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Simlar

• Many interacting quantum particles

• At low temperature. Collective effects.

• “More is different” Anderson, 73

• Examples: 

• Electrons in solids.

• Nano-electronics

• Quantum Chemistry.

• Quantum optics. Ultra-cold atoms 

• Nuclear physics. QCD.

2The quantum many-body problem

Ultra-cold atoms in optical lattices

Quantum dot

..............................................................
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The nature and length scales of charge screening in complex
oxides are fundamental to a wide range of systems, spanning
ceramic voltage-dependent resistors (varistors), oxide tunnel
junctions and charge ordering in mixed-valence compounds1–6.
There are wide variations in the degree of charge disproportio-
nation, length scale, and orientation in the mixed-valence com-
pounds: these have been the subject of intense theoretical study7–
11, but little is known about the microscopic electronic structure.
Here we have fabricated an idealized structure to examine these
issues by growing atomically abrupt layers of LaTi31O3

embedded in SrTi41O3. Using an atomic-scale electron beam,
we have observed the spatial distribution of the extra electron on
the titanium sites. This distribution results in metallic conduc-
tivity, even though the superlattice structure is based on two
insulators. Despite the chemical abruptness of the interfaces, we
find that a minimum thickness of five LaTiO3 layers is required
for the centre titanium site to recover bulk-like electronic proper-
ties. This represents a framework within which the short-length-
scale electronic response can be probed and incorporated in thin-
film oxide heterostructures.
In perovskites, charge ordering results in modulations of the

electron density in the form of planes and slabs, whereas in lower-
dimensional perovskite-derived systems, charge ordering leads to
stripes, or one-dimensional charge modulations. Approximations
to the first case can be realized in thin-film superlattices inwhich the
formal valence of the transition-metal ion is varied. Superlattices of
SrTiO3 and LaTiO3 are addressed here, where the titaniumvalence is
varied from 4þ to 3þ. SrTiO3 is a band insulator with an empty d
band, whereas LaTiO3 has one d electron per site, and strong
Coulomb repulsion results in a Mott–Hubbard insulator12. Super-
lattices of these two perovskites capture many of the important
aspects of naturally occurring charge-ordered systems, namely
mixed-valence configurations near half-filling. The lattice constants
are relatively well matched (for SrTiO3, ao ¼ 3.91 Å; LaTiO3,
pseudocubic ao ¼ 3.97 Å), and the continuity of the TiO6 octa-
hedral lattice across the superlattice minimizes the perturbation of
the electronic states near the chemical potential13,14. The principal
growth issue reduces to the control of the titanium oxidation state,
which we have recently addressed for bulk-like film growth15.
We grew SrTiO3/LaTiO3 superlattice films in an ultrahigh-

vacuum chamber (Pascal) by pulsed laser deposition, using a
single-crystal SrTiO3 target and a polycrystalline La2Ti2O7 target.
Extreme care was taken to start with atomically flat, TiO2-
terminated SrTiO3 substrates, which exhibited terraces several
hundred nanometres wide, separated by 3.91-Å unit cell steps as
observed by atomic force microscopy16. A KrF excimer laser with a
repetition rate of 4Hz was used for ablation, with a laser fluence at
the target surface of,3 J cm22. The films were grown at 750 8Cwith
an oxygen partial pressure of 1025 torr, which represented the best
compromise for stabilizing both valence states of titanium. Oscil-
lations in the unit-cell reflection high-energy electron diffraction
intensity were observed throughout the growth, and were used to
calibrate the number of layers grown. After growth, the films were
annealed in flowing oxygen at 400 8C for 2–10 hours to fill residual
oxygen vacancies.

Figure 1 shows the annular dark field (ADF) image of a super-
lattice sample obtained by scanning transmission electron
microscopy (JEOL 2010F) of a 30-nm-thick cross-section along a
substrate [100] zone axis. In this imaging mode, the intensity of
scattering scales with the atomic number Z as Z1.7, so the brightest
features are columns of La ions, the next brightest features are
columns of Sr ions, and the Ti ions are weakly visible in between17–19.
The quality of the interfaces does not degrade with continued
deposition, and the atomic step and terrace structure of the growing
surface is maintained for hundreds of nanometres. The magnified
view at the top of Fig. 1 shows a higher-resolution image, which
visibly demonstrates the ability to grow a single layer of La ions.
Because the layer is viewed in projection, roughness along the
beam—particularly on length scales thinner than the sample—
leads to apparent broadening. Thus these results represent an
upper limit to the actual width of the layers.

With the same imaging conditions used to obtain Fig. 1, we
analysed the energy of the transmitted electron beam and per-
formed core level spectroscopy, atom column by atom column20–22.
This approach is able to probe internal structures directly, unlike
surface-sensitive methods. Specifically, the titanium L2,3, oxygen K,
and lanthanumM4,5 edges can be simultaneously recorded, with an
energy resolution of,0.9 eV and a spatial resolution slightly worse
than the ADF resolution of,1.9 Å, primarily owing to drift during
the slower acquisition of the spectra. We obtained a scan through
the Ti sites crossing a 2-unit-cell layer of LaTiO3 (top centre panel of
Fig. 2). By substituting La for Sr, there is locally an extra electron
that resides mainly on the Ti d orbitals23. To visualize this effect, the
Ti L2,3 near-edge structure can be decomposed into a linear
combination of Ti3þ and Ti4þ, with no residual detectable above
the experimental noise level (bottom panel of Fig. 2).

