

- 1. Contexte
- 2. Trois piliers et un cadre pour la R&D
- 3. Les choix de CERN-EP-ESE

1. Contexte

- a. Programmes scientifiques
- b. Compétences et activités
- c. Environnement collaboratif
- 2. Trois piliers et un cadre pour la R&D
- 3. Les choix de CERN-EP-ESE

Au programme: LHC et HL-LHC

Compétences et activités

ON DETECTOR ELECTRONICS (FRONT-END)

Power

EXPERIMENT

OFF DETECTOR ELECTRONICS (BACK-END)

POWER SUPPLIES

L'environnement collaboratif

CERN-EP Department Structure

~90% of resources are focused on LHC experiments and their upgrades

- 1. Contexte
- 2. Trois piliers et un cadre pour la R&D
- 3. Les choix de CERN-EP-ESE

Experiments

- Common projects for experiments and R&D
- Services

ESE Activity Portfolio and Evolution

Un cadre pour la R&D

- Being continued (requests approved for 2024-2028) and expanded
- ESE has projects for WP1.2 (monolithic CMOS), WP5 (IC developments) and WP6 (Links)
 - Will be the ESE research arm, in synergy with detector-specific developments
- GLOBAL: ECFA Detector R&D, international programme on strategic R&D for future detectors
 - Being implemented for gradual start in 2024, to reach full speed in 2026
 - CERN's contribution via EP R&D workpackages

DRD7 Workshop on 25-26 Sep

A Roadmap for which Facilities?

- 'Chicken-and-egg' problem
 - Cannot define an R&D timeline without knowing the approximate dates of future facilities
 - Cannot predict dates of future facilities without knowing R&D needs
- Detector / accelerator roadmaps have used a common timeline
 - Highly approximate, and not to be used out of context
 - Dates represent the 'earliest feasible date', driven by both technical considerations and the processes of approval
 - The goal on both sides is that R&D shall not be the rate-limiting step

2I ECFA, I8th November 2021 Dave.Newbold@stfc.ac.uk

TF7 Recommendations

a) Detector R&D Themes, Electronics

francois.vasey@cern.ch 14.9.23

ESE Activity Evolution

WP1.2: 1.3M, 16.5FY, 8SY WP5: 2.3M, 14FY, 14SY WP6: 0.8M, 12FY, 8SY over 5 yrs (2020-2024)

- 1. Contexte
- 2. Trois piliers et un cadre pour la R&D
- 3. Les choix de CERN-EP-ESE

WP1.2 Monolithic Si Pixel Detectors

2024					2025					2026					2027					2028					
Deliverables:																									
					Des.K	it & Lik	raries		Re	port I	R2						Re	port ML	R2					Re	eport MLR3
																							igsquare		
Tape-out dates:																									
ER2									MLR2									MLR3							MLR4

WP5: IC Technologies

TWO COMPLEMENTARY R&D ACTIVITIES:

Stage 1: $48V \rightarrow 5V$

Find a new CMOS HV technology (old one no longer available) Explore the new upcoming GaN commercial technologies Full radiation characterization (TID, DD, SEE)

Find a suitable architecture for this high conversion ratio with main specification low volume, low noise, high efficiency, higher radiation hardness (bPOL48 only rated up to 5e14 n/cm2)

Power module design: provide to the experiment a small and optimized "brick" with all active and passive elements included.

Stage 2: $5V \rightarrow 0.9V$

Continue the recently started R&D activity to:

- reach production readiness
- improve the design for a modular approach where designers can easily connect blocks for higher output current (>3A)
- design a linear regulator from 5V → 0.9V 1.2V necessary for some I/O pads
- explore derived topologies for higher output voltages

WP5.5 Interconnects & Packaging

- Advanced packaging & 3D Interconnects
 - Technology survey, access and evaluation
 - Silicon Interposer (a)
 - Wafer Level Packaging & TSVs (b)
 - Chip on Wafer (c)
 - Wafer on Wafer (d)
 - Enabler for many applications
 - Hybrid detectors
 - Si Photonics

Timeline

- Phase A
 - Identify industrial collaborators
 - Comparison between the 'third-party' and 'turn-key' approaches
- Phase B
 - Invest R&D funds to test the viability of the technologies
 - Test vehicle ASICs (ex. TimePix4)

DRAM

InFO_PoP

WP6 High Speed Links

WP6 Goals

- Provide the future HEP systems with:
 - High bandwidths: ~25 Gbps / lane
 - High radiation tolerance c.f. ECFA roadmap
 - Low power, low mass
- FPGAs
 - · Compatible with the state-of-the-art
- ASICS
 - Advanced technologies 28nm CMOS
 - High order modulation formats (PAM4)
 - Drivers for SiPh optoelectronics
- Optoelectronics
 - Silicon Photonics (SiPh)
 - External Modulators
 - Ring & MZ
- Wavelength Division Multiplexing (WDM)

ASIC-3: RH FPGA

- FPGAs have been enablers of HEP off-detector systems
- Rad-Hard FPGAs that can be installed inside HEP detectors are not available.
- Some on-detector functions would benefit from embedded programmable logic:
 - Data concentrators/aggregators
 - Trigger algorithms
- We propose to study the feasibility of developing a moderate complexity (realistic for our community) Radiation-Hard FPGA (RH-FPGA)
 - But, nonetheless, useful for embedded detector systems
- The study should answer questions like:
 - Which detector systems could benefit?
 - Which architectures are best suited for data concentrators, data compression and trigger algorithms?
- It will propose:
 - Architectures
 - Software and firmware tools
 - Minimum hardware set
- Depending on the study conclusions, a proposal for a demonstrator ASIC will be made

FPGA-3: Ethernet Link for Front-Ends

- Streaming data directly from detector front-end to the DAQ processing farm is very attractive for trigger-less DAQ architectures
 - · Would require sending output of FE datalink directly into a commodity network switch
- Propose to study the feasibility of implementing a standard-compliant 100G
 Ethernet link for on-detector deployment
 - Buffering
 - Asynchronous to LHC collisions
- To be carried out in close collaboration with future Back-End and DAQ developers

Conclusions

- The vital importance of electronics to High Energy Physics is acknowledged at the highest levels:
 - Innovation in hardware and software will disrupt the way we build detectors
 - Complexity in technologies and tools will disrupt the way we work
- An R&D program must address the above two points, keeping in mind that:
 - No team can cover the full spectrum
 - Collaboration is key to survival
- R&D lines must build on:
 - Focused expertise
 - Above-critical-mass teams
 - Mid-term applications
- It is important to carefully guide the R&D program to maintain achievable goals
 - The national R&D programs support developments for the mid-term future
 - The ECFA R&D roadmap for detectors extends this support-promise to the long-term
- In electronics, the role of CERN EP-ESE is central to the community
- For complex projects, a new balance is being sought between CERN, central institutions and distributed resources: Hub model for ASIC developments
- Register to, and attend the upcoming DRD7 workshop on 25-26 Sep at CERN https://indico.cern.ch/event/1318635/