Eigenstate thermalization in quantum many-body systems

Laura Foini IPhT

November 10, 2023 60 ans de l'IPhT

ETH explains equilibration of *isolated quantum many-body* systems

In our work: need to characterise better ETH ansatz, all about dynamics *at equilibrium*

Dynamics and ETH

Heisenberg picture (evolution of the operators):

$$A(t) = e^{iHt} A e^{-iHt} = \sum_{ij} e^{i(E_i - E_j)t} A_{ij} |E_i\rangle \langle E_j|$$
$$A_{ij} = \langle E_i |A| E_j \rangle$$

Look at matrix elements of observables in the basis of the energy

Characterise them "statistically"

Toy ETH

(Diagonal) matrix A (observable) of size \mathcal{N} Matrix elements in a random basis

$$\overline{A_{ii}} = \frac{1}{\mathcal{N}} \sum_{i} \lambda_{i} = m_{1} = \kappa_{1}$$
$$\overline{A_{ij}} = 0 \qquad i \neq j$$
$$\overline{A_{ij}^{2}} = \frac{1}{\mathcal{N}} \left[\frac{1}{\mathcal{N}} \sum_{i} \lambda_{i}^{2} - \left(\frac{1}{\mathcal{N}} \sum_{i} \lambda_{i} \right)^{2} \right] = \frac{1}{\mathcal{N}} \left[m_{2} - m_{1}^{2} \right] = \frac{1}{\mathcal{N}} \kappa_{2}$$

<□> <⊡> <⊡> < ⊇> < ⊇> < ⊇> < ⊇> < ⊇</td><0 < ℃</td>4/18

Toy ETH: ansatz

$$A_{ij} = \kappa_1 \delta_{ij} + \sqrt{\frac{\kappa_2}{\mathcal{N}}} R_{ij}$$
$$\overline{R_{ij}} = 0 \qquad \overline{R_{ij}^2} = 1$$
(1)

No info about correlations

$$\overline{A_{i_1i_2}A_{i_2i_3}\dots A_{i_pi_1}} \simeq \frac{1}{\mathcal{N}^{(p-1)}}\kappa_p \qquad i_1 \neq i_2 \neq \dots \neq i_p \tag{2}$$

Toy ETH: diagrams

うてん 加 (中)(日)(日)(日)

The many-body problem

E.g. *H* spin chain, physical observable:

$$A = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^z$$

H and A matrices of size $\mathcal{N} = 2^N$

$$\rho(E = Ne) = \sum_{\alpha=1}^{\mathcal{N}} \delta(E - E_i) \propto e^{S(E)} \simeq e^{Ns(e)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Single eigenstates provide equilibrium statistical averages $\langle E_i | A | E_i \rangle$ varies smoothly with the energy E_i For dynamics necessary off-diagonal matrix elements

> J. Deutsch (1991), M. Srednicki (1994) Review: D'Alessio, Kafri, Polkovnikov, Rigol (2016)

Eigenstate thermalization ansatz

$$A_{ij} = \mathscr{A}(e)\delta_{ij} + e^{-Ns(e)/2}f_e(\omega)R_{ij}$$
$$E = (E_i + E_j)/2 \quad e = E/N \quad \omega = E_i - E_j$$
$$R_{ij} \text{ (pseudo)-random numbers}$$
$$\overline{R_{ij}} = 0 \ \overline{R_{ij}^2} = 1$$

M. Srednicki (1999)

Fictitious ensemble

$A_{ij} \rightarrow$ random matrix element Ensemble ?

