Computational Quantum Many-Body Physics:
 A few highlights

Olivier Parcollet

Center for Computational Quantum Physics
Flatiron Institute, Simons Foundation,
New York
\&
IPhT, Saclay
【O】 FLATIRON

The quantum many-body problem

- Many interacting quantum particles
- At low temperature. Collective effects.
- "More is different" Anderson, 73
- Examples:
- Electrons in solids.
- Nano-electronics
- Quantum Chemistry.
- Quantum optics. Ultra-cold atoms
- Nuclear physics. QCD.

Quantum dot

Moiré systems

High Temperature
superconductors
High Temperature
superconductors

Ultra-cold atoms in optical lattices

Quantum Many-Body problem

- A central topic at IPhT, with many contributions e.g. C. De Dominicis, C. Bloch, J.P. Blaizot, H. Orland, G. Ripka, R. Balian, ...
- Very close to:
- Quantum field theory.
- Condensed matter theory.

Computational Quantum Many body physics

Develop concepts/methods/algorithms to solve quantum many body systems

Simplified Models

- e.g. Hubbard model

$H=-\sum_{\langle i j\rangle, \sigma=\uparrow, \downarrow} t c_{i \sigma}^{\dagger} c_{j \sigma}+\sum_{i} U n_{i \uparrow} n_{i \downarrow}$

The Flatiron Institute / Simons Foundation

- Research institute of the Simons Foundation.
- 5 Centers.
- Computational Astrophysics (CCA)
- Computational Biology (CCB)

- Computational Mathematics (CCM)
- Computational Neurosciences (CCN)
- Computational Quantum Physics (CCQ) ~ 15 faculty, 25 postdocs; students, visitors. Since fall 2017.

Mission:"to develop the concepts, theories, algorithms and codes needed to solve the quantum many-body problem and use the solutions to predict the behavior of materials and molecules of scientific and technological interest."

The CCQ Research Ecosystem

Parsimonious representations

- Compressed representation of wavefunctions $\psi\left(x_{1}, \ldots, x_{N}\right) /$ correlations functions
- Overcome the exponential scaling of the N -body problem.

Tensor Network

Machine learning

G. Carleo, M. Troyer Science (2017), J Robledo-Moreno et al. PNAS (2022)

Tensors

- A n-dimensional array $T_{i_{1} i_{2} \ldots i_{n}}$ with the indices $i_{k} \in\{1, \ldots, d\}$
- Pictorial representation.

Legs = indices.
Contraction $=$ connecting lines.

$$
A_{i_{1} i_{2}}
$$

$$
T_{i_{1} i_{2} \ldots i_{n}}
$$

- Singular Value Decomposition (SVD) (or RRQR, RRLU ...)

MATRIX

$$
A=U D V \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

- Precision ϵ : keep χ largest singular values λ_{i}
- $\chi=\epsilon$-rank.

Low rank: save memory and computing time

- Matrix product states (MPS) = Tensor Trains.

- Tree form

- 2D. PEPS, MERA, etc...

N-body wavefunctions

- Amplitudes are a tensor.

$$
\begin{gathered}
|\Psi\rangle=\sum_{s_{1} s_{2} s_{3} \cdots s_{n}} \Psi\left(s_{1}, s_{2}, s_{3}, \cdots, s_{n}\right)\left|s_{1} s_{2} s_{3} \cdots s_{n}\right\rangle \\
\Psi\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right)=
\end{gathered}
$$

- Variational Ansatz for ground state $\Psi_{G S}$ in term of a low rank tensor network.
- Controlled by quantum entanglement.
- Excellent for Id systems. Harder for 2d systems (PEPS, MERA).

Simulating NISQ quantum computers

- Efficient tensor network simulation of IBM's Eagle kicked Ising experiment.
- No"quantum supremacy"

nature
Explore content \sim About the journal \sim Publish with us \sim
ature > articles > article

Evidence for the utility of quantum computing before fault tolerance

Miles Stoudenmir

Tensor Networks
 for high dimensional integration

Large dimension integrals

- Large dimension integral or sum ($n \geq 10$)

$$
\int d x_{1} \ldots d x_{n} f\left(x_{1}, \ldots, x_{n}\right)
$$

$$
\sum_{i_{1}=1}^{d} \ldots \sum_{i_{n}=1}^{d} f_{i_{1}, \ldots, i_{n}}
$$

- Curse of dimensionality : a priori $O\left(d^{n}\right)$.
- An ubiquitous problem e.g.
- Partition functions.
- Diagrammatics (real time, imaginary time).