This decomposition, which would fail both conceptually and
experimentally for more covalent materials, allows a particularly

Figure 1 Annular dark field (ADF) image of LaTiO3 layers (bright) of varying thickness

spaced by SrTiO3 layers. The view is down the [100] zone axis of the SrTiO3 substrate,

which is on the right. After depositing initial calibration layers, the growth sequence is

5 £ n (that is, 5 layers of SrTiO3 and n layers of LaTiO3), 20 £ n, n £ n, and finally a

LaTiO3 capping layer. The numbers in the image indicate the number of LaTiO3 unit cells

in each layer. Field of view, 400 nm. Top, a magnified view of the 5 £ 1 series. The raw

images have been convolved with a 0.05-nm-wide gaussian to reduce noise.
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• A central topic at IPhT, with many contributions 
e.g.  C. De Dominicis, C. Bloch, J.P. Blaizot, H. Orland, G. Ripka, R. Balian, …

• Very close to:

• Quantum field theory.

• Condensed matter theory.

3

Quantum Many-Body problem



Simplified Models 

• e.g. Hubbard model

4Computational Quantum Many body physics

Sr2RuO4 general

HALL

Dependence of the Hall coefficient in Sr2RuO4 
on temperature and impurity concentration.4

2x sign change
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Ab initio / realistic

• From first principles

Develop concepts/methods/algorithms to solve quantum many body systems
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• Research institute of the Simons Foundation.

• 5 Centers.  

• Computational Astrophysics (CCA)

• Computational Biology (CCB)

• Computational Mathematics (CCM)

• Computational Neurosciences (CCN) 

• Computational Quantum Physics (CCQ) 
 15 faculty, 25 postdocs; students, visitors. 

Since fall 2017.
∼

5

The Flatiron Institute /
Simons Foundation

 Mission: “to develop the concepts, theories, 
algorithms and codes needed to solve the 
quantum many-body problem and use the 
solutions to predict the behavior of materials and 
molecules of scientific and technological interest.” 

Junior position open between CCQ and IPhT ! (Deadline Nov 15th)



Strong electron 
correlations

Topological 
materials

Non-equilibrium 
steady states

Transition-metal 
oxides

Pump-probe experiments

Two-dimensional models;  
Twisted moiré materials CCQ Core Mission: 

Understanding Large interacting Quantum 
Systems 

(The Quantum Many-Body Problem)

Quantum embedding 
Dynamical mean-field 
theory and extensions;

(TRIQS library)

Tensor Networks 
(ITensor Library)

Quantum 
Monte Carlo 

(AFQMC Software)

Electronic structure 
Ab initio computations 

(GW software,  
Octopus ,PySCF)

Machine learning

The CCQ Research Ecosystem

Light-control

Theory, computational methods and CCQ software

Strong light-matter  
Coupling; Cavities

Quantum Materials,  
Models and Molecules

Dynamics 
and Control

Strong electron 
correlations

Strange metals



7Parsimonious representations

• Compressed representation of  
wavefunctions / correlations functions 

• Overcome the exponential scaling of the N-body problem.

ψ(x1, …, xN)

Tensor Network Machine learning

G. Carleo, M. Troyer  Science (2017),   
J Robledo-Moreno et al. PNAS (2022)



• A -dimensional array  with the indices 

• Pictorial representation.  
Legs = indices.  
Contraction = connecting lines.

n Ti1i2…in ik ∈ {1,…, d}

8Tensors

i1 ini2i2

Ti1i2…inAi1i2

i1

Low rank decomposition of tensors ?



• Singular Value Decomposition (SVD) (or RRQR, RRLU …)

9Low rank matrix

<latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>�
≈

A = UDV D =

λ1 0 … 0
0 λ2 … 0
⋮ ⋮ ⋮
0 … 0 λn

• Precision :  keep  largest singular values 

• -rank. 

ϵ χ λi

χ = ϵ

Low rank:  save memory and computing time



• Matrix product states (MPS) = Tensor Trains.

10Low rank tensors
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• Tree form

many nearly fully occupied (empty) bath sites with very
low (high) on-site energies ϵl.
Since basis states withmany unoccupied low-energy sites

have a very low Schmidt coefficient, these states are
discarded from the MPS. The same holds for occupied
high-energy sites. However, when dealingwithmulti-orbital
models, the star geometry is not enough to be able to
calculate Green’s functions using MPS. The growth of the
bond dimensions still makes those calculations unfeasible.
The key idea of the present work is to construct a tensor

network which is beyond a standard MPS but similar
enough to be able to use established methods like DMRG
and time evolution. From Hamiltonian (1), one can
immediately notice that there are no terms coupling bath
sites of different orbitals. Hence, it might not be advanta-
geous to combine those (not directly interacting) degrees of
freedom into one large physical index in the MPS.
Therefore, our proposed tensor network separates the