- Small energy windows
- Perturb with small Hamiltonian H→ H+ εV (Deutsch (1991)). Nearby eigenvectors extremely sensitive even to small perturbations. Physics unchanged

One and two-time correlation functions

$$\langle A \rangle_{\beta} \xrightarrow{N \to \infty} \mathscr{A}(e_{\beta})$$

$$\langle A(t)A(0)\rangle_{\beta} - \langle A\rangle_{\beta}^{2} \xrightarrow{N \to \infty} \int \mathrm{d}\omega \ e^{-\beta\omega/2} e^{i\omega t} |f_{e_{\beta}}(\omega)|^{2}$$

One and two-point function independent of correlations between different matrix elements

Multi-point correlation functions

$$C_4^{\beta}(t_1, t_2, t_3) = \mathsf{Tr}\left[\rho_{\beta}A(t_1)A(t_2)A(t_3)A(0)\right]$$

$C_4^{\beta}(t,0,t)$ Out-of-Time-Order Correlator "quantum Lyapunov exponent"

Larkin and Ovchinikov (1969) Kitaev (2015) Maldacena, Shenker and Stanford (2016)

Multi-point correlation functions

In the energy eigenbasis

$$C_p^{\beta}(t_1,\ldots,t_{p-1}) = \sum_{i_1,\ldots,i_p} \left[\frac{e^{-\beta E_{i_1}}}{Z} A_{i_1 i_2}(t_1) A_{i_2 i_3}(t_2) \ldots A_{i_p i_1}(0) \right]$$

For any p > 2 products of different matrix elements!

Argument for correlations

$$|f_e(\omega)|^2$$
 Fourier transform of $C_2^{\beta}(t)$

 A_{ij} independent variables \rightarrow all multi-point functions determined solely by $f_e(\omega)$, i.e. by $C_2^{\beta}(t)$

Unreasonable in general

Beyond independent matrix elements

 i_2 l_4 l_2

Multipoint functions

$$\overline{A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} A_{i_4 i_1}} \quad \text{for} \quad i_1 \neq i_2 \dots \neq i_n$$
$$\propto f_e^{(4)}(\omega_1, \omega_2, \omega_3) \to C_4^\beta(t_1, t_2, t_3)$$

Same spirit as usual ETH (and toy ETH)

$$f_e^{(1)} = \mathscr{A}(e) \qquad f_e^{(2)}(\omega) = |f_e(\omega)|^2$$

<ロ> < 部 > < 書 > < 言 > 言 の < で 15 / 18

Generalized ETH

$$\overline{A_{i_1i_2}A_{i_2i_3}\dots A_{i_ni_1}} \simeq e^{-(n-1)Ns(e)} f_e^{(n)}(\omega_1,\dots,\omega_{n-1})$$

for $i_1 \neq i_2\dots \neq i_n$
 $e = \frac{1}{n} \sum_{k=1}^n e_{i_k} \qquad \omega_k = E_{i_k} - E_{i_{k+1}}$
 $i_4 \underbrace{ \underbrace{ \underbrace{ i_1}}_{i_3} i_2 }_{i_3}$

+ other assumptions

Foini and Kurchan (2019)

Free probability

Random matrix elements of one operator at different times

One matrix vs Infinitely many matrices!

$$\begin{aligned} \kappa_{n}^{\beta}(t_{1},...,t_{n-1},0) &= \frac{1}{Z} \sum_{i_{1} \neq i_{2} \neq ... \neq i_{n}} e^{-\beta E_{i_{1}}} A(t_{1})_{i_{1}i_{2}} \dots A(0)_{i_{n}i_{1}} \\ &= \int d\omega_{1} \dots d\omega_{n-1} e^{i\vec{\omega}\cdot\vec{t}} e^{-\beta\vec{\omega}\cdot\vec{l_{n}}} f_{\epsilon_{\beta}}^{(n)}(\omega_{1},...,\omega_{n-1}) \\ \vec{l_{n}} &= \left(\frac{n-1}{n},...,\frac{1}{n}\right) \end{aligned}$$

Pappalardi, Foini and Kurchan (2022)

In summary ...

- Propose a (simple) ansatz able to account for correlations between matrix elements. Relevant for multi-point functions
- Recognise importance of free probability in connection with quantum statistical mechanics

In summary ...

- Propose a (simple) ansatz able to account for correlations between matrix elements. Relevant for multi-point functions
- Recognise importance of free probability in connection with quantum statistical mechanics

Thank you!

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to t final page this extra page has been added to receive it. If you rerun the document (without altering it) this surplus page w go away, because LATEX now knows how many pages to expect for this document