments.

Planckian metal

- A class of non Fermi liquid metals.
 - No quasi-particles.
 - Relaxation time is minimal
 - T-linear resistivity down to T=0

- SYK (Sachdev-Ye-Kitaev) models
 - A family of non Fermi liquids without quasi-particles.
 - Holography. AdS-CFT correspondance.

D. Chowdhury, A. Georges, O.P., S. Sachdev Rev. Mod. Phys. 94, 035004 (2022)

Doped quantum spin glass

• SU(2) disordered Heisenberg model + holes

$$H = -\sum_{ij,\sigma} (t_{ij} + \mu \delta_{ij}) c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{i < j} J_{ij} S_i \cdot S_j + U \sum_i n_{i\uparrow} n_{i\downarrow},$$

Ph. Dumitrescu, N. Wentzell, A. Georges, OP Phys. Rev. B 2022

Philipp Dumitrescu (CCQ)

- Slow spin dynamics.
- Linear resistivity at the quantum critical point

 $\rho \sim T$

 $\tau_{\rm tr}$

Fermi liquid

p

Transport time close to the Planckian limit

ħ

 \simeq (

Thank you for your attention!

34

A finite radius of convergence ! Singularities poles, branch cuts

Change of variable W(U), with W(0) = 0

$$Q = \sum_{n \ge 0} Q_n U^n = \sum_{p \ge 0} \bar{Q}_p W^p$$

Converges at W₀

Kondo resonance

ω/Γ $T = \Gamma/50$

- Split by voltage bias V_h
- One calculation, all U.

Bertrand et al. Phys. Rev. X (2019)

Bertrand et al. Phys. Rev. X (2019)

38