bath degrees of freedom as much as possible. It consists of
separate tensors for every orbital-spin combination, each
connected to bath tensors as shown in Fig. 2. This tensor
network is not a MPS anymore since there are some tensors
(labeled A↓ and B↑ in the example of Fig. 2) that have
three bond indices and one physical index, i.e., which are of
rank four. Cutting any bond splits the network into two
separate parts. Therefore, one can calculate the Schmidt
decomposition in a way very similar to a MPS, which
means that DMRG is also possible. The main bottleneck of
calculations with FTPS is to perform SVDs of the rank-four

tensors representing the impurities. When all bond indices
have the same dimension χ, it is necessary to do a SVD for
a χ2d × χ matrix with computational complexity Oðχ4dÞ.
However, as we show below, this operation does not pose a
substantial problem for calculations using FTPS. Since the
impurity tensors pose the biggest challenge, our tensor
network would likely also allow us to deal with the chain
geometry without a drastic increase in computational cost.
In the present paper, we only use FTPS with baths in star
geometry. The proposed FTPS are similar to the tensor
network used by Holzner et al. [37] to perform NRG
calculations for ground-state properties of an AIMwith two
orbitals.
The three-legged tensors in our network (Fig. 2) can also

be interpreted as two coupled junctions with three legs in
the language of Ref. [45], where it has been shown that
DMRG is possible on such junctions. Furthermore, our
approach has similarities to the so-called tree tensor net-
works (TTN) [43,46–48].

1. Time evolution

Time evolution with the Hamiltonian Eq. (1) is not
straightforward since it features long-range hoppings.
Possible methods include Krylov approaches [49], the
time-dependent variational principle [50,51], and the series
expansion of eiHt proposed by Zaletel et al. [52]. In this
work, however, we use a much simpler approach.
First, we split the Hamiltonian into the following terms:

(i) the spin-flip and pair-hopping terms HSF-PH
m;m0 for each

orbital combination, with
P

m0>mH
SF-PH
m;m0 ¼ HSF-PH [see

Eq. (1)], (ii) the density-density interaction terms HDD,
and (iii) all other terms, Hfree ¼ Hbath þ ϵ0

P
mσnm0σ. With

these terms, we write the time-evolution operator for a
small time step Δt using a second-order Suzuki-Trotter
decomposition [53],

e−iΔtH≈
! Y

m0>m

e−i½ðΔtÞ=2&H
SF-PH
m;m0

"
e−i½ðΔtÞ=2&HDD ·

×e−iΔtHfreee−i½ðΔtÞ=2&HDD

! Y

m0>m

e−i½ðΔtÞ=2&H
SF-PH
m;m0

"
: ð8Þ

Note that in this decomposition, the order of the spin-flip and
pair-hopping terms is important. The order of operators in
the second product must be opposite to the one in the first.
We see that Eq. (8) involves three different operators,

HSF-PH
m;m0 , HDD, and Hfree, each of which will be treated

differently.
Time evolution of the density-density interactions is

performed with a MPO-like representation of the time-
evolution operator e−i½ðΔtÞ=2&HDD. For a three-orbital model,
first the full matrix (43 × 43) of e−i½ðΔtÞ=2&HDD is created,
which is then decomposed into MPO form by repeated
SVDs. Since HDD only consists of density-density inter-
actions, no fermionic sign appears in e−iΔtHDD .

FIG. 2. Graphical representation of a FTPS for multi-orbital
AIM. Separating bath degrees of freedom leads to a forklike
structure. In this picture, a two-orbital model is shown, with four
bath sites in each orbital. Orbitals are labeled A and B, and the
arrows denote the spin. Each spin-orbital combination has its own
bath sticking out to the right. As in Fig. 1, the vertical lines are the
physical degrees of freedom [all of dimension two, for empty
(respectively, occupied) bath sites]. All other lines are bond
indices, and like in the MPS, they are summed over. As
mentioned in the text, the bath is represented in star geometry
because of the smaller bond dimensions needed. The bath sites
are ordered according to their on-site energies. Two example
hoppings V1 and V2 are drawn.

DANIEL BAUERNFEIND et al. PHYS. REV. X 7, 031013 (2017)

031013-4

• 2D. PEPS, MERA, etc…



• Amplitudes are a tensor.

11N-body wavefunctions 

s1 s2 s3 s4 s5 s6

<latexit sha1_base64="XapYgzdTqUXbCk8uuZx6f/Ortok="></latexit>

 (s1, s2, s3, s4, s5, s6) =

<latexit sha1_base64="mGA8H2iH2uGGGABp8ZMFONyD9d0="></latexit>

| i =
X

s1s2s3···sn

 (s1, s2, s3, · · · , sn) |s1s2s3 · · · sni

• Variational Ansatz for ground state  in term of a low rank tensor network.

• Controlled by quantum entanglement.

ΨGS

• Excellent for 1d systems. Harder for 2d systems (PEPS, MERA).



• Efficient tensor network simulation of  
IBM’s Eagle kicked Ising experiment.

