Eigenstate thermalization in quantum many-body systems

Laura Foini IPhT

November 10, 2023
60 ans de l'IPhT

Context

ETH explains equilibration of isolated quantum many-body systems

In our work: need to characterise better ETH ansatz, all about dynamics at equilibrium

Dynamics and ETH

Heisenberg picture (evolution of the operators):

$$
\begin{gathered}
A(t)=e^{i H t} A e^{-i H t}=\sum_{i j} e^{i\left(E_{i}-E_{j}\right) t} A_{i j}\left|E_{i}\right\rangle\left\langle E_{j}\right| \\
A_{i j}=\left\langle E_{i}\right| A\left|E_{j}\right\rangle
\end{gathered}
$$

Look at matrix elements of observables in the basis of the energy

Characterise them "statistically"

Toy ETH

(Diagonal) matrix A (observable) of size \mathscr{N}
Matrix elements in a random basis

$$
\begin{gathered}
\overline{A_{i i}}=\frac{1}{\mathscr{N}} \sum_{i} \lambda_{i}=m_{1}=\kappa_{1} \\
\overline{A_{i j}}=0 \quad i \neq j \\
\overline{A_{i j}^{2}}=\frac{1}{\mathscr{N}}\left[\frac{1}{\mathscr{N}} \sum_{i} \lambda_{i}^{2}-\left(\frac{1}{\mathscr{N}} \sum_{i} \lambda_{i}\right)^{2}\right]=\frac{1}{\mathscr{N}}\left[m_{2}-m_{1}^{2}\right]=\frac{1}{\mathscr{N}} \kappa_{2}
\end{gathered}
$$

Toy ETH: ansatz

$$
\begin{gather*}
A_{i j}=\kappa_{1} \delta_{i j}+\sqrt{\frac{\kappa_{2}}{\mathscr{N}}} R_{i j} \\
\overline{R_{i j}}=0 \quad \overline{R_{i j}^{2}}=1 \tag{1}
\end{gather*}
$$

No info about correlations

$$
\begin{equation*}
\overline{A_{i_{1} i_{2}} A_{i_{2} i_{3}} \ldots A_{i_{p} i_{1}}} \simeq \frac{1}{\mathscr{N}^{(p-1)}} \kappa_{p} \quad i_{1} \neq i_{2} \neq \ldots \neq i_{p} \tag{2}
\end{equation*}
$$

Toy ETH: diagrams

The many-body problem

E.g. H spin chain, physical observable:

$$
A=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{z}
$$

$$
\begin{gathered}
H \text { and } A \text { matrices of size } \mathscr{N}=2^{N} \\
\rho(E=N e)=\sum_{\alpha=1}^{\mathcal{N}} \delta\left(E-E_{i}\right) \propto e^{S(E)} \simeq e^{N s(e)}
\end{gathered}
$$

Eigenstate thermalization

Single eigenstates provide equilibrium statistical averages $\left\langle E_{i}\right| A\left|E_{i}\right\rangle$ varies smoothly with the energy E_{i}
For dynamics necessary off-diagonal matrix elements

J. Deutsch (1991), M. Srednicki (1994)
Review: D'Alessio, Kafri, Polkovnikov, Rigol (2016)

Eigenstate thermalization ansatz

$$
\begin{aligned}
& A_{i j}=\mathscr{A}(e) \delta_{i j}+e^{-N s(e) / 2} f_{e}(\omega) R_{i j} \\
& E=\left(E_{i}+E_{j}\right) / 2 \quad e=E / N \quad \omega=E_{i}-E_{j}
\end{aligned}
$$

$$
R_{i j} \text { (pseudo)-random numbers }
$$

$$
\overline{R_{i j}}=0 \overline{R_{i j}^{2}}=1
$$

M. Srednicki (1999)

Fictitious ensemble

$A_{i j} \rightarrow$ random matrix element Ensemble?

- Small energy windows
- Perturb with small Hamiltonian $H \rightarrow H+\epsilon V$ (Deutsch (1991)). Nearby eigenvectors extremely sensitive even to small perturbations. Physics unchanged

One and two-time correlation functions

$$
\begin{gathered}
\langle A\rangle_{\beta} \xrightarrow{N \rightarrow \infty} \mathscr{A}\left(e_{\beta}\right) \\
\langle A(t) A(0)\rangle_{\beta}-\langle A\rangle_{\beta}^{2} \xrightarrow{N \rightarrow \infty} \int \mathrm{~d} \omega e^{-\beta \omega / 2} e^{i \omega t}\left|f_{e_{\beta}}(\omega)\right|^{2}
\end{gathered}
$$