Compress to integrate

- If f can be written as a Matrix Product State (MPS) ...

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx M_{1}\left(x_{1}\right) \ldots M_{n}\left(x_{n}\right)=
$$

- with an error ε decreasing quickly with the rank X (ε-factorizable) ...
- then integration is reduced to Id integrals. Almost separated variables.

$$
\int d x_{1} \ldots d x_{n} f\left(x_{1}, \ldots, x_{n}\right) \approx\left(\int d x_{1} M_{1}\left(x_{1}\right)\right) \ldots\left(\int d x_{n} M_{n}\left(x_{n}\right)\right)
$$

Tensor Cross Interpolation (TCI) algorithm

I. Oseledets and E. Tyrtyshnikov, Linear Algebra and its Applications 432, 70 (2010).
S. Dolgov and D. Savostyanov, Computer Physics Communications 246, 106869 (2020)

- Builds MPS approximation for $T_{i_{1}, i_{2}, \ldots, i_{n}}$, with $i_{k} \in\{1, \ldots, d\}$
- Evaluating T on only $N \sim n d \chi^{2} \ll d^{n}$ points.
- Error estimator $\epsilon(\chi)$, decreasing with rank/bond dimension χ
- Rank Revealing algorithm

A concrete example

Perturbative series

Phys Rev X 12, 041018 (2022)

Collaborators : Ph. Dumitrescu, Y. Nuñez-Fernandez, X.Waintal, J. Kaye

Perturbative series

From Prokofiev, Svistunov 98,

- In equilibrium ("Diagrammatic Quantum Monte Carlo")

Many works in equilibrium
e.g. Hubbard model, pseudogap: Simkovic et al. arXiv:2209.09237

- Here, real time, out of equilibrium (Schwinger-Keldysh).

$$
Q(t, U)=\sum^{K} Q_{n}(t) U^{n} \quad K \approx 10-20
$$

- Even in strong coupling regime (e.g. Kondo effect, pseudo gap in Hubbard model)
- Beyond the finite radius of convergence of the series, using resummation techniques.
- Anderson model, 2 leads (L, R).

Bath
Dot
Hybridization

$$
H=\sum_{\substack{k \sigma \\ \alpha=L, R}} \varepsilon_{k \alpha} c_{k \sigma \alpha}^{\dagger} c_{k \sigma \alpha}+\sum_{\sigma} \varepsilon_{d} d_{\sigma}^{\dagger} d_{\sigma}+U n_{d \uparrow} n_{d \downarrow}+\sum_{\substack{k \sigma \\ \alpha=L, R}} g_{k \sigma \alpha}\left(c_{k \sigma \alpha}^{\dagger} d_{\sigma}+h . c .\right)
$$

$\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$: a n -dimensional integral

- Schwinger-Keldysh

Switch on
interaction

Times u_{i}
Keldysh indices $\alpha= \pm 1$

$$
\begin{gathered}
Q_{n}(t)=\frac{1}{n!} \underbrace{}_{\int_{t_{0}}^{\infty} d u_{1} \ldots d u_{n} \underbrace{}_{\substack{\alpha_{1}= \pm 1 \\
\alpha_{n}= \pm 1}}\left(\prod_{i=1}^{n} \alpha_{i}\right) \operatorname{det}_{0 \leq i, j \leq n}\left[g_{\alpha_{i} \alpha_{j}}^{\text {bare }}\left(u_{i}-u_{j}\right)\right])^{\alpha_{1}-\alpha_{2}} \begin{array}{ll}
\alpha_{3} & \alpha
\end{array}} \begin{array}{l}
\equiv q_{n}\left(t, u_{1}, \ldots, u_{n}\right)
\end{array}
\end{gathered}
$$

or Tensor network ...

- q_{n} costs $O\left(2^{n}\right)$ to evaluate. We compute up to 30 orders.

q_{n} is ε-factorizable!