• No “quantum supremacy”

12Simulating NISQ quantum computers
5

FIG. 4. Comparison for non-classically-verifiable systems of our BP-approximated tensor network state approach to
simulating the dynamics of the kicked transverse-field Ising model on the heavy-hex lattice versus the Eagle quantum
processor and alternative tensor network methods. Expectation values calculated following a number of Trotter steps
of the dynamics of the model — see Eq. (1) — are plotted. a) Weight-17 stabilizer after 6 steps of evolution. b)
Weight-1 observable after 20 steps. The shaded region shows the di↵erence between our finite bond dimension data
and the data extrapolated to infinite bond dimension, where we believe the true answer lies. c) Top and bottom plots
show observables in b) at ✓h = 0.7 and ✓h = 1.0 respectively as a function of inverse bond dimension of the TNS. Red
dashed lines represent a least squares fit of the form A + B/� taken on the data, and we take A to be the predicted
value of the observable in the limit � ! 1. Even in the limit � ! 1 there will generally be some deviation from the
exact result due to the BP approximation that we use for evolving the state and computing expectation values (see
the Methods section). Our analysis of the errors due to BP for this system, however, suggest this deviation is likely to
be very small. d-f) Dynamics of hZ62i using the BP-approximated TNS approach versus a MPS approach with light
cone depth reduction (pink) for ✓h = 0.6, 0.8 and 1.0 respectively. Results from other methods at depth 20 are shown
as black circles (Eagle processor [10]), green crosses (truncated Pauli strings [12]), blue hexagons (MPO [11]) and red
stars (PEPO [13]). MPS bond dimensions are 2500, 1250, and 1250 for d), e), and f) respectively. Inset shows average
gate error from the MPS approach (pink circles) and absolute di↵erence between the BP-approximated TNS and the
MPS result (solid grey line).

small, one can consider MPS to be exact as it makes no assumption about the tree-like correlations and the
separability of the edge environments. The fact the BP-based method agrees with the MPS method when it
exhibits very small errors suggest the BP error is also minimal. This is clearest for ✓h = 0.6 where we are
able to push our MPS simulations to a bond dimension where the average gate errors stays below 10�4 and
there is clear agreement between BP-approximated TNS and MPS and disagreement among the other methods
[11–13, 15]. This agreement is only possible if the state possesses tree-like correlations and thus reinforces our
earlier results on the general accuracy of the BP approximation for the dynamics of this system on this lattice.

Dynamics of the infinite heavy-hex lattice - One of the powerful features of tensor network methods is
that they allow us to simulate the dynamics of infinite lattice structures provided they possess some form of
translational invariance [16–18]. Here we present results on the dynamics of the kicked transverse-field Ising
model on an infinite heavy-hexagon lattice, corresponding to a quantum computer with an infinite number
of qubits. Again, we approximate the dynamics and take expectation values using the BP approximation.
Given evidence that we have presented on the accuracy of the BP approximation for this lattice and model,
especially for larger system sizes, we expect that these results are highly accurate.

For the infinite heavy-hex lattice there is a 5-site unit cell which can be used to construct the lattice (see Fig.
5). We take this single unit cell and add in appropriate periodic boundary conditions. It can be shown that

Tindall, Fishman, Stoudenmire, Sels arxiv:2306.14887 
Tindall, Fishman, arxiv:2306.17837

Miles Stoudenmire

Dries Sels

Matt Fishman

Joey Tindall
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FIG. 1. Left) Structure of the Eagle quantum processor which consists of a 6 ⇥ 3 heavy-hexagon lattice with two
additional qubits (113 and 13) added to the bottom left and right corners of the lattice. Right) Tensor network
structure used for our simulations of heavy-hex lattices, with the network structure directly reflecting the lattice. On-
site tensors �v are coloured in blue and possess physical, uncontracted, indices of dimension 2 (represented by their
dangling legs) and virtual indices of dimension � (represented by the edges of the network) which are shared with
neighboring tensors. Positive, diagonal bond tensors ⇤e live on the edges e between the site tensors and are coloured
in grey.

high-depth quantum circuit involving an infinite number of qubits.
Our work here demonstrates the e↵ectiveness of a belief propagation tensor network approach for solving

many-body dynamics problems. We anticipate our chosen methodology will find success and serve as a
benchmark when applied to problems with locally tree-like correlations and limited entanglement.
Model and Ansatz. Our focus here is on the dynamics of the Trotterized kicked transverse-field Ising model

given by the unitary

U(✓h) =

0
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2
Xv

◆!
, (1)

where Z and X denote Pauli operators and hv, v
0
i indicates that v and v

0 are neighbors on the corresponding
lattice. The lattice we are concerned with is that of the ‘heavy-hex’ lattice which corresponds to a hexagonal
lattice decorated with additional qubits along the edges (see Fig. 1). The dynamics of this model was recently
simulated on the IBM Eagle quantum processor [10], which corresponds to a lattice of 6 ⇥ 3 heavy-hexagons
plus two additional qubits.
Here, in order to simulate this system on a classical computer, we adopt a tensor network approach that

respects the qubit connectivity of the heavy-hex lattice (see Fig. 1). We fix a maximum amount of entanglement
in the system by limiting the bond dimension � of the network. We then evolve our tensor network state (TNS)
by application of the gates in U(✓h) under the belief propagation (BP) approximation; referring to the resulting
TNS as a BP-approximated TNS. Unless otherwise stated, we also extract expectation values from the TNS
using belief propagation. Explicit details of our BP-based method are provided in the Methods section. The
BP method is fully controlled on trees but incurs a potentially small but uncontrolled approximation when
there are loops in the network. Our results demonstrate that for a su�ciently large lattice, even at significant
circuit depths, the correlations in this model remain ‘tree-like’ in the sense of the BP approximation giving
very accurate results. Let us present these results.
Results. We start by considering lattices with a small number of heaxy-hexagons, where an exact state vec-

tor simulation is possible and our method can be directly benchmarked (see Fig. 2). Specifically, we compute
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Tensor Networks 
for high dimensional integration 