One and two-point function independent of correlations between different matrix elements

Multi-point correlation functions

$$
\begin{gathered}
C_{4}^{\beta}\left(t_{1}, t_{2}, t_{3}\right)=\operatorname{Tr}\left[\rho_{\beta} A\left(t_{1}\right) A\left(t_{2}\right) A\left(t_{3}\right) A(0)\right] \\
C_{4}^{\beta}(t, 0, t) \text { Out-of-Time-Order Correlator } \\
\text { "quantum Lyapunov exponent" }
\end{gathered}
$$

Larkin and Ovchinikov (1969)
Kitaev (2015)
Maldacena, Shenker and Stanford (2016)

Multi-point correlation functions

In the energy eigenbasis

$$
C_{p}^{\beta}\left(t_{1}, \ldots, t_{p-1}\right)=\sum_{i_{1}, \ldots, i_{p}}\left[\frac{e^{-\beta E_{i_{1}}}}{Z} A_{i_{1} i_{2}}\left(t_{1}\right) A_{i_{2} i_{3}}\left(t_{2}\right) \ldots A_{i_{p} i_{1}}(0)\right]
$$

For any $p>2$ products of different matrix elements!

Argument for correlations

$$
\left|f_{e}(\omega)\right|^{2} \text { Fourier transform of } C_{2}^{\beta}(t)
$$

$A_{i j}$ independent variables \rightarrow all multi-point functions determined solely by $f_{e}(\omega)$, i.e. by $C_{2}^{\beta}(t)$

Unreasonable in general

Beyond independent matrix elements

Multipoint functions

$$
\begin{aligned}
& \overline{A_{i_{1} i_{2}} A_{i_{2} i_{3}} A_{i_{3} i_{4}} A_{i_{4} i_{1}}} \quad \text { for } \quad i_{1} \neq i_{2} \ldots \neq i_{n} \\
& \quad \propto f_{e}^{(4)}\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \rightarrow C_{4}^{\beta}\left(t_{1}, t_{2}, t_{3}\right)
\end{aligned}
$$

Same spirit as usual ETH (and toy ETH)

$$
f_{e}^{(1)}=\mathscr{A}(e) \quad f_{e}^{(2)}(\omega)=\left|f_{e}(\omega)\right|^{2}
$$

Generalized ETH

$$
\overline{A_{i_{1} i_{2}} A_{i_{2} i_{3}} \ldots A_{i_{n} i_{1}}} \simeq e^{-(n-1) N s(e)} f_{e}^{(n)}\left(\omega_{1}, \ldots, \omega_{n-1}\right)
$$

for $i_{1} \neq i_{2} \ldots \neq i_{n}$

$$
e=\frac{1}{n} \sum_{k=1}^{n} e_{i_{k}} \quad \omega_{k}=E_{i_{k}}-E_{i_{k+1}}
$$

+ other assumptions

Foini and Kurchan (2019)

Free probability

Random matrix elements of one operator at different times

One matrix vs Infinitely many matrices!

$$
\begin{aligned}
\kappa_{n}^{\beta}\left(t_{1}, \ldots, t_{n-1}, 0\right) & =\frac{1}{Z} \sum_{i_{1} \neq i_{2} \neq \ldots \neq i_{n}} e^{-\beta E_{i_{1}}} A\left(t_{1}\right)_{i_{1} i_{2}} \ldots A(0)_{i_{n} i_{1}} \\
& =\int \mathrm{d} \omega_{1} \ldots \mathrm{~d} \omega_{n-1} e^{i \vec{\omega} \cdot \vec{t}} e^{-\beta \vec{\omega} \cdot \vec{l}_{n}} f_{\varepsilon_{\beta}}^{(n)}\left(\omega_{1}, \ldots, \omega_{n-1}\right)
\end{aligned}
$$

$\vec{l}_{n}=\left(\frac{n-1}{n}, \ldots, \frac{1}{n}\right)$
Pappalardi, Foini and Kurchan (2022)

In summary ...

- Propose a (simple) ansatz able to account for correlations between matrix elements. Relevant for multi-point functions
- Recognise importance of free probability in connection with quantum statistical mechanics

In summary ...

- Propose a (simple) ansatz able to account for correlations between matrix elements. Relevant for multi-point functions
- Recognise importance of free probability in connection with quantum statistical mechanics

Temporary page!

ATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to final page this extra page has been added to receive it. If you rerun the document (without altering it) this surplus page w go away, because $A \operatorname{AT} E X$ now knows how many pages to expect for this document