- In the time differences v_{i} ((with time-ordered u_{i})

$$
\begin{aligned}
& v_{1}=t-u_{1} \\
& v_{i}=u_{i-1}-u_{i} \quad \text { for } 2 \leq i \leq n
\end{aligned}
$$

$$
q_{n}\left(t, u_{1}, \ldots, u_{n}\right) \approx M_{1}\left(v_{1}\right) \ldots M_{n}\left(v_{n}\right)
$$

- Decompose q_{n} with TCl and integrate

Charge of the dot, q_{10} vs its MPS interpolation

Benchmark

- High precision (9 digits) benchmark vs integrable case (equilibrium, flat bath).
- Number of evaluations of $q_{n}: N \sim \chi^{2}$
- $\quad \chi$ does not grow with n
- Convergence rate : error $\sim 1 / N^{2}$

What about one (or few) variables functions ?

Quantics tensor trains (QTT)

- Function of one continuous variable x as a tensor

$$
0 \leq x<1 \quad x=0 . d_{1} d_{2} d_{3} d_{4} d_{5} d_{6}
$$

- Many functions have low rank χ (e.g. e^{x} has rank I).
- Manipulate G in this representation, similar to orthogonal polynomials.
- Many potential applications e.g. PDE, turbulence, ...

The CCQ Research Ecosystem

Auxiliary field QMC

Hubbard model has high-Tc d-SC superconductivity

- With second neighbor hopping
- AFQMC \& DMRG

Shiwei Zhang (CCQ)
arXiv:2303.0837 March 15, 2023

Coexistence of superconductivity with partially filled stripes in the Hubbard model Hao Xu, ${ }^{1, *}$ Chia-Min Chung, ${ }^{2,3,4, *}$ Mingpu Qin, ${ }^{5}$ Ulrich Schollwöck, ${ }^{6,7}$ Steven R. White, ${ }^{8}$ and Shiwei Zhang ${ }^{9}$

Quantum Embeddings

Auxiliary
"Quantum impurity" model
A few degrees of freedoms
(d/f-shell)
coupled to a non-interacting
self-consistently bath of fermions

$\mathrm{Sr}_{2} \mathrm{RuO}_{4}$, a correlated Hund's metal

- Normal phase. Great comparison with experiments.

Fermi surface

Self-energy
A.Tamai, M. Zingl et al. Phys. Rev. X 9, 021048 (2019)

Spin Dynamics (RIXS)
H. Suzuki et al.,

Nat. Commun. I4, 7042 (2023)

- Superconducting phase. Order ? Mechanism ?

Planckian metal

- A class of non Fermi liquid metals.
- No quasi-particles.
- Relaxation time is minimal
- T-linear resistivity down to $\mathrm{T}=0$
- SYK (Sachdev-Ye-Kitaev) models
- A family of non Fermi liquids without quasi-particles.
- Holography. AdS-CFT correspondance.

Doped quantum spin glass

- SU(2) disordered Heisenberg model + holes

$$
H=-\sum_{i j, \sigma}\left(t_{i j}+\mu \delta_{i j}\right) c_{i \sigma}^{\dagger} c_{j \sigma}+\sum_{i<j} J_{i j} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}+U \sum_{i} n_{i \uparrow} n_{i \downarrow},
$$

Philipp Dumitrescu (CCQ)

Thank you for your attention!

Conformal change of variables

Profumo et al. PRB 9I, 245 I54 (2015)
Bertrand et al. Phys. Rev. X 9, 041008 (2019)

A finite radius of convergence ! Singularities poles, branch cuts

- Change of variable $\mathrm{W}(\mathrm{U})$, with $\mathrm{W}(0)=0$

$$
Q=\sum_{n \geq 0} Q_{n} U^{n}=\sum_{p \geq 0} \bar{Q}_{p} W^{p}
$$

Out of equilibrium. Steady state

Kondo resonance

$T=\Gamma / 50$

- Split by voltage bias V_{b}
- One calculation, all U.

$$
A(\omega)=-\frac{1}{\pi} \operatorname{Im} G^{R}(\omega)
$$

Spectral function of the dot

$$
T=10^{-4} \Gamma
$$

Bertrand et al. Phys. Rev. X (20/9)

Kondo temperature $\quad T_{K}(U) \equiv \frac{2 \Gamma}{1-\left.\partial_{\omega} \operatorname{Re} \Sigma^{R}(U, \omega)\right|_{\omega=0}}$