• Curse of dimensionality :  a priori . 

• An ubiquitous problem e.g.

• Partition functions.

• Diagrammatics (real time, imaginary time).

O(dn)

14Large dimension integrals

∫ dx1…dxn f(x1, …, xn)

• Large dimension integral or sum ( )n ≥ 10
d

∑
i1=1

. . .
d

∑
in=1

fi1,...,in



• If f can be written as a Matrix Product State (MPS) …

15Compress to integrate

∫ dx1…dxn f(x1, …, xn)

• with an error ε decreasing quickly with the rank χ (ε-factorizable) …

• then integration is reduced to 1d integrals.  Almost separated variables.

∫ dx1…dxn f(x1, …, xn) ≈ (∫ dx1M1(x1))…(∫ dxnMn(xn))

f(x1, …, xn) ≈ M1(x1)…Mn(xn) = …
x1 x2 xnxn−1

M1 M2 Mn−1 Mn

1 × χ χ × χ χ × χ χ × 1

S. Dolgov and D. Savostyanov,  
Computer Physics Communications 246, 106869 (2020)



• Builds MPS approximation for ,  with  

• Evaluating  on only  points.

• Error estimator , decreasing with rank/bond dimension 

• Rank Revealing algorithm

Ti1,i2,…,in ik ∈ {1,…, d}

T N ∼ ndχ2 ≪ dn

ϵ(χ) χ

16Tensor Cross Interpolation (TCI) algorithm
I. Oseledets and E. Tyrtyshnikov, Linear Algebra and its Applications 432, 70 (2010). 
S. Dolgov and D. Savostyanov, Computer Physics Communications 246, 106869 (2020)

in
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A concrete example

Perturbative series

Collaborators : Ph. Dumitrescu, Y. Nuñez-Fernandez, X. Waintal, J. Kaye

Phys Rev X 12, 041018 (2022)



18Perturbative series

• Even in strong coupling regime (e.g. Kondo effect, pseudo gap in Hubbard model)

• Beyond the finite radius of convergence of the series, using resummation techniques.

Q(t, U) =
K

∑
n=0

Qn(t)Un

Time
Interaction

• In equilibrium (“Diagrammatic Quantum Monte Carlo”) 
From Prokofiev, Svistunov 98,   
Many works in equilibrium 
e.g.  Hubbard model, pseudogap: 
      Simkovic et al. arXiv:2209.09237

• Here, real time, out of equilibrium (Schwinger-Keldysh). Profumo, Messio, Parcollet,  Waintal  PRB (2015)
Bertrand, Florens, Parcollet, Waintal PRX 9, 041008 (2019) 

K ≈ 10 − 20



•  Anderson model, 2 leads (L, R).

19A concrete case: quantum dot

R

Charge transport through single molecules, quantum dots, and quantum wires 27

µ RLµ
ΓL

LU
µ RLµ ε

RU

ΓRS
z / z /JJ

(a) (b)

Figure 8. (color online) Two fundamental quantum dot models. (a) is the Kondo
model, a spin- 12 coupled via exchange couplings Jz,⊥ to two reservoirs. (b) is the IRLM,
a spinless 1-level quantum dot coupled via tunneling rates ΓL,R and Coulomb couplings
UL,R to two reservoirs. The electrochemical potentials are given by µL/R = ±V/2

for the couplings. Similar schemes can be developed for the calculation of the transport

current [5] and correlation functions [189]. All RG equations involve resolvents similar

to the one occurring in (16) where z is replaced by Λ together with other physical energy

scales. As a consequence, it can be shown that, besides temperature, each term of the

RG equation has a specific cutoff scale Λi, which is generically of the form

Λi = |E +
∑

j

njµαj − hi + iΓi| ≡ |δi + iΓi| . (17)

Here, E is the real part of the Laplace variable, nj are integer numbers, and µα denotes

the electrochemical potential of reservoir α. It shows that the cutoff scale is given by the

distance δi to resonances. Furthermore, it provides the generic proof that, at resonance
δi = 0, the cutoff scale is given by the corresponding rate Γi. This issue was under

debate for some time because it was speculated that electrons tunneling in and out via

the same reservoir correspond to low-energy processes, which could possibly lead to a

strong coupling fixed point even in the presence of a finite bias voltage [195]. However,

it was argued that voltage-induced decay rates prevent the system from approaching

the strong coupling regime [177, 196, 197]. The microscopic inclusion of decay rates as
cutoff scales into nonequilibrium RG methods was achieved within RTRG [185–187],

flow equation methods [180], and RTRG-FS [5].

5.2. Applications

The two models used to illustrate the basic physics of spin and charge fluctuations are
sketched in figure 8. One model is the Kondo model at finite magnetic field h already

discussed in section 4, where a spin-1/2 couples via anisotropic exchange couplings Jz/⊥

to the spins of two reservoirs. We have assumed a symmetric coupling to the leads and

note that during the exchange it is also allowed that a particle is transferred between the

reservoirs. The model results from the Coulomb blockade regime of a quantum dot with

one level, where charge fluctuations are frozen out and only the spin can fluctuate. This

leads to an effective band width of the reservoirs of the order of the charging energy U .
Anisotropic exchange couplings can be realized for a molecular magnet, see section 2.

The other model is the IRLM, where the quantum dot consists of a single spinless energy

level at position ϵ. The dot interacts with the reservoirs via tunneling processes, which
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20Qn(t) : a n-dimensional integral

Switch on  
interaction

t� t0�

t+ t0++ C

�
t

t0
tu1 u2 u3

α1 α2 α3 α

Times   
Keldysh indices 

ui
α = ± 1

•  costs  to evaluate.  We compute up to 30 orders.qn O(2n)
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• In the time differences vi. (with time-ordered )ui
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qn is ε-factorizable !

v1 = t� u1

vi = ui�1 � ui for 2  i  n.
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Data with the new tensor train technique

Nature Physics 5, 208 (2009)
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Vb

ϵd

G ≡
∂I

∂Vb
U = 6 NATURE PHYSICS DOI: 10.1038/NPHYS1186 LETTERS

VG (V)

V
sd

 (
m

V
)

G(T,Vsd)(2e2/h)

-

+

-

+

Spectrum analyser

S D

Vsd

1.4 K

SAR1
SAR2

G
(T,0

)(2e
2/h)

0 0.5 1.0

¬10

5

¬5

0

10

11.00 11.50 12.00

1.0

0

a

c

b

1.0

0.8

0.6

0.4

0.2

0

dI
/d

V
 (

2e
2 /

h)

1 10
T (K)

0 3 6 9 12

4kBTdI/dV (10¬27 A2 Hz¬1)

12

9

6

3

0

S
I  (10

¬27 A
2 H

z
¬1)

Figure 1 |Anomalous temperature dependence of the current noise at the onset of the Kondo effect. a, Colour-scale plot of the differential conductance
as a function of the gate voltage VG and the source–drain bias Vsd at temperature T = 1.4 K. The characteristic horizontal lines in the middle of the Coulomb
diamonds signalling the Kondo effect are observed. Orange lines, the linear conductance curves at T = 1.4 K (solid line) and T = 12 K (dashed line).
b, Simplified diagram of the noise-measurement scheme and scanning electron microscope picture of a typical sample. The bar corresponds to 1 µm.
c, Left, the non-monotonic temperature dependence of the equilibrium current fluctuations on the Kondo ridge SAR1 (VG = 11.26 V (black squares)). Blue
circles, the corresponding variation of G(T,Vsd = 0). Solid black line, the dependence of SI predicted from the Johnson–Nyquist formula. Right, SI versus
4kBTG(T,Vsd = 0). The line corresponds to the expected slope of unity. The error bars correspond to the mean square root of the statistical error and the
systematic error due to fluctuations of the background.

the current flowing through the nanotube atVsd =0.84mV, is about
0.84±0.09(0.89±0.1) for SAR1 (SAR2) respectively. Therefore, the
noise remains sub-Poissonian.

In general, the noise properties of carbon nanotubes are
affected by the existence of a possible orbital degeneracy, which
arises from the band structure of graphene, as recently shown
in the non-interacting limit16. Therefore, a first step towards the
understanding of the measurements presented in Fig. 2 is to use a
resonant tunnellingmodel with two spin-degenerate channels, with
transmissioneDi,res(✏)=di/(1+✏2/� 2), di being the transmission of
the channel of index i 2 {1,2}, � being the width of the resonant
level and ✏ being the energy. From the non-interacting scattering
theory11, the current and the noise associatedwitheDi,res read

I (Vsd)=
2e
h

X

i=1,2

Z 1

�1
eDi,res(✏)(fL � fR) d✏ (1)

SI (Vsd) = 4e2

h

X

i=1,2

Z
d✏

�eDi,res(✏)[fL(1� fL)+ fR(1� fR)]

+ eDi,res(✏)[1�eDi,res(✏)](fL � fR)2
 

(2)

with fL = f (eVsd/2 + ✏) and fR = f (�eVsd/2 + ✏), f (✏) being
the Fermi function at temperature T . The fits of dI/dV using

equation (1) andeDi,res, shown in blue dashed lines in Fig. 2a,b, yield
d1 = d2 = 0.95 (d1 = d2 = 0.99) and � = 0.11meV (� = 0.09meV)
respectively. These fits are poor because the Lorentzian line shape
with constant � assumed for eDi,res is not able to account for both
the height and the width of the measured dependence of dI/dV
as a function of Vsd. Furthermore, the noise variation obtained
with formula (2) using the above values for d1, d2 and � , in blue
dashed lines in the lower panels of Fig. 2a,b, is about an order of
magnitude smaller than our experimental findings. Therefore, a
simple non-interacting resonant-tunnelling theory cannot account
either for the conductance or for the noise that we observe.

In the Kondo regime, in the case of a fourfold degeneracy and
single charge occupancy, themaximumof the Kondo resonance lies
at TK above the Fermi energy of the leads according to the Friedel
sum rule, as depicted in Fig. 3b. From this, we can infer that, if
the couplings of the level to the left �L and the right �R electrodes
are the same (hereafter called the symmetric case), the differential
conductance which saturates at 2e2/h corresponds to two channels
of transmission 1/2 ((1/2)(4�L�R/(�L +�R)2) in the general case).
This corresponds to the so-called SU(4) Kondo effect, where the
spin and the orbital degree of freedom play equivalent roles17,18 in
the Kondo screening.

Unfortunately, no full out-of-equilibrium theory of the Kondo
effect is available. As shown below, our experiments are carried
out in a regime where T ⇠ TK/3 and eVsd . 3kBTK. Therefore, we

NATURE PHYSICS | VOL 5 | MARCH 2009 | www.nature.com/naturephysics 209

Experiment : T. Delattre et al. 
 Nat. Phys. 208 (2009)
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Figure 8. (color online) Two fundamental quantum dot models. (a) is the Kondo
model, a spin- 12 coupled via exchange couplings Jz,⊥ to two reservoirs. (b) is the IRLM,
a spinless 1-level quantum dot coupled via tunneling rates ΓL,R and Coulomb couplings
UL,R to two reservoirs. The electrochemical potentials are given by µL/R = ±V/2

for the couplings. Similar schemes can be developed for the calculation of the transport

current [5] and correlation functions [189]. All RG equations involve resolvents similar

to the one occurring in (16) where z is replaced by Λ together with other physical energy

scales. As a consequence, it can be shown that, besides temperature, each term of the

RG equation has a specific cutoff scale Λi, which is generically of the form

Λi = |E +
∑

j

njµαj − hi + iΓi| ≡ |δi + iΓi| . (17)

Here, E is the real part of the Laplace variable, nj are integer numbers, and µα denotes

the electrochemical potential of reservoir α. It shows that the cutoff scale is given by the

distance δi to resonances. Furthermore, it provides the generic proof that, at resonance
δi = 0, the cutoff scale is given by the corresponding rate Γi. This issue was under

debate for some time because it was speculated that electrons tunneling in and out via

the same reservoir correspond to low-energy processes, which could possibly lead to a

strong coupling fixed point even in the presence of a finite bias voltage [195]. However,

it was argued that voltage-induced decay rates prevent the system from approaching

the strong coupling regime [177, 196, 197]. The microscopic inclusion of decay rates as
cutoff scales into nonequilibrium RG methods was achieved within RTRG [185–187],

flow equation methods [180], and RTRG-FS [5].

5.2. Applications

The two models used to illustrate the basic physics of spin and charge fluctuations are
sketched in figure 8. One model is the Kondo model at finite magnetic field h already

discussed in section 4, where a spin-1/2 couples via anisotropic exchange couplings Jz/⊥

to the spins of two reservoirs. We have assumed a symmetric coupling to the leads and

note that during the exchange it is also allowed that a particle is transferred between the

reservoirs. The model results from the Coulomb blockade regime of a quantum dot with

one level, where charge fluctuations are frozen out and only the spin can fluctuate. This

leads to an effective band width of the reservoirs of the order of the charging energy U .
Anisotropic exchange couplings can be realized for a molecular magnet, see section 2.

The other model is the IRLM, where the quantum dot consists of a single spinless energy

level at position ϵ. The dot interacts with the reservoirs via tunneling processes, which
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What about one (or few) variables functions ?



• Function of one continuous variable  as a tensorx

25Quantics tensor trains (QTT)
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(Usually use base 2 though, for example    )1/3 ≈ 0.01010101

• Many functions have low rank  (e.g.  has rank 1).

• Manipulate G in this representation, similar to orthogonal polynomials.

• Many potential applications e.g. PDE, turbulence, …
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Auxiliary field QMC



• With second neighbor hopping

• AFQMC & DMRG

28Hubbard model has high-Tc d-SC superconductivity

arXiv:2303.0837 March 15, 2023

Shiwei Zhang (CCQ)
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Quantum Embeddings



30Quantum Embeddings

Sr2RuO4 general

HALL

Dependence of the Hall coefficient in Sr2RuO4 
on temperature and impurity concentration.4

2x sign change

Sr

Ru
O

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…
Atom

 Bath

Auxiliary 
“Quantum impurity” model

A few degrees of freedoms  
(d/f-shell)  

coupled to a non-interacting  
 self-consistently bath of fermions

Dynamical Mean Field Theory (DMFT) and beyond,  
A. Georges, G. Kotliar 92. 



• Normal phase. Great comparison with experiments.

Sr2RuO4 general

HALL

Dependence of the Hall coefficient in Sr2RuO4 
on temperature and impurity concentration.4

2x sign change

Sr

Ru
O

31Sr2RuO4, a correlated Hund’s metal

A. Tamai, M. Zingl et al. 
Phys. Rev. X 9, 021048 (2019)

ARPES

Laser-ARPES Fermi surface of 
Sr2RuO4 compared to theory.3  

Benc
hmar
kCT
QMC 

: 
MPS

ARPES

THEORY

Self-energy 
Fermi surface

ARPES

Laser-ARPES Fermi surface of 
Sr2RuO4 compared to theory.3  
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QMC 

: 
MPS

ARPES

THEORY

Spin Dynamics (RIXS)

H. Suzuki et al.,  
Nat. Commun. 14, 7042 (2023)

• Superconducting phase. Order ? Mechanism ? 



• A class of non Fermi liquid metals.

• No quasi-particles.

• Relaxation time is minimal 

• T-linear resistivity down to T=0

• SYK (Sachdev-Ye-Kitaev) models 

• A family of non Fermi liquids without quasi-particles.

• Holography.  AdS-CFT correspondance.

32Planckian metal
D. Chowdhury, A. Georges, O.P., S. Sachdev 

Rev. Mod. Phys. 94, 035004 (2022)

⌧ ⇠ ~
kBT
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Ph. Dumitrescu, N. Wentzell, A. Georges, 
OP Phys. Rev. B 2022 

Philipp Dumitrescu (CCQ) 

• Slow spin dynamics.

• Linear resistivity at the quantum 
critical point 

ρ ∼ T

1
τtr

≃ c
kBT
ℏ

• Transport time 
close to the 
Planckian limit

• SU(2) disordered Heisenberg model + holes
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36Conformal change of variables

U0

U complex plane

0

Weak coupling Strong coupling

Q = ∑
n≥0

QnUn

Converges at W0

Q = ∑
n≥0

QnUn = ∑
p≥0

Q̄pWp

• Change of variable W(U), with W(0) = 0

Profumo et al.  PRB 91, 245154 (2015) 
Bertrand et al. Phys. Rev. X 9, 041008 (2019) 

A finite radius of convergence !  
Singularities poles, branch cuts

W0=W(U0)

0

W complex plane

W(U)

Riemann  
Schwartz-Christoffel
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Out of equilibrium. Steady state

Kondo resonance
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Dot non-thermal distribution function 
 at  with voltage T = 0 Vb

n(ω) ≡
G<(ω)

2πiA(ω)

• Split by voltage bias 

• One calculation, all .

Vb

U
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Figure 8. (color online) Two fundamental quantum dot models. (a) is the Kondo
model, a spin- 12 coupled via exchange couplings Jz,⊥ to two reservoirs. (b) is the IRLM,
a spinless 1-level quantum dot coupled via tunneling rates ΓL,R and Coulomb couplings
UL,R to two reservoirs. The electrochemical potentials are given by µL/R = ±V/2

for the couplings. Similar schemes can be developed for the calculation of the transport

current [5] and correlation functions [189]. All RG equations involve resolvents similar

to the one occurring in (16) where z is replaced by Λ together with other physical energy

scales. As a consequence, it can be shown that, besides temperature, each term of the

RG equation has a specific cutoff scale Λi, which is generically of the form

Λi = |E +
∑

j

njµαj − hi + iΓi| ≡ |δi + iΓi| . (17)

Here, E is the real part of the Laplace variable, nj are integer numbers, and µα denotes

the electrochemical potential of reservoir α. It shows that the cutoff scale is given by the

distance δi to resonances. Furthermore, it provides the generic proof that, at resonance
δi = 0, the cutoff scale is given by the corresponding rate Γi. This issue was under

debate for some time because it was speculated that electrons tunneling in and out via

the same reservoir correspond to low-energy processes, which could possibly lead to a

strong coupling fixed point even in the presence of a finite bias voltage [195]. However,

it was argued that voltage-induced decay rates prevent the system from approaching

the strong coupling regime [177, 196, 197]. The microscopic inclusion of decay rates as
cutoff scales into nonequilibrium RG methods was achieved within RTRG [185–187],

flow equation methods [180], and RTRG-FS [5].

5.2. Applications

The two models used to illustrate the basic physics of spin and charge fluctuations are
sketched in figure 8. One model is the Kondo model at finite magnetic field h already

discussed in section 4, where a spin-1/2 couples via anisotropic exchange couplings Jz/⊥

to the spins of two reservoirs. We have assumed a symmetric coupling to the leads and

note that during the exchange it is also allowed that a particle is transferred between the

reservoirs. The model results from the Coulomb blockade regime of a quantum dot with

one level, where charge fluctuations are frozen out and only the spin can fluctuate. This

leads to an effective band width of the reservoirs of the order of the charging energy U .
Anisotropic exchange couplings can be realized for a molecular magnet, see section 2.

The other model is the IRLM, where the quantum dot consists of a single spinless energy

level at position ϵ. The dot interacts with the reservoirs via tunneling processes, which

εd

Vb

L R
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Spectral function of the dot

T = 10−4Γ

A(ω) = −
1
π

ImGR(ω) Bertrand et al.  Phys. Rev. X (2019) 
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